Information Processing (e.g., Logic Circuits, Computer, Etc.) Or Information Storage Or Retrieval System, Device, Or Component (i.e., Both Dynamic And Static) Patents (Class 505/170)
  • Patent number: 7932515
    Abstract: Multiple substrates that carry quantum devices are coupled to provide quantum mechanical communicators therebetween, for example, using superconducting interconnects, vias, solder and/or magnetic flux. Such may advantageously reduce a footprint of a device such as a quantum processor.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: April 26, 2011
    Assignee: D-Wave Systems Inc.
    Inventor: Paul I. Bunyk
  • Publication number: 20110065586
    Abstract: A switching cell for a demultiplexer circuit includes a superconducting input signal path, at least two superconducting output signal paths, and transformers located between an intersection node and respective ends of the output signal paths. Flux applied via the transformers can influence which direction a signal propagates. The switching cell may also include power input nodes. Switching cells may be arranged in various configurations, for example a binary tree or H-tree. A superconducting inductor ladder circuit can perform a digital-to-analog conversion. Flux storage structures may be used with individual switching cells. Latching qubits may be employed. Buffer rows of switching cells may be used to reduce or eliminate cascade error.
    Type: Application
    Filed: June 2, 2009
    Publication date: March 17, 2011
    Applicant: D-WAVE SYSTEMS INC.
    Inventors: Felix Maibaum, Paul I. Bunyk, Thomas Mahon
  • Patent number: 7903456
    Abstract: A high-speed lookup table is designed using Rapid Single Flux Quantum (RSFQ) logic elements and fabricated using superconducting integrated circuits. The lookup table is composed of an address decoder and a programmable read-only memory array (PROM). The memory array has rapid parallel pipelined readout and slower serial reprogramming of memory contents. The memory cells are constructed using standard non-destructive reset-set flip-flops (RSN cells) and data flip-flops (DFF cells). An n-bit address decoder is implemented in the same technology and closely integrated with the memory array to achieve high-speed operation as a lookup table. The circuit architecture is scalable to large two-dimensional data arrays.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: March 8, 2011
    Assignee: Hypres, Inc.
    Inventors: Alexander F. Kirichenko, Timur V. Filippov, Deepnarayan Gupta
  • Publication number: 20090192041
    Abstract: A transverse coupling system may include a first qubit, a second qubit, a first conductive path capacitively connecting the first qubit and the second qubit, a second conductive path connecting the first qubit and the second qubit, and a dc SQUID connecting the first and the second conductive paths wherein the compound junction loop is threaded by an amount of magnetic flux.
    Type: Application
    Filed: September 30, 2008
    Publication date: July 30, 2009
    Inventors: Jan Johansson, Andrew J. Berkley
  • Publication number: 20090121215
    Abstract: A system employs a plurality of physical qubits, each having a respective bias operable to up to six differentiable inputs to solve a Quadratic Unconstrained Binary Optimization problem. Some physical qubit couplers are operated as intra-logical qubit couplers to ferromagnetically couple respective pairs of the physical qubits as a logical qubit, where each logical qubit represents a variable from the Quadratic Unconstrained Binary Optimization problem.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 14, 2009
    Inventor: Vicky Choi
  • Publication number: 20090075825
    Abstract: A computer system employs a network that between a data programming system and one or more superconducting programmable devices of a superconducting processor chip. Routers on the network, such as first-, second- and third-stage routers direct communications with the superconducting programmable devices. A superconducting memory register may load data signals received from a first-stage router into corresponding superconducting programmable devices. The system may employ additional superconducting chips, first-, second- or third-stage routers.
    Type: Application
    Filed: August 18, 2008
    Publication date: March 19, 2009
    Inventors: Geordie Rose, Paul I. Bunyk
  • Patent number: 7418283
    Abstract: A method for quantum computing using a quantum system comprising a plurality of qubits is provided. The system can be in any one of at least two configurations at any given time including one characterized by an initialization Hamiltonian HO and one characterized by a problem Hamiltonian HP. The problem Hamiltonian HP has a ground state. Each respective first qubit in the qubits is arranged with respect to a respective second qubit in the qubits such that they define a predetermined coupling strength. The predetermined coupling strengths between the qubits in the plurality of qubits collectively define a computational problem to be solved. In the method, the system is initialized to HO and is then adiabatically changed until the system is described by the ground state of the problem Hamiltonian HP. Then the state of the system is read out by probing an observable of the ?X Pauli matrix operator.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: August 26, 2008
    Assignee: D-Wave Systems Inc.
    Inventor: Mohammad H. S. Amin
  • Publication number: 20080176750
    Abstract: An analog processor, for example a quantum processor may include a plurality of elongated qubits that are disposed with respect to one another such that each qubit may selectively be directly coupled to each of the other qubits via a single coupling device. Such may provide a fully interconnected topology.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 24, 2008
    Inventors: Geordie Rose, Paul Bunyk, Michael D. Coury, William Macready, Vicky Choi
  • Patent number: 7335909
    Abstract: A quantum computing structure comprising a superconducting phase-charge qubit, wherein the superconducting phase-charge qubit comprises a superconducting loop with at least one Josephson junction. The quantum computing structure also comprises a first mechanism for controlling a charge of the superconducting phase-charge qubit and a second mechanism for detecting a charge of the superconducting phase-charge qubit, wherein the first mechanism and the second mechanism are each capacitively connected to the superconducting phase-charge qubit.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: February 26, 2008
    Assignee: D-Wave Systems Inc.
    Inventors: Mohammad H. S. Amin, Jeremy P. Hilton, Geordie Rose
  • Patent number: 7291891
    Abstract: A voltage is applied across gate electrodes (103A) and (103B) in a two-dimensional electronic system (101) placed under a magnetic field, and the polarity of an electric current passed between ohmic electrodes (102D) and (102S) is selected to bring about inversion of electron spins based on a non-equilibrium distribution of electrons in a quantum Hall edge state and to initialize the polarization of nuclear spins. An oscillatory electric field of a nuclear magnetic resonance frequency is applied to coplanar waveguides (104A) and (104B) to control the nuclear spin polarization. The controlled spin polarization is read out by measuring the Hall resistance from ohmic electrodes (102VA) and (102VB).
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: November 6, 2007
    Assignee: Japan Science and Technology Agency
    Inventors: Tomoki Machida, Susumu Komiyama, Tomoyuki Yamazaki
  • Patent number: 7015499
    Abstract: A solid-state quantum computing structure includes a d-wave superconductor in sets of islands that clean Josephson junctions separate from a first superconducting bank. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states. A second bank, which a Josephson junction separates from the first bank, can be coupled to the islands through single electron transistors for selectably initializing one or more of the supercurrents in a different quantum state. Single electron transistors can also be used between the islands to control entanglements while the quantum states evolve.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: March 21, 2006
    Assignee: D-Wave Systems, Inc.
    Inventor: Alexandre M. Zagoskin
  • Publication number: 20030224944
    Abstract: A structure comprising a tank circuit inductively coupled to a flux qubit or a phase qubit. In some embodiments, a low temperature preamplifier is in electrical communication with the tank circuit. The tank circuit comprises an effective capacitance and an effective inductance that are in parallel or in series. In some embodiments, the effective inductance comprises a multiple winding coil of wire. A method that includes the steps of (i) providing a tank circuit and a phase qubit that are inductively coupled, (ii) reading out a state of the phase qubit, (iii) applying a flux to the phase qubit that approaches a net zero flux, (iv) increasing a level of flux applied to the phase qubit, and (v) observing a response of the tank circuit in a readout device.
    Type: Application
    Filed: December 16, 2002
    Publication date: December 4, 2003
    Inventors: Evgeni Il'ichev, Miroslav Grajcar, Alexandre M. Zagoskin, Miles F. H. Steininger
  • Patent number: 6563311
    Abstract: A solid-state quantum computing structure includes a d-wave superconductor in sets of islands that clean Josephson junctions separate from a first superconducting bank. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states. A second bank, which a Josephson junction separates from the first bank, can be coupled to the islands through single electron transistors for selectably initializing one or more of the supercurrents in a different quantum state. Single electron transistors can also be used between the islands to control entanglements while the quantum states evolve.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: May 13, 2003
    Assignee: D-Wave Systems, Inc.
    Inventor: Alexandre M. Zagoskin
  • Patent number: 6563310
    Abstract: A solid-state quantum computing structure includes a set of islands that Josephson junctions separate from a first superconducting bank. A d-wave superconductor is on one side of the Josephson junctions (either the islands' side or the bank's side), and an s-wave superconductor forms the other side of the Josephson junctions. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: May 13, 2003
    Assignee: D-Wave Systems, Inc.
    Inventor: Alexandre M. Zagoskin
  • Publication number: 20030002674
    Abstract: A quantum cryptography multi-node communication system includes a quantum communication channel and a plurality of nodes including a transmission node and a reception node and connected with the quantum communication channel. The transmission node transmits a light signal as a time series of photons to the reception node through the quantum communication channel, a quantum state of the photons is modulated, and transmits a quantum state sequence to the reception node. The reception node predetermines a quantum state sequence, receives the light signal transmitted from the transmission node, measures quantum states of the received light signal, and determines presence or absence of interception based on the predetermined quantum state sequence, the transmitted quantum state sequence and the measured quantum states.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 2, 2003
    Applicant: NEC Corporation
    Inventors: Yoshihiro Nambu, Akihisa Tomita
  • Patent number: 6459097
    Abstract: A solid-state quantum computing structure includes a set of islands that Josephson junctions separate from a first superconducting bank. A d-wave superconductor is on one side of the Josephson junctions (either the islands' side or the bank's side), and an s-wave superconductor forms the other side of the Josephson junctions. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: October 1, 2002
    Assignee: D-Wave Systems Inc.
    Inventor: Alexandre M. Zagoskin
  • Patent number: 5937168
    Abstract: After an origination module (OM) receives information, a packet is transmitted to a routing architecture (RA) for routing to a destination module (DM) designated by the router packet. The RA interprets the router packet and adaptively routes the router packet to the DM so that the router packet is quickly processed by the DM. If the DM's queue is empty and the DM is not processing any other packets, the RA places the router packet in the queue and the DM reads its queue to process the router packet. If there is another router packet being processed by the DM, the RA adapts by placing the router packet in the queue. Once processing of the other router packet is complete, the DM processes the router packet in the queue. If there is already another router packet pending within the DM's queue, the RA adapts by creating another DM in memory to process the router packet.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: August 10, 1999
    Assignee: BellSouth Corporation
    Inventors: Dewey Charles Anderson, Senis Busayapongchai, Audrey Dibrell, David J. Anderson
  • Patent number: 5831278
    Abstract: A three-terminal device constructed from a Josephson junction with one or more asymmetric control lines is disclosed. The device is constructed with high temperature superconducting materials. The junction can be a bicrystal, SNS (Superconducting-Normal-Superconducting) or any other type of high temperature superconductor junction. The control line is either a conducting or superconducting material which is electrically isolated from the junction but inductively coupled into the junction. A portion of the control line is approximately directly above the junction and has current which at least partially flows parallel or nonparallel to current flowing across the junction. The control line current alters the magnetic field within the junction which changes the critical current of the junction. The junction is in a superconducting or resistive state depending on whether the bias current of the junction is greater than or less than the control current.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: November 3, 1998
    Assignee: Conductus, Inc.
    Inventor: Stuart J. Berkowitz
  • Patent number: 5568302
    Abstract: An optical data transmission system includes an optical data receiver having a plurality of optical detectors and an optical switch which directs successive pulses of a serial data stream to different detectors. The switch includes one or more superconductive mirrors responsive to current pulses to change from a superconducting, reflective state to a non-superconducting, non-reflective state for the duration of a current pulse. In this manner, high speed optical data is received by detectors incapable of operating at the high speed of available optical data links and transmitters. The mirror is oriented at an angle to the data stream such that an optical pulse is reflected to one detector when the mirror is in the superconducting, reflective state and is passed through the mirror to another detector when the mirror is temporarily in the non-superconducting, non-reflective state under the control of a current pulse.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: October 22, 1996
    Assignee: International Business Machines Corporation
    Inventor: Kenneth A. Puzey
  • Patent number: 5442195
    Abstract: A superconducting device may include a superconducting weak link equipped with plural superconducting devices that are used as input-output terminals formed on the same plane and at least one current source for applying current to at least one of these superconducting electrodes. A superconducting device suitable for high integration can be realized as it enables structuring of a superconducting weak link 1 equipped with plural superconducting electrodes 101, 102, 103 and 104 that can be used as input-output terminals and changing symmetry of superconducting electrode arrangement through the form of a normal conductor 201 which is forming a superconducting weak link. In addition, when this superconducting device is used as a quasi-particle injection type device, a superconducting device with plural superconducting electrodes that can be used for a gate electrode, drain electrode or control electrode can be realized. Further, a superconducting device equipped with new functions (e.g.
    Type: Grant
    Filed: October 18, 1993
    Date of Patent: August 15, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Kazuo Saitoh, Toshikazu Nishino, Mutsuko Hatano
  • Patent number: 5388068
    Abstract: Superconducting-semiconducting hybrid memories are disclosed. These superconducting-semiconducting hybrid memories utilize semiconductor circuits to store information, and either superconducting or semiconducting or combinations of superconducting and semiconducting circuits, with at least some superconducting circuitry used, to write and read information. The state of memory cells in the hybrid memories is determined by utilizing superconductor current sensing schemes to detect currents in the bit-line, thereby avoiding any bit-line charging delays and other problems associated with purely semiconductor memories. Additional features of the superconducting-semiconducting hybrid memories include wide margins, dense packing of memory cells, low power dissipation and fast access times. Interface curcuitry for converting superconducting signals to signals compatible with semiconductor circuits and for converting semiconductor signals to signals compatible with superconducting circuits is also disclosed.
    Type: Grant
    Filed: October 14, 1993
    Date of Patent: February 7, 1995
    Assignee: Microelectronics & Computer Technology Corp.
    Inventors: Uttam S. Ghoshal, Harry Kroger
  • Patent number: 5332722
    Abstract: A novel nonvolatile memory element or cell comprising a memory means consisting of at least one superconducting ring (21, 22) and a detector means consisting of a MOSFET. The superconducting ring and the MOSFET are arranged in such a manner that a magnetic flux created by the superconducting ring (21, 22) passes through a channel zone of the MOSFET. Information is held in the superconducting ring in a form of permanent current and is detected electrically as variation in the conductivity of the channel zone of the MOSFET.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: July 26, 1994
    Assignee: Sumitomo Electric Industries, LTD
    Inventor: Mitsuka Fujihira