Water Utilized In The Preliminary Reaction Patents (Class 518/704)
  • Publication number: 20120149789
    Abstract: An apparatus for the electrolytic splitting of water into hydrogen and/or oxygen, the apparatus comprising: (i) at least one lithographically-patternable substrate having a surface; (ii) a plurality of microscaled catalytic electrodes embedded in said surface; (iii) at least one counter electrode in proximity to but not on said surface; (iv) means for collecting evolved hydrogen and/or oxygen gas; (v) electrical powering means for applying a voltage across said plurality of microscaled catalytic electrodes and said at least one counter electrode; and (vi) a container for holding an aqueous electrolyte and housing said plurality of microscaled catalytic electrodes and said at least one counter electrode. Electrolytic processes using the above electrolytic apparatus or functional mimics thereof are also described.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: UT-BATTELLE, LLC
    Inventor: Elias Greenbaum
  • Patent number: 8198338
    Abstract: A process for producing high octane fuel from carbon dioxide and water is disclosed. The feedstock for the production line is industrial carbon dioxide and water, which may be of lower quality. The end product can be high octane gasoline, high cetane diesel or other liquid hydrocarbon mixtures suitable for driving conventional combustion engines or hydrocarbons suitable for further industrial processing or commercial use. Products, such as dimethyl ether or methanol may also be withdrawn from the production line. The process is emission free and reprocesses all hydrocarbons not suitable for liquid fuel to form high octane products. The heat generated by exothermic reactions in the process is fully utilizes as is the heat produced in the reprocessing of hydrocarbons not suitable for liquid fuel.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: June 12, 2012
    Assignee: CRI EHF
    Inventors: Arthur M. Shulenberger, Fridik Ragnar Jonsson, Oddur Ingolfsson, Kim-Chinh Tran
  • Publication number: 20120142522
    Abstract: A carbonaceous feedstock to alcohol conversion process in which carbon dioxide is removed from the syngas stream issuing from a feedstock reformer, to yield a carbon dioxide depleted syngas stream including hydrogen, carbon monoxide and methane. This carbon dioxide depleted syngas stream is then passed through a Fischer-Tropsch reactor ultimately yielding a mixed alcohol product which is preferably largely ethanol. The removed carbon dioxide stream is passed through a methane reformer along with methane, which is produced in or has passed through a Fischer-Tropsch reactor, to yield primarily carbon monoxide and hydrogen. The carbon monoxide and hydrogen stream from the methane reformer are passed through the alcohol reactor. Also disclosed are a unique catalyst, a method for controlling the content of the syngas formed in the feedstock reformer, and a feedstock handling system.
    Type: Application
    Filed: February 8, 2012
    Publication date: June 7, 2012
    Applicant: Pearson Technologies, Inc.
    Inventor: Stanley R. PEARSON
  • Patent number: 8188322
    Abstract: A process for the production of methanol comprises feeding a hydrocarbon feedstock to a partial oxidation reactor to produce a synthesis gas comprising hydrogen, carbon monoxide and carbon dioxide; subjecting the synthesis gas to methanol synthesis to produce a methanol product stream and a tail gas stream; separating the tail gas stream into at least two streams comprising a purge stream and a recycle stream, the recycle stream comprising a substantial portion of the tail gas stream; and, recycling the recycle stream to the partial oxidation reactor.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: May 29, 2012
    Assignee: Technology Convergence Inc.
    Inventor: John M. Shaw
  • Publication number: 20120123000
    Abstract: An assembly for producing at least one synthetic hydrocarbon from at least one inflowing stream of carbon monoxide and one inflowing stream of carbon dioxide is provided. The assembly includes an electrolyzer provided for producing a first stream of hydrogen, a first conversion unit provided for producing an intermediate stream of carbon monoxide from at least one portion of the inflowing stream of carbon dioxide and hydrogen, a reactor for synthesizing said synthetic hydrocarbon; a second conversion unit provided for producing a second stream of hydrogen from carbon monoxide and water, the second hydrogen stream being directed towards the synthesis reactor; a guide assembly provided for selectively distributing the inflowing stream of carbon monoxide between the second conversion unit and the synthesis reactor, and for selectively distributing the first hydrogen stream between the first conversion unit and the synthesis reactor; a control unit provided for controlling the guide assembly.
    Type: Application
    Filed: June 3, 2010
    Publication date: May 17, 2012
    Applicant: AREVA
    Inventor: Michel Lecompte
  • Patent number: 8178587
    Abstract: The present invention provides a method for recovering a natural gas contaminated with high levels of carbon dioxide. A gas containing methane and carbon dioxide is extracted from a reservoir containing natural gas, where carbon dioxide comprises at least 50 vol. % of the extracted gas. The extracted gas is oxidized with an oxygen containing gas in the presence of a partial oxidation catalyst at a temperature of less than 600° C. to produce an oxidation product gas containing hydrogen, carbon monoxide, and carbon dioxide. The oxidation product gas is then utilized to produce a liquid hydrocarbon or a liquid hydrocarbon oxygenate.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: May 15, 2012
    Assignee: Shell Oil Company
    Inventors: Mahendra Ladharam Joshi, Jingyu Cui, Frederik Arnold Buehrman, Scott Lee Wellington
  • Patent number: 8178588
    Abstract: A system and method for reducing the CO2 in a gaseous stream, such as an exhaust stream, from a power plant or industrial plant, like a cement kiln, is disclosed. A preferred embodiment includes providing the gaseous stream to pyrolysis reactor along with a carbon source such as coke. The CO2 and carbon are heated to about 1330° C. and at about one atmosphere with reactants such as steam such that a reaction takes place that produces syngas, carbon dioxide (CO2) and hydrogen (H2). The Syngas is then cleaned and provided to a Fischer-Tropsch synthesis reactor to produce Ethanol or Bio-catalytic synthesis reactor.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 15, 2012
    Assignee: GYCO, Inc.
    Inventor: Gary C. Young
  • Publication number: 20120115965
    Abstract: The invention provides for a method of forming methanol by combining a mixture of methane, water and carbon dioxide under specific reaction conditions sufficient to form a mixture of hydrogen and carbon monoxide which are then reacted under conditions sufficient to form methanol. The molar ratio of hydrogen to carbon monoxide is at least two moles of hydrogen to one mole of carbon monoxide and the overall molar ratio between methane, water and carbon dioxide is about 3:2:1. Methane, carbon dioxide and water are bi-reformed over a catalyst. The catalyst includes a single metal, a metal oxide, a mixed catalyst of a metal and a metal oxide or a mixed catalyst of at least two metal oxides.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 10, 2012
    Applicant: University of Southern California
    Inventors: George A. Olah, G.K. Surya Prakash
  • Patent number: 8168684
    Abstract: This invention relates to a method of producing liquid hydrocarbons, preferably internal combustion engine fuels, using feedstocks of coal or methane. Depending on the nature of the feedstock it is subjected to a gasification and/or reforming process and/or water gas shift process which produces a syngas that is rich in carbon dioxide and hydrogen rather than carbon monoxide and hydrogen as in the conventional process. The carbon dioxide and hydrogen are combined in a Fischer Tropsch process to produce desired hydrocarbons and water. The energy requirements of the gasification/reforming process to produce a syngas that is rich in carbon dioxide and hydrogen is considerably less than the energy requirements for gasification/reforming process for producing the conventional carbon monoxide rich syngas. This reduction in energy consumption reduces considerably the quantities of carbon dioxide released into the atmosphere compared to conventional processes that are based on carbon monoxide rich syngas.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 1, 2012
    Assignee: University of the Witwatersrand, Johannesburg
    Inventors: Diane Hildebrandt, David Glasser, Bilal Patel, Brendon Patrick Hausberger
  • Patent number: 8168686
    Abstract: A method and system for reforming a carbonaceous feedstock comprising the steps, reforming the feedstock produce a first synthesis gas, subjecting a portion of the first synthesis gas to catalytic conversion, separating from the synthesis gas conversion product at least one byproduct, and utilizing at least a portion of the at least one byproduct during reforming of additional carbonaceous material. In certain instances, the method and system may be used to produce a liquid fuel.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 1, 2012
    Assignee: Rentech, Inc.
    Inventors: Randy Blevins, Joshua B. Pearson, Harold A. Wright
  • Patent number: 8168143
    Abstract: A process and system for producing hydrocarbon compounds or fuels that recycle products of hydrocarbon compound combustion—carbon dioxide or carbon monoxide, or both, and water. The energy for recycling is electricity derived from preferably not fossil based fuels, like from nuclear fuels or from renewable energy. The process comprises electrolysing water, and then using hydrogen to reduce externally supplied carbon dioxide to carbon monoxide, then using so produced carbon monoxide together with any externally supplied carbon monoxide and hydrogen in Fischer-Tropsch reactors, with upstream upgrading to desired specification fuels—for example, gasoline, jet fuel, kerosene, diesel fuel, and others. Energy released in some of these processes is used by other processes. Using adiabatic temperature changes and isothermal pressure changes for gas processing and separation, large amounts of required energy are internally recycled using electric and heat distribution lines.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: May 1, 2012
    Inventor: Alexander J. Severinsky
  • Publication number: 20120095119
    Abstract: Disclosed is a process for producing a purified synthesis gas stream from a feed synthesis gas stream. The process includes contacting the feed synthesis gas stream with a water gas shift catalyst in a shift reactor and in the presence of water to obtain a shifted synthesis gas stream enriched in H2S and in CO2. H2S and CO2 are removed from the shifted synthesis gas stream by contacting the shifted synthesis gas stream with an absorbing liquid to obtain semi-purified synthesis gas and an absorbing liquid rich in H2S and CO2. At least part of the absorbing liquid rich in H2S and CO2 is heated to obtain heated absorbing liquid rich in H2S and CO2 that is then flashed to obtain a flash gas rich in CO2 and absorbing liquid rich in H2S. That absorbing liquid rich in H2S is contacted at elevated temperature with a stripping gas thereby transferring H2S to the stripping gas to obtain regenerated absorbing liquid and stripping gas rich in H2S.
    Type: Application
    Filed: March 30, 2010
    Publication date: April 19, 2012
    Inventors: Isaac Cormelis Van Den Born, Gijsbert Jan Van Heeringen, Cornelis Jacobus Smit, Alex Frederik Woldhuis
  • Patent number: 8153698
    Abstract: A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: April 10, 2012
    Assignees: Wisconsin Alumni Research Foundation, Virent, Inc.
    Inventors: Randy D. Cortright, James A. Dumesic
  • Publication number: 20120079767
    Abstract: A process and system for producing synthesis gas (syngas) by combining hydrogen and carbon monoxide from separate sources while controlling the mole ratio (H2/CO) of the syngas product. Hydrogen is produced by splitting water. Carbon monoxide is produced by reacting carbon dioxide (CO2), which has been captured from the exhaust of stationary combustion engines, with hydrogen via the Reverse Water Gas Shift. Hydrocarbon fuels are produced from this syngas via the Fischer-Tropsch synthesis.
    Type: Application
    Filed: July 31, 2009
    Publication date: April 5, 2012
    Inventors: Stephen Aplin, Donald S. Moore
  • Patent number: 8142530
    Abstract: This invention features methods and apparatus for producing syngas from any carbon-containing feed material. In some embodiments, a substoichiometric amount of oxygen is used to enhance the formation of syngas. In various embodiments, both oxygen and steam are added during the conversion of the feed material into syngas. The syngas can be converted to alcohols, such as ethanol, or to other products.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: March 27, 2012
    Assignee: Range Fuels, Inc.
    Inventors: Robert E. Klepper, Arie Geertsema, Shakeel H. Tirmizi, Heinz Juergen Robota, Francis M. Ferraro, Ronald C. Stites
  • Patent number: 8143319
    Abstract: A method and apparatus for converting carbonaceous material to a stream of carbon rich gas, comprising heating a slurry feed containing the carbonaceous material in a hydrogasification process using hydrogen and steam, at a temperature and pressure sufficient to generate a methane and carbon monoxide rich stream in which the conversion time in the process is between 5 and 45 seconds. In particular embodiments, the slurry feed containing the carbonaceous material is fed, along with hydrogen, to a kiln type reactor before being fed to the fluidized bed reactor. Apparatus is provided comprising a kiln type reactor, a slurry pump connected to an input of the kiln type reactor, means for connecting a source of hydrogen to an input of the kiln type reactor; a fluidized bed reactor connected to receive output of the kiln type reactor for processing at a fluidizing zone, and a source of steam and a source of hydrogen connected to the fluidized bed reactor below the fluidizing zone.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: March 27, 2012
    Assignee: The Regents of the University of California
    Inventors: Chan Seung Park, Joseph M. Norbeck
  • Patent number: 8138381
    Abstract: The present invention provides a method for recovering a natural gas contaminated with high levels of carbon dioxide. A gas containing methane and carbon dioxide is extracted from a reservoir containing natural gas, where carbon dioxide comprises greater than 40 vol. % of the extracted gas. The extracted gas is scrubbed with a wash effective to produce a washed extracted gas containing less carbon dioxide than the extracted gas and at least 20 vol. % carbon dioxide. The washed extracted gas is oxidized with an oxygen containing gas in the presence of a partial oxidation catalyst to produce an oxidation product gas containing hydrogen, carbon monoxide, and carbon dioxide. The oxidation product gas is then utilized to produce a liquid methanol product.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: March 20, 2012
    Assignee: Shell Oil Company
    Inventors: Mahendra Ladharam Joshi, Jingyu Cui, Frederik Arnold Buhrman, Scott Lee Wellington, Stanley Nemec Milam, Rogier Maarten Kamerbeek
  • Patent number: 8133926
    Abstract: The invention provides for a method of forming dimethyl ether by bimolecular dehydration of methanol produced from a mixture of hydrogen and carbon dioxide obtained by reforming of methane, water and carbon dioxide in a ratio of about 3:2:1. Subsequent use of water produced in the dehydration of methanol in the bi-reforming process leads to an overall ratio of carbon dioxide to methane of about 1:3 to produce dimethyl ether.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: March 13, 2012
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Patent number: 8123827
    Abstract: The present invention provides processes for making syngas-derived products. For example, one aspect of the present invention provides a process for making a syngas-derived product, the process comprising (a) providing a carbonaceous feedstock; (b) converting the carbonaceous feedstock in a syngas formation zone at least in part to a synthesis gas stream comprising hydrogen and carbon monoxide; (c) conveying the synthesis gas stream to a syngas reaction zone; (d) reacting the synthesis gas stream in the syngas reaction zone to form the syngas-derived product and heat energy, a combustible tail gas mixture, or both; (e) recovering the syngas-derived product; and (f) recovering the heat energy formed from the reaction of the synthesis gas stream, burning the combustible tail gas mixture to form heat energy, or both.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: February 28, 2012
    Assignee: Greatpoint Energy, Inc.
    Inventor: Earl T. Robinson
  • Patent number: 8106102
    Abstract: A process (10) for the preparation and conversion of synthesis gas includes reforming a feed gas (34) comprising methane in a reforming stage (18) to produce synthesis gas (46) which includes hydrogen and carbon monoxide. Some of the hydrogen and carbon monoxide is converted to a Fischer-Tropsch product (48) in a Fischer-Tropsch hydrocarbon synthesis stage (24). A tail gas (52), including unreacted hydrogen and carbon monoxide, methane and carbon dioxide, is separated from the Fischer-Tropsch product (48). In a tail gas treatment stage (28,30), the tail gas (52) is treated by reforming the methane in the tail gas (52) with steam (66) and removing carbon dioxide to produce a hydrogen rich gas (56). The tail gas treatment stage (28,30) may be either a combined tail gas treatment stage (28,30) or a composite tail gas treatment stage. The carbon dioxide from the tail gas treatment stage (28,30) is fed to the reforming stage (18).
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: January 31, 2012
    Assignees: Sasol Technology (Proprietary) Limited, Haldor Topsøe A/S
    Inventors: Andre Peter Steynberg, Ib Dybkjaer, Kim Aasberg-Petersen
  • Patent number: 8105403
    Abstract: A novel method of combining the CTL fuel plant and IGCC electrical plant by sharing the systems of coal intake, coal preparation, gas separation, and water units is described herein. This configuration allows for the combined facility to offer advantages in efficiencies of production, operational flexibility, scalability, and reliability by a multi-path integration of the processing units.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: January 31, 2012
    Assignee: Rentech, Inc.
    Inventors: Joseph A. Regnery, Richard O. Sheppard
  • Publication number: 20120010305
    Abstract: The invention relates to methods and facility systems (100) for providing storable and transportable carbon-based energy carriers (108) by application of carbon dioxide (101) as a carbon supplier and by application of electric energy (E1, E2). The facility system (100) comprises a plant (300, 301; 400) for providing a first portion of energy in the form of direct current energy (E1) from renewable energy sources. In addition, a power supplies facility (501) is provided for tying the facility system (100) to a mixed network (500), wherein the power supplies facility (501) produces a second portion of energy in the form of direct current energy (E2) from an alternating current voltage of the mixed network (500). A device (102, 105) is adapted to provide hydrogen (103), wherein a part of the energy requirement of this device (102, 105) is covered by said first portion of energy and another part is covered by said second portion of energy.
    Type: Application
    Filed: August 13, 2009
    Publication date: January 12, 2012
    Applicant: SILICON FIRE AG
    Inventors: Peter Grauer, Roland Meyer-Pittroff
  • Patent number: 8093306
    Abstract: A method and system for reforming a carbonaceous feedstock comprising the steps, reforming the feedstock produce a first synthesis gas, subjecting a portion of the first synthesis gas to catalytic conversion, separating from the synthesis gas conversion product at least one byproduct, and utilizing at least a portion of the at least one byproduct during reforming of additional carbonaceous material. In certain instances, the method and system may be used to produce a liquid fuel.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 10, 2012
    Assignee: Rentech, Inc.
    Inventors: Randy Blevins, Joshua B. Pearson, Harold A. Wright
  • Patent number: 8088832
    Abstract: A method and apparatus for synthesizing ethanol using synthetic routes via synthesis gas are disclosed. A method and apparatus for gasifying biomass, such as biomass, in a steam gasifier that employs a fluidized bed and heating using hot flue gases from the combustion of synthesis gas is described. Methods and apparatus for converting synthesis gas into ethanol are also disclosed, using stepwise catalytic reactions to convert the carbon monoxide and hydrogen into ethanol using catalysts including iridium acetate.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: January 3, 2012
    Assignee: Woodland Biofuels Inc.
    Inventors: Larry Jack Melnichuk, Karen Venita Kelly, Robert S. Davis
  • Patent number: 8084508
    Abstract: A method of producing fuel by converting an alcohol stream comprising at least one alcohol into synthesis gas; providing a first synthesis gas stream, wherein at least a portion of the first synthesis gas stream comprises synthesis gas obtained from the alcohol conversion; converting a feed comprising synthesis gas via Fischer-Tropsch into a Fischer-Tropsch product comprising hydrocarbons, wherein at least a portion of the feed comprises synthesis gas from the first synthesis gas stream; and converting at least a portion of the Fischer-Tropsch product into fuel. A diesel fuel comprising hydrocarbons formed by Fischer-Tropsch conversion of synthesis gas derived from an alcohol stream comprising at least one alcohol.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: December 27, 2011
    Assignee: Rentech, Inc.
    Inventors: Dennis Yakobson, Harold A. Wright, Richard Penning
  • Publication number: 20110291425
    Abstract: Systems and methods of generating power or producing gaseous products generate CO2 as a waste product or as a greenhouse gas. Rather than being discharged into the atmosphere, the CO2 is employed in a bioreactor to enhance the growth of algae. The algae then becomes a commercial product, or it can be consumed as fuel in the generation of power or the production of a gaseous product.
    Type: Application
    Filed: November 19, 2009
    Publication date: December 1, 2011
    Inventor: James Charles Juranitch
  • Publication number: 20110288185
    Abstract: A method and system for converting waste using plasma into methane. The method uses minimal fossil fuel, and therefore produces a minimal carbon footprint when compared to conventional processes. The method includes the steps of supplying a biomass material to a plasma melter; supplying electrical energy to the plasma melter; supplying steam to the plasma melter; extracting a syngas from the plasma melter; extracting hydrogen from the syngas; and forming methane from the hydrogen produced in the step of extracting hydrogen.
    Type: Application
    Filed: November 19, 2009
    Publication date: November 24, 2011
    Inventor: James Charles Juranitch
  • Publication number: 20110281959
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Application
    Filed: December 2, 2010
    Publication date: November 17, 2011
    Applicant: The Government of the United States of America as represented by the Secretary of the Navy
    Inventors: Feice DiMascio, Dennis R. Hardy, Heather D. Willauer, M. Kathleen Lewis, Frederick Williams
  • Patent number: 8053481
    Abstract: A Fischer-Tropsch process for producing diesel fuel or diesel blending stock with a high cetane number, in a concentration of 65-90 wt % at pressures below 200 psia, using a cobalt catalyst with a rhenium and/or ruthenium promoter. The catalyst is a cobalt catalyst with crystallites having an average diameter greater than 16 nanometers, and the resulting hydrocarbon product after a rough flash, contains less than 10 wt % waxes (>C23).
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: November 8, 2011
    Assignee: WM GTL, Inc.
    Inventor: Conrad Ayasse
  • Patent number: 7989511
    Abstract: A process and apparatus for preparing a synthesis gas suitable for feeding to a suitable hydrocarbon production reactor, such as a Fischer Tropsch reactor is described. According to one aspect, the process and apparatus utilize heat exchangers that thermally integrate the reaction steps such that heat generated by exothermic reactions, e.g., combustion, are arranged closely to the heat sinks, e.g., cool methane, water and air, to minimize heat loss and maximize heat recovery. Effectively, this thermal integration eliminates excess piping throughout, reduces initial capital and operating costs, provides built-in passive temperature control, and improves synthesis gas production efficiencies.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: August 2, 2011
    Assignee: Texaco Inc.
    Inventors: Daniel Glenn Casey, Lixin You, Curtis Lee Krause, Kevin Hoa Nguyen
  • Patent number: 7989509
    Abstract: In various implementations, various feed gas streams which include hydrogen and carbon monoxide may be processed for conversion to product streams. For example, the feed gas stream may be processed using the Fischer-Tropsch process. Unconverted hydrogen and carbon monoxide can be recycled using an off-gas catalytic reformer and a gas turbine exhaust gas heat exchanger that will perform preheating duties.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: August 2, 2011
    Assignee: GTLpetrol LLC
    Inventor: Rodney J. Allam
  • Publication number: 20110172316
    Abstract: A system and method for reducing the CO2 in a gaseous stream, such as an exhaust stream, from a power plant or industrial plant, like a cement kiln, is disclosed. A preferred embodiment includes providing the gaseous stream to pyrolysis reactor along with a carbon source such as coke. The CO2 and carbon are heated to about 1330° C. and at about one atmosphere with reactants such as steam such that a reaction takes place that produces syngas, carbon dioxide (CO2) and hydrogen (H2). The Syngas is then cleaned and provided to a Fischer-Tropsch synthesis reactor to produce Ethanol or Bio-catalytic synthesis reactor.
    Type: Application
    Filed: March 24, 2011
    Publication date: July 14, 2011
    Inventor: Gary C. Young
  • Patent number: 7960441
    Abstract: The present invention relates to a method for reprocessing of the combustion products, carbon dioxide and water, to generate renewable synthetic fuels and motor fuels by means of electrical energy, involving, according to the invention, mixing hydrogen, produced from water, preferably water vapor, by electrolysis, and carbon dioxide up to a molar ratio of 1 to 3.5 to obtain a carbon dioxide-hydrogen mixture, pre-heating said mixture in a high temperature recuperator and then heating it to 800 to 5,000° C.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: June 14, 2011
    Assignee: BW-Energiesysteme GmbH
    Inventor: Bodo Max Wolf
  • Publication number: 20110118365
    Abstract: Process for preparing olefins, which comprises the following steps: a) preparation of a synthesis gas comprising carbon monoxide and hydrogen, b) introduction of carbon dioxide recirculated from step d) into the synthesis gas during or after the preparation of synthesis gas as per step a), c) conversion of the synthesis gas having a hydrogen to carbon monoxide ratio of ?1.2:1 which is obtained in step b) into olefins in the presence of a Fischer-Tropsch catalyst, d) removal of the carbon dioxide comprised in the reaction product from step c), where the ratio of hydrogen to carbon monoxide in step c) is set via step b).
    Type: Application
    Filed: November 19, 2010
    Publication date: May 19, 2011
    Applicant: BASF SE
    Inventors: JOCHEN STEINER, Kerem Bay, Ekkehard Schwab, Alexander Weck
  • Patent number: 7932296
    Abstract: Systems and methods for producing syngas are provided. A first hydrocarbon can be partially oxidized in the presence of an oxidant and one or more first catalysts at conditions sufficient to partially combust a portion of the first hydrocarbon to provide carbon dioxide, non-combusted first hydrocarbon, and heat. The non-combusted first hydrocarbon can be reformed in the presence of the heat generated in the partial oxidation step and the one or more first catalysts to provide a first syngas. Heat can be indirectly exchanged from the first syngas to a second hydrocarbon to reform at least a portion of the second hydrocarbon in the presence of steam and one or more second catalysts to provide a second syngas. A syngas, which can include the at least a portion of the first syngas, at least a portion of the second syngas, or a mixture thereof can be converted to provide one or more Fischer-Tropsch products, methanol, derivatives thereof, or combinations thereof.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 26, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, David P. Mann
  • Patent number: 7932298
    Abstract: A system and method for producing syngas from the CO2 in a gaseous stream, such as an exhaust stream, from a power plant or industrial plant, like a cement kiln, is disclosed. A preferred embodiment includes providing the gaseous stream to pyrolysis reactor along with a carbon source such as coke. The CO2 and carbon are heated to about 1330° C. and at about one atmosphere with reactants such as steam such that a reaction takes place that produces syngas, carbon dioxide (CO2) and hydrogen (H2). The Syngas is then cleaned and provided to a Fischer-Tropsch synthesis reactor to produce Ethanol or Bio-catalytic synthesis reactor.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: April 26, 2011
    Assignee: GYCO, Inc.
    Inventor: Gary C. Young
  • Patent number: 7923476
    Abstract: A system and method for reducing the CO2 in a gaseous stream, such as an exhaust stream, from a power plant or industrial plant, like a cement kiln, is disclosed. A preferred embodiment includes providing the gaseous stream to pyrolysis reactor along with a carbon source such as coke. The CO2 and carbon are heated to about 1330° C. and at about one atmosphere with reactants such as steam such that a reaction takes place that produces syngas, carbon dioxide (CO2) and hydrogen (H2). The Syngas is then cleaned and provided to a Fischer-Tropsch synthesis reactor to produce Ethanol or Bio-catalytic synthesis reactor.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: April 12, 2011
    Assignee: GYCO, Inc.
    Inventor: Gary C. Young
  • Patent number: 7910629
    Abstract: The GTL process of the invention comprises: reacting a combustible carbonaceous material in a syngas reactor, preferably an autothermal reformer, under conditions to produce a synthesis gas; contacting the synthesis gas with an F-T catalyst to form liquid products and a tail gas; separating the tail gas from the liquid products; separating CO2 from the light products in the tail gas; recovering the light products as additional products for sale or other use and utilizing at least a portion of the separated CO2 as a feed stream to the syngas reactor.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 22, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Moses K. Minta, Edward L. Kimble, Russ H. Oelfke, Eric D. Nelson, Ross Mowrey, Albrecht Goethe
  • Publication number: 20110065815
    Abstract: Disclosed is an apparatus for producing a hydrocarbon from a biomass such as a glass or wood, which comprises: a biomass gasification unit (101) for feeding a raw material biomass (MB) and an overheated water vapor (S) for gasifying the biomass and a fuel biomass (FB) and air (A) for burning the fuel biomass, thereby producing a mixed gas (G) mainly composed of hydrogen and carbon monoxide; a clean-up means (201) for purifying the mixed gas (G); a gas tank (301) for storing the cleaned-up mixed gas (G) temporarily; a pressurizing pump (401) for pressurizing the mixed gas (G); and a hydrocarbon synthesis unit (501) for converting the pressurized mixed gas (G) into a hydrocarbon.
    Type: Application
    Filed: August 13, 2008
    Publication date: March 17, 2011
    Inventors: Masayasu Sakai, Tadashi Yokoi
  • Patent number: 7906559
    Abstract: The invention discloses a method of converting carbon dioxide to methanol and/or dimethyl ether using any methane source or natural gas consisting of a combination of steam and dry reforming, in a specific ratio to produce a 2:1 molar ratio of hydrogen and carbon monoxide with subsequent conversion of the CO and H2 mixture exclusively to methanol and/or dimethyl ether. This method is termed the BI-REFORMING™ process. Dehydrating formed methanol allows producing dimethyl ether (DME) using any suitable catalytic method, including use of solid acid catalysts. When recycling formed water into the bi-reforming step the conversion of carbon dioxide with methane produces exclusively dimethyl ether without any by-product formation and complete utilization of hydrogen.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: March 15, 2011
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Publication number: 20110054046
    Abstract: A method for producing hydrocarbon fuels from environmentally friendly non-petroleum based sources using existing chemical reactions is disclosed. In this method, air is passed through a reactor containing amine and carbon dioxide mixture to produce carbon dioxide. The reactor containing amine and carbon dioxide mixture, a Sabatier reactor, a partial oxidation reactor and a Fischer-Tropsch reactor are in thermal contact with each other. The exothermic reactions, the Sabatier reaction and partial oxidation reaction drive the endothermic Fischer-Tropsch reaction. The Fischer Tropsch reaction occurs under a high temperature generated from the heat liberated by the Sabatier reaction and partial oxidation reaction. The heat from the exothermic reactions can also be used to release carbon dioxide from the amine-carbon dioxide mixture. The resulting hydrocarbon fuel products are separated from the Fischer Tropsch reactor and sold.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 3, 2011
    Inventor: Barak Leland Wiesner
  • Publication number: 20110054047
    Abstract: A process and system for producing hydrocarbon compounds or fuels that recycle products of hydrocarbon compound combustion—carbon dioxide or carbon monoxide, or both, and water. The energy for recycling is electricity derived from preferably not fossil based fuels, like from nuclear fuels or from renewable energy. The process comprises electrolysing water, and then using hydrogen to reduce externally supplied carbon dioxide to carbon monoxide, then using so produced carbon monoxide together with any externally supplied carbon monoxide and hydrogen in Fischer-Tropsch reactors, with upstream upgrading to desired specification fuels—for example, gasoline, jet fuel, kerosene, diesel fuel, and others. Energy released in some of these processes is used by other processes. Using adiabatic temperature changes and isothermal pressure changes for gas processing and separation, large amounts of required energy are internally recycled using electric and heat distribution lines.
    Type: Application
    Filed: November 4, 2010
    Publication date: March 3, 2011
    Inventor: ALEXANDER J. SEVERINSKY
  • Patent number: 7897649
    Abstract: An improved, economical alternative method to supply steam and methane to a steam methane reformer (SMR) is accomplished by a combination of procedures, wherein product gas from a steam hydro-gasification reactor (SHR) is used as the feedstock for the SMR by removing impurities from the product stream from the SHR with a gas cleanup unit that operates substantially at process pressures and at a temperature above the boiling point of water at the process pressure, is located between the SHR and SMR.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: March 1, 2011
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park
  • Publication number: 20110046244
    Abstract: The present invention is a natural gas steam reforming method for generating an output gas mixture of carbon dioxide and hydrogen, including the following steps. (1) Combusting a portion of the natural gas with an oxidizing agent to generate heat, superheated steam, and a gas mixture of carbon dioxide, carbon monoxide, and hydrogen. (2) Steam reforming the gas mixture with additional superheated steam under steam-rich conditions to transform a remaining portion of the natural gas into carbon dioxide, carbon monoxide, and hydrogen. (3) Water-gas-shifting any residual carbon monoxide into additional carbon dioxide and additional hydrogen by utilizing a water-gas-shift catalyst downstream of the steam reforming step, thereby producing an effluent gas mixture that is predominantly carbon dioxide and hydrogen.
    Type: Application
    Filed: November 10, 2010
    Publication date: February 24, 2011
    Applicant: PIONEER ENERGY INC.
    Inventors: Robert M. Zubrin, Sam G. Michael, Gevorg Sargsyan
  • Patent number: 7879919
    Abstract: A process for producing hydrocarbons from natural gas includes, in a cryogenic separation stage, cryogenically separating the natural gas to produce at least a methane stream and natural gas liquids, in a reforming stage, reforming the methane stream to produce a synthesis gas which includes at least CO and H2, and in a Fischer-Tropsch hydrocarbon synthesis stage, converting at least some of the CO and H2 into a Fischer-Tropsch product which includes hydrocarbons. A Fischer-Tropsch tail gas which includes at least CO and H2, methane and heavier than methane hydrocarbons, is separated from the Fischer-Tropsch product in a Fischer-Tropsch product separation stage. At least a portion of the Fischer-Tropsch tail gas is recycled to the cryogenic separation stage, where the Fischer-Tropsch tail gas is cryogenically separated into two or more streams.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: February 1, 2011
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Werner Siegfried Ernst, Jacobus Francois Van Tonder
  • Patent number: 7872054
    Abstract: A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: January 18, 2011
    Assignees: Wisconsin Alumni Research Foundation, Virent Energy Systems
    Inventors: Randy D. Cortright, James A. Dumesic
  • Publication number: 20110009499
    Abstract: A system for extracting a target atmospheric gas from an atmosphere, including a carbon-neutral energy source and a cooling unit connected to a condenser, is disclosed. An optional collection chamber and optional reaction chamber are also disclosed. Also disclosed are a method of providing hydrocarbon feedstocks, a method of removing a gas from an atmosphere, and a method of reducing the concentration of the greenhouse gas carbon dioxide in the earth's atmosphere.
    Type: Application
    Filed: January 20, 2008
    Publication date: January 13, 2011
    Inventor: Dale Robert Lutz
  • Publication number: 20110009501
    Abstract: A process (200) to synthesise hydrocarbons includes gasifying (12) a carbonaceous feed material at a temperature sufficiently high to produce at least one hot synthesis gas stream (42) at a temperature of at least 900° C. and comprising at least CO and H2. In a Fischer-Tropsch hydrocarbon synthesis stage (22), synthesis gas is converted to hydrocarbons, providing a tail gas stream (40) containing methane. The tail gas stream (40) is subjected to steam reforming (30) thereby converting the methane to CO and H2 producing a reformed gas stream which is recycled to the Fischer-Tropsch hydrocarbon synthesis stage (22). The steam reforming (30) takes place at an elevated temperature of at least 700° C. and heat for the steam reforming is provided by indirect heat exchange with the at least one hot synthesis gas stream (42).
    Type: Application
    Filed: March 9, 2009
    Publication date: January 13, 2011
    Applicant: Sasol Technology (Proprietary) Limited
    Inventor: Werner Siegfried Ernst
  • Publication number: 20110009500
    Abstract: A process for producing Fischer-Tropsch hydrocarbon products onboard a marine vessel from at least one gas, liquid or solid carbonaceous feedstock, which includes the steps of conducting gasification in a thermal conversion plant operationally connected to an onboard power plant and forming Fischer-Tropsch hydrocarbons in a Fischer-Tropsch reactor with the thermal conversion plant sending a gas stream intermediate product from the conversion plant to the Fischer-Tropsch reactor.
    Type: Application
    Filed: February 27, 2009
    Publication date: January 13, 2011
    Inventor: How Kiap Gueh
  • Publication number: 20110003900
    Abstract: In a so-called GTL process of producing synthesis gas from natural gas, producing Fischer-Tropsch oil by way of Fischer-Tropsch synthesis of the obtained synthesis gas and producing liquid hydrocarbons containing fuel oil by upgrading, the synthesis gas produced from the synthesis gas production step is partly branched off prior to getting to the Fischer-Tropsch oil production step and the synthesis gas entering the branch line is subjected to a water gas shift reaction to raise the hydrogen concentration thereof. Subsequently, high-purity hydrogen is isolated from the synthesis gas and the residual gas left after the isolation is circulated to the synthesis gas production step and used as raw material for synthesis gas production. As a result, a significant improvement can be achieved in terms of raw material consumption per product of the entire process.
    Type: Application
    Filed: March 11, 2009
    Publication date: January 6, 2011
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATON, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD., CHIYODA CORPORATION
    Inventors: Fuyuki Yagi, Kenichi Kawazuishi