Magnetic Or Electrical Effect Cooling Patents (Class 505/891)
  • Patent number: 11561032
    Abstract: A fluid thermal conditioning (heating/cooling) system including a housing containing a fluid holding tank and having an inlet pipe and an outlet pipe. A drive shaft rotatably supports either of a conductive plate or a plurality of spaced apart magnetic or electromagnetic plates positioned within the housing. The conductive plate can be reconfigured as an elongated conductive component supported within the housing and including a plurality of individual plates which alternate in arrangement with axially spaced and radially supported magnetic/electromagnetic plates. Upon rotation of the shaft, an oscillating magnetic field is generated for thermally conditioning the fluid.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: January 24, 2023
    Assignee: Heat X, LLC
    Inventor: Miguel A. Linares
  • Patent number: 11555652
    Abstract: A system including: an active magnetic regenerative refrigerator apparatus that includes a high magnetic field section in which a hydrogen heat transfer fluid can flow from a cold side to a hot side through at least one magnetized bed of at least one magnetic refrigerant, and a low magnetic field or demagnetized section in which the hydrogen heat transfer fluid can flow from a hot side to a cold side through the demagnetized bed; a first conduit fluidly coupled between the cold side of the low magnetic field or demagnetized section and the cold side of the high magnetic field section; and a second conduit fluid coupled to the first conduit, an expander and at least one liquefied hydrogen storage module.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: January 17, 2023
    Assignees: Battelle Memorial Institute, Emerald Energy NW, LLC
    Inventors: Jamie D. Holladay, John Barclay
  • Patent number: 9874622
    Abstract: A system and method for transporting a hyperpolarized substance is disclosed. A transport vessel for transporting such a hyperpolarized substance includes a vessel housing, a chamber formed within the vessel housing that is configured to receive a container holding a hyperpolarized substance, and an electromagnet configured to generate a magnetic containment field about the chamber when a current is supplied thereto, the magnetic containment field comprising a homogeneous magnetic field. The transport vessel also includes a non-magnetic power source to supply the current to the electromagnet and a control circuit configured to selectively interrupt the supply of current to the electromagnet so as to control generation of the magnetic containment field, with the transport vessel being magnetically inert when the supply of current to the electromagnet is interrupted by the control circuit.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 23, 2018
    Assignee: General Electric Company
    Inventors: Timothy William Skloss, Jonathan Alan Murray, Jan Henrik Ardenkjaer-Larsen, Murali K. Cherukuri, Marcelino Bernardo, Nallathamby Devasahayam
  • Publication number: 20140216057
    Abstract: The present invention describes the design and fabrication of Multi-Material-Blades used as active regenerative regenerators in active regenerative magneto-caloric or electro-caloric engines. The blades consist of a plurality of elements (2) that divide the blade body along its length. Each element (2) is made of a different magneto-caloric or electro-caloric material selected appropriately, and a plurality of dedicated channels (3) penetrates the blade body (1) and extends along the length of the blade. The dedicated channels (3) can be provided with fluid mixing structures, porous layers or hydrophobic coatings to reduce the HE loss in an active regenerative engine. The Multi-Material-Blades are obtainable by ink jet printing techniques to reduce costs. The Multi-Material-Blades can further have a curved shape to form an involute blade body (1). All measures can improve the performance of active regenerative magneto-caloric or electro-caloric engines, and lay the basis for commercial solutions.
    Type: Application
    Filed: June 29, 2012
    Publication date: August 7, 2014
    Applicant: Camfridge Ltd.
    Inventors: Sibel Oezcan, Paul Burdett, Neil Wilson
  • Publication number: 20100077752
    Abstract: The subject matter disclosed herein relates to a system and method for generation of power that does not generate carbon dioxide in a harmful manner, and/or removes and/or captures carbon dioxide that may otherwise be expelled into the atmosphere.
    Type: Application
    Filed: December 14, 2007
    Publication date: April 1, 2010
    Applicant: BSH Bosch und Siemens Hausgerate GmbH
    Inventor: Christopher J. Papile
  • Patent number: 7114340
    Abstract: An alloy made of heat treated material represented by Gd5(SixGe1?x)4 where 0.47?x?0.56 that exhibits a magnetic entropy change (??Sm) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: October 3, 2006
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Alexandra O. Pecharsky, Karl A. Gschneidner, Jr., Vitalij K. Pecharsky
  • Patent number: 6069395
    Abstract: Current leads are used for connecting a power supply placed in a room-temature environment and a superconducting coil placed in an ultralow-temperature environment. The current leads includes a first current lead and a second current lead. The first current lead is made up of a room-temperature N-type thermoelectric semiconductor, a low-temperature N-type thermoelectric semiconductor, and a high-temperature superconductor. The second current lead is made up of a room-temperature P-type thermoelectric semiconductor, a low-temperature P-type thermoelectric semiconductor, and a high-temperature superconductor. At least one of the first and second current leads is formed of a functionally gradient material.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: May 30, 2000
    Assignee: The Director-General of the National Institute of Fusion Science
    Inventors: Sataro Yamaguchi, Kotaro Kuroda
  • Patent number: 5884485
    Abstract: A power lead for electrically connecting a superconducting coil with a power supply, comprising thermoelectric cooling means, said means including at least an N-type thermoelectric member and a P-type thermoelectric member, being electrically connected to a positive side and a negative side of said power supply, respectively.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: March 23, 1999
    Inventors: Sataro Yamaguchi, Kiyoshi Takita, Ikuo Itoh, Hisaaki Hiue, Shinichi Nose
  • Patent number: 5802855
    Abstract: A power lead for electrically connecting a superconducting coil with a power supply, comprising thermoelectric cooling means, said means including at least an N-type thermoelectric member and a P-type thermoelectric member, being electrically connected to a positive side and a negative side of said power supply, respectively.
    Type: Grant
    Filed: November 20, 1995
    Date of Patent: September 8, 1998
    Inventors: Sataro Yamaguchi, Kiyoshi Takita, Ikuo Itoh, Hisaaki Hiue, Shinichi Nose
  • Patent number: 5747418
    Abstract: An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: May 5, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John D. Metzger, Mohamed S. El-Genk
  • Patent number: 5743095
    Abstract: Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: April 28, 1998
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Karl A. Gschneidner, Jr., Vitalij K. Pecharsky
  • Patent number: 5357756
    Abstract: A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
    Type: Grant
    Filed: September 23, 1993
    Date of Patent: October 25, 1994
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventor: Martin S. Lubell
  • Patent number: 5260266
    Abstract: This invention relates to high-Tc superconducting lead assemblies in a cryostat dual penetration for refrigerated superconductive magnets. Such structures of this type, generally, provide electrically isolated current paths with minimal heat leak between the 10K thermal station and the 50K thermal station while allowing for differential thermal contraction in the assembly, thus avoiding undesirable stresses in the leads.
    Type: Grant
    Filed: February 10, 1992
    Date of Patent: November 9, 1993
    Assignee: General Electric Company
    Inventors: Kenneth G. Herd, Evangelos T. Laskaris
  • Patent number: 5231834
    Abstract: A magnetic heating and cooling system is disclosed. A magnetic fluid is pumped through at least a portion of the heating and cooling system. The fluid moves through the field of a superconducting or other type of magnet. When the fluid enters the magnetic field, it is heated as a result of the magnetization. Heat from the magnetic fluid is then transferred to a regenerator chamber. When the fluid leaves the magnetic field it is chilled. Heat from a regenerator chamber is then transferred to the fluid. External loads or sinks are heated or cooled.
    Type: Grant
    Filed: August 27, 1990
    Date of Patent: August 3, 1993
    Inventor: James E. Burnett
  • Patent number: 5209068
    Abstract: A static magnetic refrigerator comprising a magnet generating a high-intensity magnetic field, a magnetic working material disposed in the high-intensity magnetic field, a magnetic shield disposed between the magnet and the magnetic working material, and a rotating means for rotating the magnetic shield, the magnetic shield comprising a pair of nearly parallel flat plates or a pair of outwardly curved plates facing each other and made of a superconductor, and the magnetic working material is accommodated in the inner space form by the pair of the flat or curved plates, whereby a magnetization process wherein the magnetic working material is magnetized in the high-intensity magnetic field by way of rotating the magnetic shield at a position allowing the permeation of the magnetic field through the magnetic working material via the pair of the flat or curved plates and a demagnetization process wherein the magnetic working material is demagnetized by way of further rotating the superconducting magnetic shield a
    Type: Grant
    Filed: January 13, 1992
    Date of Patent: May 11, 1993
    Assignee: Koatsu Gas Kogyo Co., Ltd.
    Inventors: Yoshiro Saji, Hiroaki Toda, Tetsuo Takagi, Takao Sugioka, Masaru Inoue, Kohei Otani, Manabu Sato
  • Patent number: 5182914
    Abstract: The rotary dipole active magnetic regenerative refrigerator (10) of the present invention comprises a stationary first regenerative magnetic bed (12) positioned within a stationary first inner dipole magnet (14), a stationary second regenerative magnetic material bed (16) positioned within a stationary second inner dipole magnet (18), an outer dipole magnet (20) that rotates on a longitudinal axis and encloses the inner dipole magnets (14, 18), a cold heat exchanger (22), hot heat exchangers (24, 26), a fluid displacer (28), and connective plumbing through which a heat transfer fluid is conveyed.
    Type: Grant
    Filed: March 14, 1990
    Date of Patent: February 2, 1993
    Assignee: Astronautics Corporation of America
    Inventors: John A. Barclay, Joseph A. Waynert, Anthony J. DeGregoria, Joseph W. Johnson, Peter J. Claybaker
  • Patent number: 5166777
    Abstract: A superconductive apparatus including a superconductive member to be cooled, a cooling element which exhibits Peltier effect upon supply of electric power thereto such that the superconductive member is thermally coupled with a cooling portion of the cooling element and a container for accommodating the superconductive member and the cooling portion.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: November 24, 1992
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Shoei Kataoka
  • Patent number: 5156003
    Abstract: A magnetic refrigerator comprising a magnet generating a high-intensity magnetic field, a tube-shaped superconducting magnetic shield, a magnetic working material and a reciprocating means for reciprocatively moving the superconducting magnetic shield or the magnetic working material, the magnetic refrigerator being arranged such that a magnetization process wherein the magnetic working material is magnetized in the high-intensity magnetic field and a demagnetization process wherein the magnetic working material is demagnetized by being accommodated in the hollow section of the magnetic shield are repeated by the reciprocating means so that the magnetic working material generates coldness.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: October 20, 1992
    Assignee: Koatsu Gas Kogyo Co., Ltd.
    Inventors: Saji Yoshiro, Hiroaki Toda, Tetsuo Takagi, Takao Sugioka, Masaru Inoue, Kohei Otani, Manabu Sato
  • Patent number: 5153804
    Abstract: A hybrid current limiter comprising a first winding of non-superconducting conductive material having a large number of turns and electrically connected in series with a superconductoring coil of low self-inductance and placed in a cryostat, and a second winding of non-superconducting conductive material having a small number of turns, said second winding being closely coupled with said first winding in such a manner as to obtain low overall inductance, the second winding being connected in parallel with the series circuit constituted by the first winding and the superconducting coil.
    Type: Grant
    Filed: April 24, 1991
    Date of Patent: October 6, 1992
    Assignee: GEC Alsthom SA
    Inventors: Van Doan Pham, Jean-Pierre Dupraz, Michel Collet, Yves Brunet, Pascal Tixador
  • Patent number: 5057490
    Abstract: A refrigerating device (34 or 46) is formed using a refrigerating unit (10) having a hot end (32) at which heat is transferred to a heat sink (22), a cold end (30) at which heat is transferred from a cooling load (28) to the unit (10), a first junction (14) of a material (16) carrying electrical current in a nonsuperconducting mode to a material (12) carrying electrical current in a superconducting mode nearest the hot end (32), a second junction (18) of a material (12) carrying electrical current in a superconducting mode to a material (20) carrying electrical current in a nonsuperconducting mode nearest the cold end (30), and an electrical current source (24) that forces a flow of electrical current in the direction from the first junction (14) toward the second junction (18). As the electrical current flows, heat is transferred from the cooling load (28) into the cold end (30), and expelled to the heat sink (22) at the hot end (32).
    Type: Grant
    Filed: October 26, 1989
    Date of Patent: October 15, 1991
    Assignee: Hughes Aircraft Company
    Inventor: Matthew M. Skertic
  • Patent number: 5052183
    Abstract: A cryogenic microwave test chamber consists of a dry-sample receiving char which is partly immersed in liquid nitrogen. Waveguides from either end of the interior of the dry chamber are connected to and sealed to outgoing waveguides in regions immersed in the liquid nitrogen. Dry nitrogen is introduced through the waveguide and is circulated through the dry chamber to prevent condensation therein during cooling. A heat conductive metal tube surrounds the dry chamber and is spaced therefrom and acts as a heat barrier. Waveguide flanges on the opposite ends of the dry chamber slidably seal the chamber.
    Type: Grant
    Filed: January 4, 1991
    Date of Patent: October 1, 1991
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Thomas E. Koscica, Richard W. Babbitt, William C. Drach
  • Patent number: 5040373
    Abstract: A cryogenic condensing system is provided wherein the working fluid is paramagnetic and entropy reduction is accomplished by means of a magnetic field. Condensation is obtained by isentropically expanding partially compressed vapor into a thermally insulated vacuum chamber with a sufficiently large expansion ratio to supersaturate the vapor, a portion of which condenses spontaneously. That portion of the vapor which does not condense is drawn out of the condensing chamber and into the bore of a superconducting solenoid by magnetic attractive forces thereby maintaining the vacuum environment inside the chamber. The noncondensed vapor is magnetized and magnetically compressed inside the solenoid thereby reducing its entropy. Heat of magnetization is extracted by a non-magnetic turbine which converts the kinetic energy of the gas stream pulled into the solenoid into mechanical work.
    Type: Grant
    Filed: October 27, 1989
    Date of Patent: August 20, 1991
    Inventor: Michael A. Minovitch
  • Patent number: 4910626
    Abstract: A current limiter comprising a cryostat provided with a first insulating feedthrough for an inlet conductor and a second insulating feedthrough for an outlet conductor, and a conductor running from one feedthrough to the other inside the tank, said conductor being constituted at least in part by a superconducting material, the cryostat being filled with a fluid at a temperature which is low enough to maintain said material in the superconducting state, said portion made of superconducting material including at least one portion comprising superconducting wires (7, 8) wound in opposite direction windings on two coaxial insulating formers (14, 15). Respective the ends of each of the superconducting wires (7, 8) are connected firstly to the inlet conductor and secondly to the outlet conductor via identical elementary current feeds (21A, 22A).
    Type: Grant
    Filed: March 30, 1989
    Date of Patent: March 20, 1990
    Assignee: Societe Anonyme dite : Alsthom
    Inventors: Michel Collet, Van Doan Pham, Alain Fevrier