Ingredient Contains A Carbon Atom Double Bonded To Oxygen, E.g., Carboxylic Acid, Etc. Patents (Class 521/130)
  • Patent number: 8133930
    Abstract: Flexible polyurethane foams are prepared by reacting a polyisocyanate with a high equivalent weight polyol. At least a portion of the high equivalent weight polyol is a polyester containing hydroxymethyl groups. The polyester is prepared in a multi-step process from animal or vegetable fats, by recovering the constitutent fatty acids, hydroformylating carbon-carbon double bonds in the fatty acids and reducing to form hydroxymethyl groups, and then forming a polyester by reaction with an initiator compound.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: March 13, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Eugene Paul Wiltz, Jr., Zenon Lysenko, Fabio Aguirre, Aaron Sanders, John Tsavalas, David A. Babb, Alan K Schrock
  • Publication number: 20120059076
    Abstract: One- and two-part spray non-isocyanate foams that include an amide-based oligomer containing pendant carboxylic acid and a polyfunctional aziridine crosslinking agent is provided. The amide oligomer typically contains urea links, urethane links or both groups. Additionally, the foams may include one or more plasticizer, a non-functionalized resin, a surfactant, and/or a thickening agent or rheology modifier. The amide oligomer does not contain any isocyanate groups, and, as a result, there are no free isocyanate moieties generated during formation of the foam that may be potentially hazardous to workers installing the foam. The presence of the urethane segments on the oligomer permits for the generation of a polyurethane foam without the drawbacks of conventional polyurethane foams. The foams may be used to fill cavities, cracks, gaps and crevices, such as around windows and doors, and may also be used in flash and batt systems.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 8, 2012
    Applicant: OWENS CORNING INTELLECTUAL CAPITAL, LLC
    Inventor: Fatemeh Nassreen Olang
  • Patent number: 8129439
    Abstract: A method for producing an aqueous absorptive polymer-containing resin composition in which a resin composition is doped with an aqueous absorptive polymer includes causing the aqueous absorptive polymer to absorb and be swollen by water beforehand, and milling and microparticulating the water-absorbed and -swollen absorptive polymer at an ultrasonic flow pressure of not less than 50 MPa.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: March 6, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Yoshihisa Kato, Seikichi Tanno
  • Patent number: 8124665
    Abstract: This invention relates to fire-resistant, flexible, molded, medium density polyurethane foams. These foams typically have a density of from 10 to 30 pcf. The foams are the reaction product of a) at least one polyester polyol, b) at least one highly branched polyether polyol, c) at least one chain extender, d) a polymethylene poly(phenyl isocyanate), an isocyanate group containing prepolymer based on a polymethylene poly(phenyl isocyanate), or mixtures thereof, e) a solid flame retardant and f) water. This invention also relates to a process for preparing these polyurethane foams in open molds.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 28, 2012
    Assignee: Bayer MaterialScience LLC
    Inventors: James W. Rosthauser, Theodore S. Frick, Michael T. Wellman
  • Patent number: 8124663
    Abstract: The invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer load building properties to an isocyanate-based foam (e.g., a polyurethane foam). Indeed, its possible to utilize the sub-group of phenolic resins to partially or fully displace copolymer polyols conventionally used to confer load building characteristics to isocyanate-based polymer foams. Further, the invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer energy absorption properties in an isocyanate-based foam.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: February 28, 2012
    Assignee: Proprietect L.P.
    Inventors: Askar Karami, George Ng, Le Tang
  • Publication number: 20120028024
    Abstract: The present invention discloses a structure comprising a plurality of three dimensional cells, wherein each cell comprises exterior walls defining an interior void wherein the walls comprise a plurality of struts and windows, the struts forming borders for the plurality of windows, wherein the struts have a plurality of pores. The present invention further discloses a viscoelastic foam having a ratio of elastic modulus (E?) at 20° C. to 25% compression force deflection (CFD) of 25 to 125.
    Type: Application
    Filed: July 15, 2009
    Publication date: February 2, 2012
    Applicant: Dow Global Technologies inc.
    Inventors: Bernard Obi, Alan K. Schrock, Rogelio R. Gamboa, Asjad Shafi, Kaoru Aou
  • Patent number: 8101671
    Abstract: An object of the invention is to provide a polyolefin resin foam which is excellent in flexibility, cushioning property and processability, especially excellent in cutting processability. The present invention relates to a polyolefin resin foam obtained by foaming a polyolefin resin composition using carbon dioxide in a supercritical state, wherein the polyolefin resin composition contains at least: (1) a thermoplastic elastomer composition obtained by subjecting to a dynamically heat treatment a mixture of (A) a rubber, and (B) (B-1) an ?-olefin crystalline thermoplastic resin and/or (B-2) an ?-olefin amorphous thermoplastic resin, each having a melt tension of less than 3.0 cN at a temperature of 210° C. and at a take-up speed of 2.0 m/min, in the presence of (C) a crosslinking agent; (2) a polyolefin resin; and (3) a nucleant agent having an average particle diameter of from 0.1 ?m to less than 2.0 ?m. The polyolefin resin foam has a density, for example, of 0.2 g/cm2 or less.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 24, 2012
    Assignees: JSR Corporation, Nitto Denko Corporation
    Inventors: Kentarou Kanae, Norihiro Yamamoto, Takio Itou, Yasuyuki Tokunaga, Makoto Saitou
  • Patent number: 8097658
    Abstract: Fire-resistant, medium density molded polyurethane foams which may be removed from a mold in substantially shorter times than previously possible are produced by the process of the present invention. These reduced de-mold times are achieved by including a solid flame retardant composition in the polyurethane foam forming composition. This solid flame retardant composition includes a melamine coated ammonium polyphosphate and zinc borate.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 17, 2012
    Assignee: Bayer MaterialScience LLC
    Inventor: James W. Rosthauser
  • Publication number: 20120010312
    Abstract: The present invention relates to a polycarbonate comprising at least one phosphorus-containing group, to the use of the polycarbonate as flame retardant, to a process for producing a polyurethane by using this polycarbonate, and to a polyurethane obtain-able by this process.
    Type: Application
    Filed: May 19, 2011
    Publication date: January 12, 2012
    Applicant: BASF SE
    Inventors: Marco Balbo Block, Jens Ferbitz, Christoph Fleckenstein, Anna Cristadoro, Bernd Bruchmann, Klemens Massonne
  • Publication number: 20110303867
    Abstract: The present invention relates to poured-in place polyurethane foams and polyol premixes comprising 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd) and one or more additional co-blowing agents.
    Type: Application
    Filed: July 26, 2011
    Publication date: December 15, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Yiu Keung Ling, David J. Williams
  • Patent number: 8076385
    Abstract: A flame retardant aqueous liquid composition containing water, guanidine sulfamate, a citric acid compound including a metal salt of citric acid, and a water soluble polymer. A flame retardant polyurethane foam is produced by a process including the steps of providing a mixture of the above flame retardant aqueous liquid composition with a polyol and an isocyanate, and reacting the mixture in the presence of a catalyst.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: December 13, 2011
    Assignee: Nankyo Efnica Co., Ltd.
    Inventor: Chiaki Ohama
  • Patent number: 8067479
    Abstract: A microcellular polyurethane obtainable by reacting a polyisocyanate, a polyester formed from a dimer fatty acid and/or dimer fatty diol, and a chain extender. The foam is particularly suitable for use as a component of shoe soles.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: November 29, 2011
    Assignees: Croda International PLC, Uniqema B.V.
    Inventors: Paul Cameron, Eric Appelman
  • Patent number: 8067480
    Abstract: Process for producing porous polyisocyanate polyaddition products by reacting (a) isocyanates with (b) compounds which are reactive toward isocyanates in the presence of (f) solvent, wherein compounds having a functionality toward isocyanates of at least 6 and a molecular weight of at least 1000 g/mol are used as (b) compounds which are reactive toward isocyanates.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 29, 2011
    Assignee: BASF SE
    Inventors: Daniel Schmidt, Volker Schädler
  • Patent number: 8067476
    Abstract: Process for the preparation of foamed thermoplastic polyurethanes characterised in that the foaming of the thermoplastic polyurethane is carried out in the presence of thermally expandable microspheres.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 29, 2011
    Assignee: Huntsman International LLC
    Inventors: Dominicus Limerkens, Johan Van Dyck, Bart Van Edom, Rhona Watson
  • Patent number: 8053485
    Abstract: A polyurethane foam is disclosed and described. The polyurethane foam is formed by combining a first component comprising at least one polyol with a second component comprising at least one polyisocyanate. The ratio of the number of isocyanate equivalents in the second component to the number of hydroxyl equivalents in the second component is less than 1.0. The foam exhibits low levels of free diisocyanate monomer, thereby reducing the amount of hazardous, volatile organic compounds. As a result, the foam can be prepared and installed without the need for ventilation equipment, external sources of fresh air, and the like.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: November 8, 2011
    Assignee: Sika Technology AG
    Inventors: Hanna Lekovic, Frank Hoefflin, Michael Anderson, Trent Shidaker, Michael Connolly, Sheila Dubs, Jinhuang Wu
  • Patent number: 8053484
    Abstract: A polyurethane foam composition includes a polyol, a polyisocyanate, a catalyst, a foam stabilizer, a blowing agent and a fluorinated carbonate wherein the fluorinated carbonate is a compound represented by Formula 1: a compound represented by Formula 2: or a mixture thereof. Also disclosed is a polyurethane foam derived from the composition.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung Woo Hwang, Myung Dong Cho, Sang Ho Park, Kwang Hee Kim
  • Patent number: 8048935
    Abstract: An all-liquid foam-forming system contains: a first part (A) containing at least one liquid isocyanate or polyisocyanate; and a second part (B) containing: at least one liquid aromatic polyester polyol having an hydroxyl value of at least 110 mg KOH/gram and an average hydroxyl functionality of at least 2, at least two liquid halogenated flame retardants and water; the foam-forming system having an NCO/OH ratio of from about 0.9:1 to about 1.3:1; wherein the first and second parts are such that reaction therebetween forms a rigid polyurethane foam having a density of at least about 5 pcf and an ASTM E-84 Class 1 rating. Resultant polyurethane foams can be used to make articles, particularly for use in commercial decorative molding applications.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: November 1, 2011
    Assignee: Carpenter Co.
    Inventors: John Heraldo, Milen Kirilov
  • Patent number: 8026292
    Abstract: The present invention concerns a polycyanurate foam with a structural element A and either terminal amino groups and/or at least one of the following structural elements B, C, or D: wherein the foam has closed pores that contain carbon dioxide. This foam can be produced in that a substance is worked into the starting material for the polycyanurate that releases water or alcohol approximately at the start of polymerization either spontaneously or thermally or catalytically induced. The water/alcohol reacts with free cyanate groups under cleavage of CO2. The resulting amino groups can react further in the polymerization.
    Type: Grant
    Filed: August 24, 2008
    Date of Patent: September 27, 2011
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Siegfried Vieth, Monika Bauer
  • Patent number: 8017663
    Abstract: An asphaltic isocyanurate foam useful in roofing applications. Asphalt is liquified and mixed with a mixture of polyisocyanate. In a separate mixture, other chemicals, such as polyols, surfactant, catalyst, and blowing agent are combined. The mixtures are combined and reacted to form an asphaltic polyurethane foam.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: September 13, 2011
    Assignee: Devpat, LLC
    Inventors: George F. Thagard, III, Nicolae Achim
  • Publication number: 20110218261
    Abstract: Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing cis-1,1,1,4,4,4-hexafluoro-2-butene are disclosed. The foam-forming composition contains (a) an azeotropic or azeotrope-like mixture of cis-1,1,1,4,4,4-hexafluoro-2-butene with methyl formate, 1,1,1,3,3-pentafluorobutane, trans-1,2-dichloroethylene, pentane, isopentane, cyclopentane, HFC-245fa, or dimethoxymethane; and (b) an active hydrogen-containing compound having two or more active hydrogens. Also disclosed is a closed-cell polyurethane or polyisocyanurate polymer foam prepared from reaction of an effective amount of the foam-forming composition with a suitable polyisocyanate. Also disclosed is a process for producing a closed-cell polyurethane or polyisocyanurate polymer foam by reacting an effective amount of the foam-forming composition with a suitable polyisocyanate.
    Type: Application
    Filed: December 17, 2008
    Publication date: September 8, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Gary Loh, Joseph Anthony Creazzo
  • Patent number: 8003708
    Abstract: Process for making rigid polyurethane or urethane-modified polyisocyanurate foams at an isocyanate index of between 110 and 120 comprising the step of reacting an organic polyisocyanate composition with an isocyanate-reactive composition in the presence of a hydrocarbon as blowing agent wherein the isocyanate-reactive composition contains between 3 and 30 wt % of polyester polyols and between 20 and 50 wt % of polyether polyols derived from aromatic amines, the amounts being calculated on the basis of total isocyanate-reactive compound.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 23, 2011
    Assignee: Huntsman International LLC
    Inventor: Cristina Javarone
  • Publication number: 20110201705
    Abstract: A foamable composition for polyurethane foam is provided which advantageously improves heat insulating properties, a long-term stability, and a dimensional stability, of a polyurethane foam that is produced by using carbon dioxide as a blowing agent. Further, a polyurethane foam which has excellent heat insulating properties is provided by foaming and curing the foamable composition for polyurethane. In the production of the polyurethane foam in which carbon dioxide is used in the foaming, a polyol component is used which includes a phenolic resin polyol that is obtained by adding at least one alkylene oxide to a phenolic novolak resin, and an aromatic amine polyol that is obtained by adding at least one alkylene oxide to an aromatic diamine such that the total amount thereof is 60% or more by mass, based on the total polyol component.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Applicant: Asahi Organic Chemicals Industry Co., Ltd.
    Inventor: Shuji Okumura
  • Patent number: 7985779
    Abstract: The present invention relates to a novel method for manufacturing a cellular elastomeric polyurethane foam ball. The product polyurethane foam ball may be used as a core for a tennis ball which meets ITF specifications for tennis balls, including weight, diameter, bound, forward deformation and return deformation.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: July 26, 2011
    Assignee: Invista North America S.A.R.L.
    Inventor: Johannes C. Vleghert
  • Patent number: 7985780
    Abstract: A cylindrical molding based on cellular polyurethane elastomers having a density according to DIN EN ISO 845 of from 300 to 900 kg/m3, a tensile strength according to DIN EN ISO 1798 of ?2.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: July 26, 2011
    Assignee: BASF SE
    Inventors: Elke Marten, Andreas Heidemann, Markus Schütte, Michael Strauβ, Heinrich Bollmann, Ralf Hansen
  • Patent number: 7964653
    Abstract: A polyol composition contains a polyaminochlorophenylmethane mixture (A) and a polyol (B), in which the component (A) is uniformly dissolved in the component (A) in a weight ratio of 30/70 to 60/40. The component (A) includes 50 to 70% by weight of a specific binuclear polyaminochlorophenylmethane compound, 20 to 40% by weight of a specific trinuclear polyaminochlorophenylmethane compound and 5 to 10% by weight of a specific tetranuclear or higher polyaminochlorophenylmethane compound. The polyol composition exhibits excellent miscibility and dissolution stability, is liquid and enables molding of a foamed article for abrasive in a simple two-component mixing casting machine. According to the present invention, water serving as a foaming agent can be added to the polyol composition containing MBOCA, and the composition for a two-component curable abrasive foam can be held to a temperature equal to or lower than the boiling point of water, thus avoiding water from evaporating upon molding.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: June 21, 2011
    Assignee: DIC Corporation
    Inventors: Fumio Yamamoto, Katsuhide Nishimura
  • Publication number: 20110124752
    Abstract: The object of the invention is a method for the production of foams on silicon basis from polymer mixtures (A) containing silicon, wherein at least one compound (V) is used that contributes to the formation of the polymer network, and which carries at least one alkoxy silyl group of the general formula [1a], [1b], or [1c] ?Si—O—(R1)(R2)(R3) [1a], ?Si(R5)—O—C(R1)(R2)(R3) [1b], ?Si—O—C(O)—U [1c], from which upon curing of the polymer mixtures (A) at least one molecule (XY) is split which is gaseous during processing and causes the formation of foam in the polymer mixture (A), and a catalyst (K) selected from a Brönstedt acid, Brönstedt base, Lewis acid, and Lewis base, where R1, R2, R3, R5, and U have the meanings as stated in claim 1, and where polymer mixtures (A) which form SiO2 during the cross-linking process are excluded.
    Type: Application
    Filed: July 14, 2009
    Publication date: May 26, 2011
    Applicant: WACKER CHEMIE AG
    Inventors: Christian Peschko, Johann Mueller
  • Patent number: 7943679
    Abstract: The present invention is to a molded rigid polyurethane foam for application in appliance, having a reduced thermal conductivity at densities between 33 and 38 kg/m3 and a process for the production of such foams. The molded rigid polyurethane foam have a ratio of applied foam density (kg/m3) to lambda (mW/mK), measured at 10° C., 24 hours after foam production from 1.65 and to 2.15 and are obtained by the process of injecting into a closed mold cavity under reduced pressure a reaction mixture at a packing factor of 1.1 to 1.9 and the reaction mixture comprises: A) an organic polyisocyanate; B) a physical blowing agent, C) a polyol composition containing at least one polyol with a functionality of 3 or greater and a hydroxyl number between 200 and 800 and a water content of 0 to 2.5 weight percent of the total polyol composition; D) catalyst and E) auxiliary substances and/or additives.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 17, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Hans A. G. De Vos, Vanni Parenti
  • Patent number: 7897652
    Abstract: A polyurethane foam composition comprising at least: at least one polyether polyol having an average molecular weight from 100-20,000; an aromatic polyisocyanate; a tackifying resin; a surfactant; a blowing agent, and a catalyst. A method for preparation of a polyurethane foam composition useful in shock absorption, is also disclosed.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: March 1, 2011
    Assignee: Orycle Applications Ltd.
    Inventor: Nehemya Re'em
  • Patent number: 7893124
    Abstract: The invention relates to a process for producing rigid polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of c) blowing agents wherein a mixture of b1) a polyether alcohol which has a functionality of 4 and a hydroxyl number of from 380 to 450 mg KOH/g and a viscosity of greater than 12 000 mPa·s and can be prepared by addition of ethylene oxide and/or propylene oxide onto TDA, b2) a polyether alcohol which has a functionality of from 5 to 7.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: February 22, 2011
    Assignee: BASF Aktiengesellscaft
    Inventors: Andreas Emge, Holger Seifert, Stefan Dinsch, Johann Klassen, Christian Stelling
  • Publication number: 20110034574
    Abstract: Silicone-containing polyurethane foams containing isocyanurate linkages are prepared from hyperbranched siloxanes having isocyanate groups or from hyperbranched siloxanes having isocyanate reactive groups and a polyisocyanate, the isocyanate groups being present in stoichiometric excess, in the presence of a trimerization catalyst. The foams are preparable at low densities and exhibit good flammability characteristics.
    Type: Application
    Filed: April 21, 2009
    Publication date: February 10, 2011
    Applicant: WACKER CHEMIE AG
    Inventor: Jens Cremer
  • Patent number: 7855240
    Abstract: The subject invention provides an open-celled polyurethane foam formed from a polyurethane spray foam system that mixes a formulated resin component with an isocyanate component. The resultant open-celled polyurethane spray foam has a density of about ½ pound per cubic foot. The resin component includes water as a blowing agent, a first aliphatic, amine-initiated polyol having a number-average molecular weight of from 150 to 500 and having tetra-functionality, and a second polyol having terminal hydroxyl groups and having a number-average molecular weight of from 3500 to 8000. A curing component having at least one primary amine group and having a number-average molecular weight of from 150 to 5000 is also included in the resin component. The spray foam system reacts a) the resin component and b) the isocyanate component in a volumetric ratio of a) to b) of from 1:1.2 to 1:5 and having an isocyanate index of from 15 to 70.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: December 21, 2010
    Assignee: BASF Corporation
    Inventors: Katrina Schmidt, Chris Janzen, Greg Gardin, Chris Lacarte
  • Patent number: 7838568
    Abstract: A method of manufacturing a polyisocyanurate foam insulation board, the method comprising contacting a stream of reactants that comprise an isocyanate-reactive compound with a stream of reactants that include an isocyanate compound to form a reaction product, where the step of contacting takes place in the presence of a blowing agent and a low-boiling inert gas, and where the amount of low-boiling inert gas present at the time of the contacting is sufficient to result in frothing of the reaction product.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: November 23, 2010
    Inventors: John B. Letts, Wayne E. Laughlin, Bruce M. Miller
  • Publication number: 20100286297
    Abstract: The present invention relates to a process for producing integral polyurethane foams, in which a) organic polyisocyanates are mixed with b) relatively high molecular weight compounds having at least two reactive hydrogen atoms, c) blowing agents, d) dialkyl cyclohexanedicarboxylates and, if appropriate, e) chain extenders and/or crosslinkers, f) catalysts and g) other auxiliaries and/or additives to form a reaction mixture, the reaction mixture is introduced into a mold and allowed to react to form an integral polyurethane foam. The present invention further relates to integral polyurethane foams comprising dialkyl cyclohexanedicarboxylates, the use of such foams in the interior of road vehicles or as shoe soles and the use of dialkyl cyclohexanedicarboxylates as internal mold release agents in the production of integral polyurethane foams.
    Type: Application
    Filed: November 25, 2008
    Publication date: November 11, 2010
    Applicant: BASF SE
    Inventors: Marco Ortalda, Tony Spitilli
  • Patent number: 7825166
    Abstract: To provide a flexible polyurethane foam having good vibration characteristics and suitable particularly for a seat for an automobile. A flexible polyurethane foam obtained by reacting a high molecular weight polyoxyalkylene polyol or a polymer-dispersed polyol containing fine polymer particles in the high molecular weight polyoxyalkylene polyol, with a polyisocyanate compound, in the presence of a catalyst, a blowing agent and a foam stabilizer, characterized in that an amino-modified silicone (F) having a silicon atom and a nitrogen atom in its molecule is used in an amount of from 0.00001 to 1 part by mass per 100 parts by mass of all active hydrogen compounds.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: November 2, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Takayuki Sasaki, Takashi Ito, Yoshinori Toyota, Naohiro Kumagai
  • Patent number: 7795322
    Abstract: A prepolymer having an NCO content of less than 10%, based on the reaction of (a) diisocyanate with (b) polyether alcohol, the (b) polyether alcohol comprising (b1) and (b2) and/or (b3) with the following meanings for (b1), (b2) and (b3): (b1) polytetrahydrofuran having a molecular weight of from 1800 to 2100 g/mol and (b2) polyether alcohol having a molecular weight of from 500 to 7000 g/mol, based on ethylene oxide and/or propylene oxide, and/or (b3) polytetrahydrofuran having a molecular weight of from 800 to 1200 g/mol.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: September 14, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Elke Marten, Elke Weigelt, Anand G. Huprikar, Michael Strauβ
  • Publication number: 20100227151
    Abstract: A method of making a polyurethane foam from a mixture of isocyanate modified polyol and foam-forming ingredients, wherein the isocyanate modified polyol is made by reacting at least one polyol with at least one multifunctional isocyanate, wherein the isocyanate modified polyol is a non-foamed polyol polymer having available OH groups, wherein the foam forming ingredients comprise at least a multifunctional isocyanate and a foaming agent, preferably water, and characterised in that (i) the at least one polyol from which the isocyanate modified polyol is made comprises at least one lipid-based polyol which has undergone reaction with the isocyanate in the presence of a PU gelation catalyst, and/or (ii) the isocyanate modified polyol is mixed with a lipid-based polyol prior to, or at the same time as, foaming.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 9, 2010
    Inventors: Jeffrey Philip Rowlands, Frans Paap
  • Patent number: 7790778
    Abstract: Isocyanate-terminated prepolymer having an NCO-value of 5-30% by weight and being the reaction product of an excessive amount of diphenylmethane diisocyanate comprising at least 80% by weight of 4,4?-diphenylmethane diisocyanate and a polyoxyethylene-polyoxypropylene polyol having an average molecular weight of 2000-10000, an average nominal hydroxy functionality of 2-6, an oxyethylene content of 21-45% by weight and a structure of the type -PO-PO/EO-EO wherein the PO block comprises 60-90% of the PO and the ratio of tipped EO:random is 3:1 to 1:3, and a process for preparing a flexible foam by reacting in a mould and at an index of 70-120, the above prepolymer or a composition comprising this prepolymer and b1) a polyoxyethylene-polyoxypropylene polyol, having an average nominal hydroxy functionality of 2-6, and a oxyethylene (EO) content of more than 50% by weight; and optionally b2) a polyoxyethylene-polyoxypropylene polyol, having an average nominal hydroxy functionality of 2-6, an EO content of between
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: September 7, 2010
    Assignee: Huntsman International LLC
    Inventors: Koon Yeow Chan, Eric Huygens, Herman Eugene Germain Moureau, Anja Vanhalle, Jianming Yu
  • Patent number: 7776934
    Abstract: Foamable one-part polyurethane compositions contain a high functionality quasi-prepolymer and a hydrated salt. The foamable compositions are capable of expanding to 1000% or more of their original volume to form a low density, stable foam. The compositions are particularly useful as foam-in-place thermal or sound insulation materials, especially in vehicle applications.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: August 17, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Huzeir Lekovic, Ali El-Khatib
  • Patent number: 7759403
    Abstract: To provide a flexible polyurethane foam having good vibration characteristics and suitable particularly for a seat for an automobile. A flexible polyurethane foam obtainable by reacting a polyol composition with a polyisocyanate compound in the presence of a catalyst, a blowing agent and a foam stabilizer, characterized in that the polyol composition comprises a high molecular weight polyoxyalkylene polyol (A1) and a polymer-dispersed polyol (A2) containing fine polymer particles in the high molecular weight polyoxyalkylene polyol (A1), and at least part of the fine polymer particles contained in the polymer-dispersed polyol (A2) are fine polymer particles having silicon atoms.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: July 20, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Takayuki Sasaki, Takashi Ito, Chitoshi Suzuki, Tomohiro Hayashi
  • Patent number: 7750058
    Abstract: The present invention is directed to a process for preparing water-blown rigid polyurethane foams having at least an 80% closed-cell content which involves reacting a) at least one polyol mixture which is composed of (i) at least one polymer polyol; (ii) at least one polyol having a hydroxyl value within the range of from about 200 to about 800; and (iii) optionally, at least one polyol having a hydroxyl value within the range of from about 25 to about 115; with b) at least one polymeric isocyanate and/or a prepolymer thereof; in the presence of c) optionally, at least one catalyst; d) water; and e) optionally, at least one additive or auxiliary agent. The present invention is also directed to the closed-cell water blown rigid polyurethane foams produced by the process of the present invention. The invention is further directed to a polyurethane-foam forming mixture which is used to produce the water-blown rigid polyurethane foams of the present invention.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 6, 2010
    Assignee: Bayer MaterialScience LLC
    Inventors: Karl W. Haider, Neil H. Nodelman, John P. Forsythe, Brian R. Suddaby
  • Patent number: 7737192
    Abstract: A flexible polyurethane foam is produced by blending a polyurethane raw material containing a polyol, a polyisocyanate, a blowing agent, and a catalyst with an inorganic compound hydrate having a specific gravity of 1.5 to 4.0 and reacting the above polyurethane raw material to effect foaming and curing. The inorganic compound hydrate is preferably an iron sulfate hydrate, a calcium sulfate hydrate, or a magnesium sulfate hydrate. The above inorganic compound hydrate preferably has decomposition temperature of from 100 to 170° C. Then, an increase in exothermic temperature owing to the above foaming and curing is diminished by evaporation of water formed through decomposition of the above inorganic compound hydrate.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: June 15, 2010
    Assignee: INOAC Corporation
    Inventor: Tadashi Yano
  • Publication number: 20100124652
    Abstract: Microcellular polyurethane flexible foams having densities no greater than 0.3 g/cc which are suitable for use as lightweight shoe sole components are produced with carbon dioxide in an amount such that the polyurethane-forming mixture has a free rise density of from about 0.03 to about 0.3 g/cc. At least a portion of that carbon dioxide is dissolved as a gas into one or both of the reaction components. The amount of dissolved carbon dioxide must be such that the froth density of the isocyanate and/or isocyanate-reactive component(s) in which the carbon dioxide is dissolved will be from about 0.1 to about 0.8 g/cc. Additional carbon dioxide may be formed by the reaction of water and isocyanate during the polyurethane-forming reaction but the total amount of CO2 present should be controlled to ensure that the polyurethane-forming mixture has a free rise density of from about 0.03 to 0.3 g/cc.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 20, 2010
    Applicant: Bayer MaterialScience LLC
    Inventors: Usama E. Younes, David M. Baily, Charles R. Carpenter
  • Patent number: 7718102
    Abstract: Foam for making pads and belts with controlled, reproducible microcellular structure and method of making such foam in a fast and efficient manner. Under constant pressure and temperature, a prepolymer is mixed with the nucleation surfactant in a tank in the presence of a frothing agent metered into the tank by way of a dip tube or sparge. The nitrogen gas is sheared into small bubbles and is drawn off from the headspace of the tank creating a continuous flow of nitrogen. The pressure of the tank may vary from any absolute pressure down to near complete vacuum, thereby all but eliminating the pressure requirement. The froth of the present invention has a more consistent cell structure and increased cell count.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: May 18, 2010
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Brian Lombardo, Jeffrey P. Otto
  • Patent number: 7714030
    Abstract: Polyurethane foams are made and attached to a substrate having an open cavity, but reacting a polyisocyanate component and a polyol component in the presence of a blowing agent. The polyisocyanate component includes at least one isocyanate-terminated, oxazolidone-containing intermediate. This process allows for very fast curing, good quality, adherent foams to be produced on, for example, vehicle parts and assemblies, for acoustical or vibration dampening and for structural reinforcement.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: May 11, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Huzeir Lekovic, Frank V. Billotto
  • Publication number: 20100113635
    Abstract: A polyurethane foam composition includes a polyol, a polyisocyanate, a catalyst, a foam stabilizer, a blowing agent and a fluorinated carbonate wherein the fluorinated carbonate is a compound represented by Formula 1: a compound represented by Formula 2: or a mixture thereof. Also disclosed is a polyurethane foam derived from the composition.
    Type: Application
    Filed: August 24, 2009
    Publication date: May 6, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Sung Woo HWANG, Myung Dong CHO, Sang Ho PARK, Kwang Hee KIM
  • Patent number: 7691913
    Abstract: Rigid polyurethane foams are made using a polyol component that includes toluene diamine-initiated polyols containing specified levels of oxyethylene groups. Foams made from these polyols have low k-factors and excellent demold expansion values.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: April 6, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Stanley E. Moore, Charles A. Martin, II, James P. Cosman, Geoffrey H. Dean, Christiaan J. Kind
  • Patent number: 7678840
    Abstract: This invention relates to reactive systems for the production of cavity filling polyurethane foams for NVH (noise vibration and harshness) application areas in which the system exhibits reduced isocyanate emissions. These foams comprises a polyisocyanate comprising a polymethylene poly(phenylisocyanate).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: March 16, 2010
    Assignee: Bayer MaterialScience LLC
    Inventors: Jack W. Jenny, David A. Radovich
  • Patent number: 7674840
    Abstract: Isocyanate-free foamable mixtures suitable for filling construction voids and for other uses, comprise isocyanate-free, alkoxysilane-terminated prepolymers (A) which have a silane end group of the formula [1], where X and Y are each an oxygen atom, an N—R3 group or a sulfur atom, R1 is an alkyl, cycloalkyl, alkenyl or aryl radical having 1-10 carbon atoms, R2 is an alkyl radical having 1-2 carbon atoms or an ?-oxyalkylalkyl radical having a total of 2-10 carbon atoms, R3 is a hydrogen atom, an alkyl, alkenyl or aryl radical having 1-10 carbon atoms or a —CH2—SiR1z(OR2)3-z group, and z is 0 or 1, with the proviso that at least one of the two groups X and Y is an NH function, and (B) blowing agents.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: March 9, 2010
    Assignee: Wacker Chemie AG
    Inventors: Volker Stanjek, Wolfram Schindler, Bernd Pachaly, Andreas Bauer
  • Patent number: 7671104
    Abstract: The invention relates to a process for the production of water-blown, finely cellular rigid foams containing urethane groups and/or isocyanurate groups by the reaction of polyisocyanates with a polyol component in the form of an emulsion. The invention also relates to open-cell polyurethane foams which are foamable in the mould.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: March 2, 2010
    Assignee: Bayer MaterialScience AG
    Inventors: Torsten Heinemann, Walter Klän
  • Patent number: 7670501
    Abstract: Microcellular polyurethane flexible foams having densities no greater than 0.3 g/cc which are suitable for use as lightweight shoe sole components are produced with carbon dioxide in an amount such that the polyurethane-forming mixture has a free rise density of from about 0.03 to about 0.3 g/cc. At least a portion of that carbon dioxide is dissolved as a gas into one or both of the reaction components. The amount of dissolved carbon dioxide must be such that the froth density of the isocyanate and/or isocyanate-reactive component(s) in which the carbon dioxide is dissolved will be from about 0.1 to about 0.8 g/cc. Additional carbon dioxide may be formed by the reaction of water and isocyanate during the polyurethane-forming reaction but the total amount of CO2 present should be controlled to ensure that the polyurethane-forming mixture has a free rise density of from about 0.03 to 0.3 g/cc.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 2, 2010
    Assignee: Bayer MaterialScience LLC
    Inventors: Usama E. Younes, David M. Baily, Charles R. Carpenter