Zsm Type Patents (Class 502/77)
  • Publication number: 20130130889
    Abstract: The present invention provides an improved fluidized catalytic cracking process coupled with a two stage regeneration process in which the activity of the circulating catalyst is independently controlled for cracking hydrocarbon feedstocks or the vapors at low severity to produce maximum light cycle oil/distillate in one riser whilst cracking recycle streams comprising heavy cycle oil (HCO), light cracked naphtha (LCN) etc. in a second riser operating at high severity to produce LPG.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: Stone & Webster Process Technology, Inc.
    Inventors: Eusebius Gbordzoe, Marc Bories, Warren Stewart Letzsch, Patrick Leroy, Chris Santner, Joseph L. Ross, JR.
  • Publication number: 20130123557
    Abstract: In a process for producing a phosphorus-modified zeolite catalyst, zeolite crystals can be formed into a shaped catalyst body either in the absence of a separate inorganic oxide binder or in the presence of a separate inorganic oxide binder that is substantially free of aluminum. After converting the zeolite crystals to the hydrogen form and removing any organic directing agent employed in the synthesis of the zeolite crystals, the shaped catalyst body can be treated with an aqueous solution of a phosphorus compound, and the treated catalyst body can be heated to remove the water and to convert the phosphorus compound to an oxide form.
    Type: Application
    Filed: October 16, 2012
    Publication date: May 16, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: ExxonMobil Research and Engineering Company
  • Patent number: 8435909
    Abstract: The dual-zeolite catalyst for production of ethylbenzene is formed by mixing at least two different zeolites selected from mordenite, beta, ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, MFI topology zeolite, NES topology zeolite, EU-1, SAPO-5, SAPO-34, SAPO-11 and MAPO-36 zeolites and an inactive alumina binder. The two zeolites have different topology and possess dissimilar and unique physical and chemical characteristics, including particle size, surface area, pore size and acidity. The preferred amount of the two zeolites may range from 10 to 90 wt % of the total catalyst amount in the final dried and calcined form, preferably the zeolites are in equal parts by weight.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 7, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman S. Al-Khattaf, Taiwo Odedairo
  • Publication number: 20130102825
    Abstract: The invention relates to a bound phosphorus-modified catalyst composition comprising a zeolite having a silica to alumina molar ratio of at least 40 and a binder having a surface area less than 200 m2/g, wherein the bound catalyst composition exhibits a mesopore size distribution with less than 20% of mesopores having a size below 10 nm before steaming in approximately 100% steam for about 96 hours at about 1000° F. (about 538° C.) and with more than 60% of mesopores having a size at least 21 nm after steaming in approximately 100% steam for about 96 hours at about 1000° F. (about 538° C.).
    Type: Application
    Filed: October 16, 2012
    Publication date: April 25, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: EXXONMOBIL RESEARCH AND ENGINEERING
  • Publication number: 20130102824
    Abstract: A bound phosphorus-modified catalyst composition comprises a zeolite having a silica to alumina molar ratio of at least 40, phosphorus in an amount between about 0.1 wt % and about 3 wt % of the total catalyst composition, and a binder essentially free of aluminum. The bound catalyst composition can advantageously exhibit at least one of: (a) microporous surface area of at least 340 m2/g; (b) an alpha value after steaming in ˜100% steam for ˜96 hours at ˜1000° F. (˜538° C.) of at least 40; and (c) a coke deactivation rate constant<0.05 after steaming in ˜100% steam for ˜96 hours at ˜1000° F. (˜538° C.). The bound catalyst, as calcined, can advantageously also exhibit (i) 2,2-dimethylbutane diffusivity>˜1.5×10?2 sec?1 measured at ˜120° C. and ˜60 torr (˜8 kPa) and (ii) a coke deactivation rate constant<˜0.15.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 25, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventor: ExxonMobil Research and Engineering Company
  • Publication number: 20130098804
    Abstract: A catalyst composition that has superior attrition performance and a method that produces said catalyst composition to be used for fluid catalytic cracking processes to convert a heavy hydrocarbon fraction into mainly liquid fuels, particularly gasoline and light olefins. The catalyst composition has a moisture level or loss on ignition below 12 wt % and attrition rate below 3 wt. %/hr.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Inventors: Yun-feng Chang, Lian Du
  • Publication number: 20130066126
    Abstract: The present invention relates to a method for producing a zeolite catalyst useful for aromatization of a lower alkane, a zeolite catalyst useful for aromatization of a lower alkane obtainable by said method and a process for aromatization of a lower alkane using the zeolite catalyst of the present invention.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 14, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventor: Suman Kumar Jana
  • Publication number: 20130048541
    Abstract: Additive particles for use in a fluid catalytic cracking system are provided for reducing the opacity of flue gas that is generated from a regenerator within the system. Particles are supplied to the unit to catalyze the cracking of hydrocarbon feeds, and to react with sulfur oxides that are produced during regeneration of catalysts supplied for the cracking reactions. At least a portion of the supplied particles include active particulates and a binder, with at least a portion of the active particulates being in a size range from 0.5 to 40 microns.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 28, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventor: Dong X. Li
  • Patent number: 8372263
    Abstract: A hydroisomerization catalyst according to the present invention is obtained by calcining a catalyst composite including an ion-exchanged molecular sieve or a calcined material thereof which is obtained by performing ion exchange of a molecular sieve containing an organic template in a solution containing a cation species and using water as a main solvent and at least one metal which is selected from a group consisting of metals belonging to Groups 8-10 of the Periodic Table of the Elements, molybdenum, and tungsten supported on the ion-exchanged molecular sieve or a calcined material thereof.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: February 12, 2013
    Assignee: Nippon Oil Corporation
    Inventor: Kazuaki Hayasaka
  • Patent number: 8349756
    Abstract: A noble metal-containing titanosilicate material, characterized in that said material is represented with the oxide form of xTiO2.100SiO2.yEOm.zE, wherein x ranges from 0.001 to 50.0; (y+z) ranges from 0.0001 to 20.0 and y/z<5; E represents one or more noble metals selected from the group consisting of Ru, Rh, Pd, Re, Os, Ir, Pt, Ag and Au; m is a number satisfying the oxidation state of E. The crystal grains of said material contain a hollow structure, or a sagging structure. In said material, the synergistic effect between the noble metal and the titanosilicate are enhanced. As compared with the prior art, the selectivity, catalytic activity and stability of the reaction product are obviously increased in the oxidation reaction, e.g. the reaction for preparing propylene oxide by epoxidation of propylene.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 8, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Min Lin, Chunfeng Shi, Jun Long, Bin Zhu, Xingtian Shu, Xuhong Mu, Yibin Luo, Xieqing Wang, Yingchun Ru
  • Publication number: 20120330080
    Abstract: A process to prepare propylene showing desirably increased selectivity comprises contacting, at an elevated temperature, ethanol and a rhenium oxide-modified ZSM-5 zeolite catalyst, under conditions suitable to form propylene. The rhenium oxide-modified ZSM-5 zeolite catalyst may be prepared by impregnating, in an aqueous or organic medium, a ZSM-5 zeolite with a rhenium source, under conditions suitable to form a catalyst precursor, and calcining the catalyst precursor under conditions suitable to form a rhenium oxide-modified ZSM-5 zeolite catalyst.
    Type: Application
    Filed: March 7, 2011
    Publication date: December 27, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Yu Liu, Andrzej M. Malek, Albert E. Schweizer, JR.
  • Patent number: 8334230
    Abstract: A honeycomb structure includes at least one honeycomb unit which includes walls. The walls have a thickness of from about 0.10 mm to about 0.50 mm and extend along a longitudinal direction of the honeycomb structure to define through-holes. The honeycomb structure has a center area inside a boundary line passing through positions located at substantially a half of a length from a center of the honeycomb structure to a periphery of the honeycomb structure in a cross section perpendicular to the longitudinal direction. The honeycomb structure has a peripheral area outside the boundary line. A thickness of the walls located in the peripheral area is larger than a thickness of the walls located in the center area. A first opening ratio in the center area in the cross section is larger than a second opening ratio in the peripheral area in the cross section.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: December 18, 2012
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Masafumi Kunieda, Takahiko Ido
  • Patent number: 8329607
    Abstract: Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 11, 2012
    Assignee: BASF Corporation
    Inventors: M. Shahjahan Kazi, Michel Deeba, Torsten Neubauer, Alfred Helmut Punke, Torsten Wolfgang Mueller-Stach, Gerd Grubert, Stanley A. Roth, Jeffrey Barmont Hoke, Shlang Sung, Yuejin Li, Xinyi Wei, Chung-Zong Wan
  • Publication number: 20120302432
    Abstract: An arrangement for aftertreatment of exhaust gas for lean-burn internal combustion engines such as diesel engines and Otto engines with direct injection has a NOx storage catalyzer installed in the exhaust gas train for reducing nitrogen oxides and at which nitrogen oxides are stored in lean operating phases and these stored nitrogen oxides are reduced in rich operating phases. At least one molecular sieve which keeps sulfur dioxide away from the at least one NOx storage catalyzer is arranged upstream of the NOx storage catalyzer.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: MAN Nutzfahrzeuge AG
    Inventor: Andreas Döring
  • Patent number: 8288302
    Abstract: The present invention relates to a method for preparing substrate-molecular sieve layer complex by vising ultra-sound and apparatuses used therein, more particularly to a method for preparing substrate-molecular sieve layer complex by combining substrate, coupling compound and molecular sieve particle, wherein covalent, ionic, coordinate or hydrogen bond between a substrate and a coupling compound; molecular sieve particle and coupling compound; coupling compounds; coupling compound and intermediate coupling compound is induced by using 15 KHz-100 MHz of ultrasound instead of simple reflux to combine substrate and molecular sieve particles by various processes, further to reduce time and energy, to retain high binding velocity, binding strength, binding intensity and density remarkably, to attach molecular sieve particle uniformly onto all substrates combined with coupling compound selectively, even though substrate with coupling compound and substrate without coupling compound exist together; and apparatuses
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: October 16, 2012
    Assignee: Industry University Cooperation Foundation Sogang University
    Inventors: Kyung Byung Yoon, Jin Seok Lee, Kwang Ha, Yun-Jo Lee, Yong Chang
  • Patent number: 8283273
    Abstract: A metal-modified alkylation catalyst including a metal/zeolite is provided where the metal is one or two selected from the group consisting of yttrium and a rare earth of the lanthanide series other than cerium. Where two metals are used, one may be Ce or La. The metal-promoted zeolite is useful as a molecular sieve aromatic alkylation catalyst for the production of ethylbenzene by the ethylation of benzene in the liquid phase or critical phase. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated by-products of no more than 10-60 wt % of the ethylbenzene.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: October 9, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Kevin Kelly, James Butler
  • Publication number: 20120252658
    Abstract: A honeycomb structure includes a honeycomb unit containing zeolite and an inorganic binder and having a plurality of cell walls to define a plurality of cells extending from a first end face to a second end face of the honeycomb unit along a longitudinal direction of the honeycomb unit. The honeycomb unit is manufactured by molding and firing raw material paste containing zeolite particles and the inorganic binder. The zeolite particles have a D50 of approximately 3.6 ?m or more. An average pore size of the cell walls is more than or equal to approximately 0.10 ?m and less than or equal to approximately 0.50 ?m. An average particle size of the cell walls is more than or equal to approximately 3.6 ?m and less than or equal to approximately 7.0 ?m.
    Type: Application
    Filed: November 24, 2011
    Publication date: October 4, 2012
    Applicant: IBIDEN CO., LTD.
    Inventors: Masafumi KUNIEDA, Yosuke Matsukawa
  • Patent number: 8278237
    Abstract: A catalyst for producing aromatic compounds from lower hydrocarbons while improving activity life stability of methane conversion rate; benzene formation rate; naphthalene formation rate; and total formation rate of benzene, toluene and xylene is formed by loading molybdenum and copper on metallo-silicate serving as a substrate and then calcining the metallo-silicate. When the catalyst is reacted with a reaction gas containing lower hydrocarbons and carbonic acid gas, aromatic compounds are produced. In order to obtain the catalyst, it is preferable that molybdenum and copper are loaded on zeolite formed of metallo-silicate after the zeolite is treated with a silane compound larger than a pore of the zeolite in diameter and having an amino group and a straight-chain hydrocarbon group, the amino group being able to selectively react with the zeolite at a Bronsted acid point of the zeolite. It is preferable that a loaded amount of molybdenum is within a range of from 2 to 12 wt.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: October 2, 2012
    Assignee: Meidensha Corporation
    Inventors: Shinichi Yamada, Tomohiro Yamada, Yuji Ogawa, Hirokazu Akiyama, Takuya Hatagishi
  • Patent number: 8262902
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: September 11, 2012
    Assignee: Phillips 66 Company
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Patent number: 8258070
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes supported precious group metal catalysts that are coated onto different layers of the substrate for the emission control catalyst. Zeolites of one or more types are added to the emission control catalyst as a hydrocarbon absorbing component to boost the low temperature performance of the emission control catalyst. Y zeolite is used by itself or mixed with other zeolites to enhance hydrocarbon storage at low temperatures.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 4, 2012
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Juan Cai, Chaitanya Sampara
  • Patent number: 8257471
    Abstract: A moisture adsorbing device 1 comprising a type Y zeolite, and an NOx adsorbing device 2 being put in place on an exhaust-gas downstream side of the moisture adsorbing device 1, and comprising a zeolite that includes a transition metal ion in the cation exchange sites are included. In NOx adsorbing apparatuses, since the less the moisture content in exhaust gases is the more the NOx adsorbing capability improves, the NO adsorbing capability in low-temperature region is improved especially by means of the combination with a moisture adsorbing device that comprises a type Y zeolite whose Al2O3 proportion is great and whose moisture adsorbing amount is great compared with the other zeolites.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: September 4, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takaaki Kanazawa, Keisuke Sano, Kazuhiro Wakao, Kimikazu Yoda, Takaaki Itou
  • Patent number: 8252709
    Abstract: An object of the present invention is to provide a catalyst for hydrodesulfurization/dewaxing of a hydrocarbon oil, with which sulfur compounds in the hydrocarbon oil can be desulfurized to a high degree and which simultaneously is extremely effective in reducing the wax deposit content; a process for producing the catalyst; and a method of hydrotreatment with the catalyst. The invention relates to a catalyst for hydrodesulfurization/dewaxing of a hydrocarbon oil, comprising a support comprising an inorganic oxide containing at least one crystalline aluminosilicate having a one- or two-dimensional pore path system and, having provided thereon, 10 to 35% by mass of a metal in Group 6 of the Periodic Table, 1 to 10% by mass of a metal in Group 8 of the Periodic Table, and 1.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: August 28, 2012
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Yoshinori Kato, Hiroshi Kimura, Kazuyuki Kiriyama, Takashi Fujikawa
  • Publication number: 20120215043
    Abstract: The presently disclosed and claimed inventive concept(s) generally relates to a solid catalyst component comprising a zeolite with a modifier and at least one Group VIII meal alloyed with at least one transition metal. The presently disclosed and claimed inventive concept(s) further relates to a method of making the solid catalyst component and a process of converting mixed waste plastics into low molecular weight organic compounds using the solid catalyst component.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 23, 2012
    Inventor: Anne Mae Gaffney
  • Publication number: 20120208905
    Abstract: There are provided a catalyst composition for producing hydrocarbons and a method for producing hydrocarbons which exhibit a high CO conversion rate, generates minimal amount of gaseous components, and is also capable of efficiently obtaining, from a syngas, a gasoline fraction which is selective for and rich in the components having a high octane number, such as aromatic, naphthenic, olefinic and branched paraffinic hydrocarbons, by using a Fischer-Tropsch synthesis catalyst that contains at least one type of metal exhibiting activity in Fischer-Tropsch reaction and manganese carbonate and a zeolite serving as a solid acid.
    Type: Application
    Filed: December 7, 2010
    Publication date: August 16, 2012
    Inventors: Kazuhito Sato, Shigenori Nakashizu
  • Patent number: 8236171
    Abstract: A process is described for improving the quality as a fuel of hydrotreated hydrocarbon blends by reaction with hydrogen in the presence of a bifunctional catalytic system comprising one or more metals selected from Pt, Pd, Ir, Ru, Rh and Re, and a silico-aluminate of an acidic nature, selected from a micro-mesoporous silico-alumina and a zeolite belonging to the MTW family. The process of the invention produces an increase in the cetane index and a decrease in the density and T95.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: August 7, 2012
    Assignees: ENI S.p.A, Enitecnologie S.p.A.
    Inventors: Roberto Giardino, Vincenzo Calemma, Ugo Cornaro
  • Publication number: 20120165182
    Abstract: This invention provides for a method of making a spray-dried catalyst composition for use in any hydrocarbon conversion process. The particle size of the components is adjusted to improve the functionality of the catalyst for specific reactions. This invention also provides for a composite catalyst composition for use in any hydrocarbon conversion process that is dependent on the particle size.
    Type: Application
    Filed: March 25, 2011
    Publication date: June 28, 2012
    Inventor: Augusto Rodolfo Quinones
  • Publication number: 20120157735
    Abstract: A process for producing a supported mesoporous and microporous material, comprises contacting a support with a template to produce a supported template, and contacting the supported template with one or more microporous material precursor to produce a supported microporous material-template composite, and subsequently removing the template from the supported microporous material-template composite to produce the supported mesoprous and microporous material. A composition comprising a supported mesoprous and microporous material produced by this process can be used for methane dehydroaromatization.
    Type: Application
    Filed: June 23, 2009
    Publication date: June 21, 2012
    Inventors: Xinhe Bao, Ding Ma, Wenjie Shen, Lijun Gu
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Publication number: 20120142520
    Abstract: A catalyst system is disclosed for catalytic pyrolysis of a solid biomass material. The system comprises an oxide, silicate or carbonate of a metal or a metalloid. The specific combined meso and macro surface area of the system is in the range of from 1 m2/g to 100 m2/g. When used in a catalytic process the system provides a high oil yield and a low coke yield. The liquid has a relatively low oxygen content.
    Type: Application
    Filed: April 22, 2010
    Publication date: June 7, 2012
    Applicant: KIOR INC.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 8183172
    Abstract: A catalyst is described which comprises at least one zeolite with structure type EUO, at least one zeolite selected from IM-5 zeolite and zeolites with structure type MFI, MOR, BEA and MTW, at least one group VIII metal, at least one group IIIA metal and at least one porous mineral matrix. The catalyst of the invention is used in a process for isomerizing a feed comprising aromatic compounds containing 8 carbon atoms per molecule.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 22, 2012
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Eric Sanchez, Sylvie Lacombe
  • Publication number: 20120123176
    Abstract: A catalyst for converting methane to aromatic hydrocarbons is described herein. The catalyst comprises an active metal or a compound thereof, and an inorganic oxide support wherein the active metal is added to the support in the form of metal oxalate. The metal oxalate-derived catalyst exhibits superior performance in the conversion of methane-rich feed to aromatics products relative to catalysts prepared from non-oxalate metal precursors. A method of making the catalyst and a method of using the catalyst are also described.
    Type: Application
    Filed: May 11, 2011
    Publication date: May 17, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Peter Tanev TANEV, Armin LANGE DE OLIVEIRA
  • Patent number: 8153543
    Abstract: A method for preparing a composite of zeolite-fiber substrate includes the steps of reacting a fiber substrate or a zeolite with a linking compound to form an intermediate of linking compound-fiber substrate or zeolite-linking compound, and preparing the composite of zeolite-linking compound-fiber substrate by linking the intermediate of linking compound-fiber substrate to the fiber substrate or linking the intermediate of zeolite-linking compound to the zeolite, in which the linking is induced by sonication.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: April 10, 2012
    Assignee: Industry-University Cooperation Foundation Sogang University
    Inventors: Kyung Byung Yoon, Jin Seok Lee, Nak-Cheon Jeong
  • Publication number: 20120058034
    Abstract: Extruded honeycomb catalyst bodies and methods of manufacturing same. The catalyst body includes a first oxide selected from the group consisting of tungsten oxides, vanadium oxides, and combinations thereof, a second oxide selected from the group consisting of cerium oxides, lanthanum oxides, zirconium oxides, and combinations thereof, and a zeolite.
    Type: Application
    Filed: February 26, 2010
    Publication date: March 8, 2012
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil, Yuming Xie, Hao Cheng, Shudong Wang
  • Patent number: 8128805
    Abstract: A catalyst for the hydrogenation, hydroisomerisation, hydrocracking and/or hydrodesulfurisation, of hydrocarbon feedstocks, the catalyst consisting of a substantially binder free bead type support material obtained through a sol-gel method, and a catalytically active component selected from precious metals, the support comprising 5 to 50 wt. % of at least one molecular sieve material and 50 to 95 wt. % of silica-alumina.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: March 6, 2012
    Assignee: BASF Corporation
    Inventor: Marius Vaarkamp
  • Patent number: 8119551
    Abstract: The present invention is for a catalyst, a process for making the catalyst and a process for using the catalyst in aromatization of alkanes having three to five carbon atoms per molecule, such as propane, to aromatics, such as benzene, toluene and xylene. The catalyst is an aluminum-silicon zeolite having a silicon to aluminum atomic ratio (Si:Al) greater than 15:1, such as MFI or ZSM-5, on which germanium, aluminum and a noble metal, such as platinum, have been deposited. The catalyst may be bound with magnesia, alumina, titania, zirconia, thoria, silica, boria or mixtures thereof. The aluminum and germanium may be deposited simultaneously on the zeolite.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: February 21, 2012
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott Stevenson, Gopalakrishnam G. Juttu, Michael Mier, Robin J. Bates, Dustin Farmer, Scott Mitchell, Alla K. Khanmamedova
  • Patent number: 8119552
    Abstract: The present invention relates to a catalyst composition for the reaction of hydrocarbons comprising a zeolite with has a faujasite structure and a fibrous zeolite which comprises essentially non-crossing one-dimensional channels. Further, the catalyst composition comprises in a preferred embodiment a metal component selected from metals of the group VIB and VIII of the periodic table of elements and their compounds. The invention relates further to a process for the synthesis of such a catalyst composition and to a process for hydrocracking hydrocarbon feedstocks by using said catalyst composition.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: February 21, 2012
    Assignee: Süd-Chemie AG
    Inventors: Götz Burgfels, Stephan Wellach, Josef Schönlinner, Friedrich Schmidt, Volker Kurth, Vebjorn Knut Grande, Jorunn Steinsland Rosvoll, Per Aksel Skjølsvik
  • Publication number: 20120039759
    Abstract: A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al+3, wherein the catalyst decreases NOx emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu—Fe-ZSM5, Cu—La-ZSM-5, Fe—Cu—La-ZSM5, Cu—Sc-ZSM-5, and Cu—In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 16, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Xiaofan Yang
  • Publication number: 20120024776
    Abstract: One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 2, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: Javier Garcia-Martinez
  • Publication number: 20120022224
    Abstract: Embodiments of an invention disclosed herein relate to particles made from zeolite catalysts and their use in oligomerization processes. In particular, shaped particles (for example, spheroid particles) are made from compositions including the contact product of at least one zeolite catalyst and at least one binder.
    Type: Application
    Filed: June 9, 2011
    Publication date: January 26, 2012
    Inventors: Geraldine Tosin, Marcel J. G. Janssen, Paul Hamilton, Georges M.K. Mathys
  • Publication number: 20120014866
    Abstract: Described is a copper containing ZSM-34, OFF and/or ERI zeolitic material having a silica to alumina mole ratio ranging from about 4 to about 50 and a copper content, reported as CuO, ranging from about 1 to about 10 wt.-%, based on the total weight of the calcined zeolitic material, and having an alkali metal content, reported as the metal oxide, ranging from about 0.7 to about 1.5 wt.-%, wherein the 750° C.-aged copper containing ZSM-34, OFF and/or ERI zeolitic material exhibits NO conversion at 200° C. of at least about 75% and at 450° C. of at least about 90%, measured at a gas hourly volume based space velocity of 30000 h?1 under steady state conditions at maximum NH3-slip conditions in a gas mixture of 500 ppm NO, 500 ppm NH3, 10% O2, 5% H2O, balance N2.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 19, 2012
    Inventors: Ivor Bull, Ulrich Müller
  • Publication number: 20120014865
    Abstract: Described is a copper containing ZSM-34, OFF and/or ERI zeolitic material having a silica to alumina mole ratio ranging from about 4 to about 50 and a copper content, reported as CuO, ranging from about 1 to about 10 wt.-%, based on the total weight of the calcined zeolitic material, and having an alkali metal content, reported as metal oxide, ranging from about 1.5 to about 12 wt.-%.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 19, 2012
    Applicant: BASF SE
    Inventors: Ivor Bull, Ulrich Müller
  • Publication number: 20120014867
    Abstract: Described is a copper containing ZSM-34, OFF and/or ERI zeolitic material having a silica to alumina mole ratio ranging from about 4 to about 50 and a copper content, reported as CuO, ranging from about 1 to about 10 wt.-%, based on the total weight of the calcined zeolitic material, and having an alkali metal content, reported as the metal oxide, of less than about 0.7 wt.-%.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 19, 2012
    Applicant: BASF SE
    Inventors: Ivor Bull, Ulrich Müeller
  • Patent number: 8097764
    Abstract: A xylene isomerization process includes introducing gas comprising hydrogen and a base to a reaction zone in which a catalyst comprising a Group VIII metal and a zeolite support resides. In one embodiment, the base may be formed in situ within the reaction zone from nitrogen and hydrogen that are introduced to the reaction zone. In another embodiment, the base is introduced directly to the reaction zone. The conditions in the reaction zone are effective to reduce the catalyst. A stream comprising C8 aromatics, e.g., xylenes and ethylbenzene may then be fed to the reaction zone containing the reduced catalyst. The reaction zone may be operated at conditions effective to isomerize the xylenes and hydrodealkylate the ethylbenzene. The xylene loss during the isomerization of the xylenes is lowered as a result of using the catalyst reduced in the presence of the gas comprising a base and hydrogen.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: January 17, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung
  • Publication number: 20110305617
    Abstract: The present invention relates to a catalyst including a ceramic structure containing porous ceramic paper and a catalyst component supported on the ceramic structure, and to a method for removing formaldehyde using the catalyst. The present invention provides a catalyst in which a structure made of ceramic paper having excellent characteristics in terms of porosity, specific surface area, and the like is used as a support for the catalyst component to maximize an effective area for reacting the supported catalyst component with a substance to be treated, thereby improving catalyst performance. The present invention also provides a method of using the catalyst.
    Type: Application
    Filed: February 24, 2010
    Publication date: December 15, 2011
    Applicant: LG Hausys, LTD.
    Inventors: Ju-Hyung Lee, In-Sik Nam, Seong-Moon Jung, Jong-Sik Choi, Sun-Joo Kim, Ho-Yeon Lim, Joo-Hwan Seo
  • Publication number: 20110294655
    Abstract: A method of manufacturing a catalyst body which includes: soaking at least part of a fired zeolite-based body in a transition metal oxide solution; removing the body from the transition metal oxide solution; exposing the body to a humidified atmosphere at one or more temperatures above 20° C.; then drying the body; and calcining the body.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Inventors: Steven Bruce Dawes, Steven Bolaji Ogunwumi
  • Patent number: 8062987
    Abstract: A zeolite catalyst that may be used in aromatic alkylation is prepared by treating a zeolite with a phosphorus compound. The phosphorus-treated zeolite is calcined and contacted with liquid water, whereby an amount of phosphorus is removed from the phosphorus-treated zeolite. The phosphorus-treated zeolite is then heated. A method of preparing an aromatic product may also be carried out by contacting the prepared zeolite catalyst with an aromatic alkylation feed of an aromatic compound and an alkylating agent under reaction conditions suitable for aromatic alkylation.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 22, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Neeta Kulkarni, Pamela Harvey
  • Patent number: 8058199
    Abstract: The alkylation of aromatic compound with acyclic mono-olefin is effected at low aromatic compound to mono-olefin ratios with reduced co-production of heavies. In the processes a small crystal, acidic FAU molecular sieve is used as a catalyst under alkylation conditions. This invention also relates to catalysts containing small crystal, acidic FAU molecular sieve and at least one other acidic catalytic component.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: November 15, 2011
    Assignee: UOP LLC
    Inventors: Mark G. Riley, Deng-Yang Jan, Stephen W. Sohn
  • Publication number: 20110274607
    Abstract: The catalytic behaviour of vanadia-supported zeolite catalysts with different SiO2/Al2O3 ratios was tested for the SCR of NO with ammonia. The SCR activity was found to be directly correlated to the total acidity of the catalysts. On the surface of these zeolites the V2O5 was highly dispersed and amorphous in nature. After the impregnation with vanadium and subsequent poisoning with potassium oxide not much change in micro-pore structure of HZSM5 was observed by N2 adsorption studies. Interestingly, potassium-doped HZSM5 and HMORDENITE catalysts showed high resistance to deactivation because of the unique nature of the material exhibiting higher surface area and acidity than the conventional V2O5—WOx/ZrO2 or TiO2 catalysts. Consequently, a possible application of these alkali-tolerant SCR catalysts in biomass fired power plants can be envisaged.
    Type: Application
    Filed: April 1, 2011
    Publication date: November 10, 2011
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Putluru Siva Sankar Reddy, Anders Riisager, Rasmus Fehrmann
  • Publication number: 20110270010
    Abstract: A first hydroisomerization catalyst contains a support being a extruded product prepared by calcination having a thermal treatment that includes thermally treating at 350° C. or more and at least one metal supported on the support and selected from the group consisting of metals belonging to Groups 8 to 10 of the periodic table, molybdenum and tungsten, wherein the support contains (a1) a calcined zeolite prepared by calcination having a thermal treatment that includes thermally treating at 350° C. or more of an ion-exchanged zeolite obtained by ion exchange of an organic template-containing zeolite containing an organic template and having a 10-membered ring one-dimensional porous structure in a solution containing ammonium ions and/or protons, and (b1) a calcined inorganic oxide prepared by calcination having a thermal treatment that includes thermally treating at 350° C.
    Type: Application
    Filed: December 25, 2009
    Publication date: November 3, 2011
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Kazuaki Hayasaka, Motoya Okazaki, Mayumi Yokoi
  • Publication number: 20110263918
    Abstract: The invention concerns a xylenes isomerization process for the production of equilibrium or near-equilibrium xylenes. The process utilizes a catalyst comprising HZSM-5 or MCM-49 and process conditions including a temperature of less than 295° C. and a pressure sufficient to maintain the xylenes in liquid phase. In embodiments, the process can be operated in a continuous mode with ppm levels of dissolved H2 in the feed and in other embodiments in a cyclic mode without the H2 in feed but with periodic regenerations using a feed having low ppm levels of H2.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 27, 2011
    Inventors: John Di-Yi Ou, April D. Ross, Doron Levin, Mohan Kalyanaraman, Wenyih Frank Lai