Ingredient Contains A Carbon Atom Double Bonded To Oxygen, E.g., Carboxylic Acid, Etc. Patents (Class 521/130)
  • Patent number: 7638560
    Abstract: A foamed starch-polyester graft copolymer and chemically modified starch-polyester graft copolymer composition comprising a chemically modified starch or chemically modified starch-nanoclay product is described. The composition can be produced continuously in a twin-screw co-rotating extruder in the presence of a blowing agent. The foams are biodegradable.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: December 29, 2009
    Assignee: Board of Trustees of Michigan State University
    Inventors: Ramani Narayan, Yogaraj Nabar
  • Patent number: 7635723
    Abstract: A method for producing a rigid, closed-cell polyurethane foam having a free-rise density of from about 1.3 lbs/ft.3 to about 4 lbs/ft.3 and exhibiting a shrinkage of less than 10%, comprises mixing together an isocyanate, at least one alkyl alkanoate blowing agent and at least one polyol having a hydroxyl number of from about 150 to about 800 and being selected from the group consisting of polyalkoxylated amines, polyalkoxylated ethers, and polyester polyols, to form a reaction mixture that is curable to produce such foam.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: December 22, 2009
    Assignee: Foam Supplies, Inc.
    Inventors: Timothy T. Kalinowski, David G. Keske, Victor Matimba, David L. Modray, Mark Schulte
  • Patent number: 7635724
    Abstract: To provide a flexible polyurethane foam having good vibration characteristics and suitable particularly for a seat for an automobile. A flexible polyurethane foam obtained by reacting a polyol composition with a polyisocyanate compound in the presence of a catalyst, a blowing agent and a foam stabilizer, characterized in that the polyol composition comprises a high molecular weight polyoxyalkylene polyol (A) and a polymer-dispersed polyol (C) containing fine polymer particles in a high molecular weight polyoxyalkylene polyol (B), and at least part of the fine polymer particles are fine polymer particles obtained by polymerizing a monomer containing a fluorinated acrylate or a fluorinated methacrylate.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: December 22, 2009
    Assignee: Asahi Glass Company, Limited
    Inventors: Takayuki Sasaki, Takashi Ito, Chitoshi Suzuki, Tomohiro Hayashi
  • Patent number: 7619014
    Abstract: A rigid polyurethane foam having lose density without an increased k-factor can be produced by adding small amounts of butyl alcohol to a polyurethane composition containing an isocyanate, at least one polyol, a catalyst and a gaseous blowing agent.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: November 17, 2009
    Assignee: Bayer MaterialScience LLC
    Inventors: Steven L. Schilling, Edward E. Ball
  • Publication number: 20090270522
    Abstract: Provided are foam blowing agents comprising one or more chlorofluoroolefins selected from 1,2-dichloro-1,2-difluoroethene, 3,3-dichloro-3-fluoropropene, 2-chloro-1,1,1,3,4,4,4-heptafluoro-2-butene, and 2-chloro-1,1,1,4,4,4-hexafluoro-2-butene, as well as foams produced therefrom.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 29, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Rajiv R. Singh, Ian Shankland, James M. Bowman, David J. Williams
  • Patent number: 7601762
    Abstract: The present invention provides a rigid polyurethane foam comprising the reaction product, at an isocyanate index of from about 90 to about 400, of a polyisocyanate and a polyol component comprising, about 20 wt. % to about 80 wt. %, based on the weight of the polyol component, of a double metal cyanide (DMC)-catalyzed polyether polyol having a number average molecular weight of greater than about 1,000 Daltons (Da), about 80 wt. % to about 20 wt. %, based on the weight of the polyol component, of a sucrose-based polyol having a functionality of from about 2.5 to about 6 and a number average molecular weight of from about 350 Da to less than about 1,000 Da, and about 0 wt. % to about 40 wt. %, based on the weight of the polyol component, of a low molecular weight organic compound having a number average molecular weight of less than about 600 Da in the presence of water, polyvinylchloride (PVC) particles having a diameter of from about 0.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: October 13, 2009
    Assignee: Bayer MaterialScience LLC
    Inventors: Jan L. Clatty, Michael T. Wellman, Michael A. Masciantonio
  • Patent number: 7601761
    Abstract: The present invention provides a rigid polyurethane foam made from the reaction product, at an isocyanate index of from about 90 to about 400, of a polyisocyanate, and a polyol component containing about 20 to about 80 wt. %, based on the weight of the polyol component, of a double metal cyanide (DMC)-catalyzed polyether polyol having a number average molecular weight of greater than about 1000 Daltons (Da), about 80 to about 20 wt. %, based on the weight of the polyol component, of a sucrose-based polyol having a functionality of from about 2.5 to about 6 and a molecular weight of from about 350 to less than about 1,000, and about 0 to about 40 wt. %, based on the weight of the polyol component, of a low molecular weight organic compound having a number average molecular weight of less than about 600 Da, in the presence of water, polyvinylchloride (PVC) particles having a diameter of from about 0.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: October 13, 2009
    Assignee: Bayer MaterialScience LLC
    Inventors: Jan L. Clatty, Timothy R. Whelan, Susanne Whelan, legal representative, Michael T. Wellman, John W. Liddle, Marie W. Urick
  • Patent number: 7572837
    Abstract: Flexible polyurethane foams are produced by reacting a polyol and a polyisocyanate in the presence of a catalysts and other auxiliary agents, the process characterized in that a tin-based catalyst is not used. One process includes reacting a polyether polyol containing at least 5% by weight of an oxyethylene group in the chain and having a terminal secondary OH group, a toluene diisocyanate and/or a derivative, and one or more specified imidazole compounds, the process conducted in the absence of a tin-based catalyst.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: August 11, 2009
    Assignee: TOSOH Corporation
    Inventors: Hiroyuki Kometani, Yutaka Tamano
  • Patent number: 7423069
    Abstract: Flame retardant flexible polyurethane foam compositions, methods of flame retarding flexible polyurethane foam compositions, articles made therefrom and flame retardants that comprise blends of tetrahalophthalate esters and phosphorus-containing flame retardant having at least about 5 wt. % phosphorus additives. The combined weight of the tetrahalophthalate ester and the phosphorus-containing flame retardant comprises about 5 to about 20% by weight of the flexible polyurethane foam compositions or reaction mixtures. The ratio of the tetrahalophthalate ester to the phosphorus-containing flame retardant is from about 80:20 to about 20:80 percent by weight and preferably from about 60:40 to about 40:60 percent by weight.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: September 9, 2008
    Assignee: Crompton Corporation
    Inventors: David Buszard, Matthew D. Phillips, Richard S. Rose, Stephen B. Falloon
  • Patent number: 7393879
    Abstract: A method for producing a novel silicone foam by reaction of a polyisocyanate with a silicone oligomer having a plurality of functional end groups with active hydrogens, optionally in the presence of fire-retardants, under foam forming conditions which creates a new silicone foam for use in items such as residential upholstered furniture industry, seat cushions and bedding etc., and specifically for use in applications that require, high resilience and fire-retardant properties such as aircraft and surface transportation seat cushioning, military and shipboard mattresses etc.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 1, 2008
    Assignee: Chestnut Ridge Foam, Inc.
    Inventors: Jiri E. Kresta, David Munoz Rojas, Ramon Moliner, Chandrasiri Jayakody, Dan Myers
  • Patent number: 7388037
    Abstract: A flexible polyurethane foam whereby exceedingly low resilience can be obtained without using a plasticizer and the hardness change due to a temperature change is little; and a process for its production, are provided. The flexible polyurethane foam is characterized by having a core resilience of 30% or lower and a glass transition point within a range of from ?80° C. to ?60° C. The process for producing a flexible polyurethane foam comprises reacting a polyol with a polyisocyanate compound in the presence of a catalyst, a foam stabilizer, and a blowing agent, and is characterized by using as the polyol a polyol(l) having a hydroxyl value of from 5 to 15 mgKOH/g.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: June 17, 2008
    Assignee: Asahi Glass Company, Limited
    Inventors: Takayuki Sasaki, Yuuji Kimura, Katsuji Kuribayashi
  • Patent number: 7388036
    Abstract: A novel flexible polyurethane foam having good vibration characteristics and being excellent in occupant posture stability, is provided. A flexible polyurethane foam obtainable by reacting a high molecular weight polyoxyalkylene polyol or a polymer-dispersed polyol containing fine polymer particles in the high molecular weight polyoxyalkylene polyol, with a polyisocyanate compound in the presence of a catalyst, a blowing agent and a foam stabilizer, characterized in that as at least a part of the foam stabilizer, the following fluorinated compound (F) is used in an amount of from 0.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: June 17, 2008
    Assignees: Asahi Glass Company, Limited, NHK Spring Co., Ltd.
    Inventors: Takayuki Sasaki, Yoshinori Toyota, Akio Horie, Takashi Ito, Satoru Hashimoto, Kunio Asobe
  • Publication number: 20080125504
    Abstract: A multicomponent polyurethane/vinyl ester hybrid foam system for forming a gradient foam with soft and rigid foam regions, with a polyol component (A), a polyisocyanate component (B), and a component (C), which contains a catalyst for the polymerization of the vinyl monomer, with the polyol component (A) containing, as vinyl monomer, a mixture of vinyl esters of at least one polymerizable hydroxyvinyl ester and at least one branched, at least trifunctional, polymerizable vinyl ester, and the polyisocyanate component (B) containing a thermally activatable free radical-forming agent as catalyst for the polymerization of the vinyl monomers, with the proviso that the proportion by weight of the vinyl ester mixture is greater than the proportion by weight of the at least one polyol as well as the proportion by weight of the at least one polyisocyanate.
    Type: Application
    Filed: November 28, 2007
    Publication date: May 29, 2008
    Inventor: Arne Reinheimer
  • Patent number: 7378454
    Abstract: A polyurethane composition containing solid beads dispersed therein, is formed of a microcellular polyurethane foam, and the composition has a storage modulus of elasticity at 40° C. of 270 MPa or more as measured by means of a dynamic elasticity measuring device. Another polyurethane composition of this invention contains solid beads dispersed therein, that are capable of swelling with or are soluble in an aqueous medium. The former composition has excellent flattening capability, and the latter composition can provide a polished surface which combines good flatness and good uniformity and can also reduce scratches on the surface.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: May 27, 2008
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Takashi Masui, Masahiko Nakamori, Takatoshi Yamada, Koichi Ono, Kazuyuki Ogawa, Atsushi Kazuno, Hiroshi Seyanagi
  • Patent number: 7338983
    Abstract: A method for producing a cured, low-density polyurethane foam, the method comprises frothing a reactive polyurethane-forming composition comprising an isocyanate-containing component, an active hydrogen-containing component reactive with the isocyanate-containing component, a blowing agent, a surfactant, and catalyst system, wherein the catalyst system provides for a delayed curing of the foam; casting the frothed reactive polyurethane-forming composition onto a first carrier; placing a second carrier on a side of the cast foam opposite the first carrier; blowing the froth with the second carrier in place; and curing the blown froth so as to provide a polyurethane foam layer having a density of about 50 to about 400 kg/m3 and a thickness of about 0.3 to about 13 mm. The foams are useful as sealing members.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: March 4, 2008
    Assignee: World Properties, Inc.
    Inventors: Scott S. Simpson, Tadashi Sato
  • Patent number: 7300961
    Abstract: The present invention relates to polyol compositions which can be used to produce dimensionally stable, low density water-blown rigid foams which have acceptable compressive strengths and acceptable k-factors. In one embodiment of the present invention, the polyol compositions are composed of at least one aromatic amine-initiated polyether polyol and at least one polyether polyol having a functionality greater than or equal to 2.5 in which at least 50% by weight of the polyol composition is aromatic amine-initiated polyether polyol and in which no more than 50% by weight of the polyol composition is polyether polyol having a functionality greater than or equal to 2.5.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: November 27, 2007
    Assignee: Bayer MaterialScience LLC
    Inventors: Karl W. Haider, David D. Steppan, Michael E. McGregor, Kerry A. Ingold, Vincent M. Mautino, Michael A. Dobransky
  • Patent number: 7285577
    Abstract: A method to produce a rigid polyurethane foam includes emulsifying a nucleating agent by mixing the nucleating agent with a polyol and a foam stabilizer, preparing a polyol mixture by mixing water, a catalyst, and a blowing agent at one of: before the emulsifying, during the emulsifying and after the emulsifying, and reacting the polyol mixture with a polyisocyanate.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: October 23, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-jo Suck, Bong-ku Kim, Jang-su An, Hyo-seob Kim, Dae-sung Yang, Seong-ho Ahn, Hong-gi Kim, Suk-jo Lee, Jeong-hon Kim
  • Patent number: 7262227
    Abstract: The present invention relates to a process for producing a synthetic resin foam which comprises reacting at least one polyol with at least one polyisocyanate compound in the presence of an organic blowing agent, wherein the organic blowing agent is a blowing agent for synthetic resin foams which is characterized by being a mixture comprising 1,1,1,3,3-pentafluorobutane (HFC-365mfc) and at least one halogen-containing compound and optionally containing at least one member selected from the group consisting of glycol compounds and amide compounds. Also provided are: a premix comprising the blowing agent and a polyol mixture; and a process for producing a synthetic resin foam from these.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: August 28, 2007
    Assignee: Daikin Industries, Ltd.
    Inventors: Takashi Shibanuma, Noriaki Shibata
  • Patent number: 7247658
    Abstract: Surprisingly effective additive formulations for the reduction of highly undesirable yellowing or other discoloration of white, uncolored, polyurethane foam articles are provided. White polyurethane foam exhibits a susceptibility to yellowing and discoloration to a great extent, particularly in relatively short periods of time, than other types of polymeric articles. The inventive additives impart excellent low-discoloration properties over appreciable amounts of time of regular exposure to harmful elements, thereby according the pertinent industry a manner of providing white polyurethane foams for longer periods of time. Methods of producing such reliably white-colored polyurethane foams are also provided.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: July 24, 2007
    Assignee: Milliken & Company
    Inventors: Mark E. Ragsdale, Philip T. Radford
  • Patent number: 7238730
    Abstract: The subject invention provides a viscoelastic polyurethane foam being flame retardant and having a density of greater than two and a half pounds per cubic foot that comprises a reaction product of an isocyanate component, an isocyanate-reactive blend, and a chain extender. The isocyanate-reactive blend includes a first isocyanate-reactive component and a second isocyanate-reactive component. The first isocyanate-reactive component includes at least 60 parts by weight of ethylene oxide (EO) based on 100 parts by weight of the first isocyanate-reactive component and the second isocyanate-reactive component includes at most 30 parts by weight of EO based on 100 parts by weight of the second isocyanate-reactive component. The chain extender is reactive with the isocyanate component and has a backbone chain with from two to eight carbon atoms and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the foam.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 3, 2007
    Assignee: BASF Corporation
    Inventors: Wassana Apichatachutapan, Raymond Neff, James Mullins, Theodore M. Smiecinski, Thomas B. Lee
  • Patent number: 7230036
    Abstract: A polyurethane and/or polyisocyanurate foam is made using expandable microspheres which encapsulate a primary blowing agent. By expanding during the foam making process, the microspheres function as a blowing agent. The foam preferably has at least 10% by weight expandable micro spheres which encapsulate a non-halogenated hydrocarbon chemical or a non-halogenated hydrocarbon chemical blend and less than 2% by weight of any non-encapsulated blowing agents.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: June 12, 2007
    Assignee: IP Rights, LLC
    Inventors: Sammie J. (Joey) Glorioso, Jr., James H. Burgess, Jiansheng Tang
  • Patent number: 7223801
    Abstract: A composition and method for protecting pipeline joints is disclosed. A mold covers the exposed pipeline joint. A reaction composition including a polyol, an isocyanate, and an ester, preferably 2,2,4-trimethyl-1,2-pentanediol diisobutyrate, is added to the mold and allowed to react to form a polymer.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: May 29, 2007
    Assignee: Baysystems North America LLC
    Inventor: Scott A Brown
  • Patent number: 7202284
    Abstract: Process for the preparation of foamed thermoplastic polyurethanes characterized in that the foaming of the thermoplastic polyurethane is carried out in the presence of thermally expandable microspheres.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: April 10, 2007
    Assignee: Huntsman International LLC
    Inventors: Dominicus Limerkens, Johan Van Dijck, Bart Van Edom, Rhona Watson
  • Patent number: 7199168
    Abstract: The present invention relates to a process for the production of a cellular composite, and to the resultant cellular composites. This process comprising (A) preparing a mixture of a polyisocyanate, water, and, optionally, one or more additives; (B) adding this mixture under low shear mixing to inorganic hollow microspheres; (C) completely filling a mold with the mixture; and (D) heating the mold containing the mixture to a temperature of from 100 to 280° C., thereby forming the composite.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: April 3, 2007
    Assignee: Bayer MaterialScience LLC
    Inventors: Kieth G. Spitler, David D. Steppan, Howard S. Duff
  • Patent number: 7195726
    Abstract: A method for preparing a molded polyurethane foam article using an internal mold release composition is provided. More specifically, a method using an IMR agent and an IMR-enhancer compound to prepare a molded polyurethane foam article is provided. The method comprises (a) forming a polyurethane-forming mixture by mixing (i) a fatty acid condensation product, (ii) an IMR-enhancer compound, (iii) an isocyanate, (iv) a polyol, (v) a catalyst, and (vi) a blowing agent; (b) filling a mold with the polyurethane-forming mixture; (c) forming a molded foam article; and (d) removing the molded foam article from the mold. The IMR-enhancer compound is any liquid petroleum product within the viscosity range of products called oils.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: March 27, 2007
    Assignee: Dow Global Technologies Inc.
    Inventor: Ron H. Niswander
  • Patent number: 7192990
    Abstract: The present invention relates to a method for preparing a polyurethane foam, which comprises reacting an organic polyisocyanate and a polyol in the presence of water as a blowing agent, a cell stabilizer, and an acid-blocked tertiary amino alkyl amide catalyst composition. The catalyst composition is represented by the formula I: wherein R1, R2, R3, R4, R5, R6, A, and n are as defined herein and wherein the tertiary amino alkyl amide catalyst of formula I is acid-blocked.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: March 20, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Juan Jesus Burdeniuc
  • Patent number: 7189765
    Abstract: The present invention relates to a method for preparing a polyurethane foam which comprises reacting an organic polyisocyanate and a polyol in the presence of water as a blowing agent, a cell stabilizer, a gelling catalyst, and a tertiary amino alkyl amide catalyst composition. The catalyst composition is represented by the formula I: wherein R1, R2, R3, R4, R5, R6, A, and n are as defined herein and wherein the tertiary amino alkyl amide catalyst of formula I is acid-blocked.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: March 13, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Mark Leo Listemann
  • Patent number: 7183330
    Abstract: A method for making a rigid polyurethane foam by reacting a polyisocyanate and a polyol in the presence of a urethane catalyst, a blowing agent and a silicone surfactant characterized by employing a blowing agent comprising a C4 or C5 hydrocarbon, or mixtures thereof, with an average molecular weight of ?72 g/mole and a boiling point in the range of 27.8 to 50° C., and a silicone surfactant comprising a polyether-polysiloxane copolymer represented by the following formula: (CH3)3—Si—O—(Si(CH3)2—O)x—(Si(CH3)(R)O)y—Si(CH3)3 where R=(CH2)3—O—(—CH2—CH2—O)a—(CH2—CH(CH3)—O)b—R?, and where R? is H, (CH2)zCH3, or C(O)CH3; x+y+2 is 60–130; x/y is 5–14; z is 0–4; the total surfactant molecular weight, based on the formula, is 7000–30,000 g/mole, the wt % siloxane in the surfactant is 32–70 wt %, the blend average molecular weight (BAMW) of the polyether portion is 450–1000 g/mole, and the mole % of ethylene oxide in the polyether portion is 70–100 mole %.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: February 27, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Wayne Robert Furlan, Mark Leo Listemann, Joan Sudbury-Holtschlag, Thomas John Markley, Gary Dale Andrew
  • Patent number: 7169823
    Abstract: The present invention relates to a method for preparing a polyurethane foam which comprises reacting an organic polyisocyanate and a polyol in the presence of water as a blowing agent, a cell stabilizer, and a tertiary amine amide catalyst composition represented by formula (I): wherein A, R1–R6, and n are defined herein and wherein the tertiary amino amide catalyst of formula I is acid-blocked.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: January 30, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Juan Jesus Burdeniuc
  • Patent number: 7169824
    Abstract: Process for preparing flexible polyurethane foam by reacting an MDI-based polyisocyanate and a polyether polyol with a high oxyethylene content in a mold.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: January 30, 2007
    Assignee: Huntsman International LLC
    Inventors: Gerhard Jozef Bleys, Eric Huygens, Jan-Willem Leenslag, Herman Eugene Germain Moureau
  • Patent number: 7098255
    Abstract: A process for producing a finely cellular polyurethane foam by mixing a first ingredient comprising an isocyanate compound and a second ingredient comprising a compound containing an active hydrogen group, characterized by comprising adding a nonionic silicone surfactant containing no hydroxyl group to at least one of the first ingredient and the second ingredient in an amount of 0.1 to 5 wt %, excluding 5 wt %, based on the total amount of the first ingredient and the second ingredient, subsequently agitating the surfactant containing ingredient together with an unreactive gas, which has no reactivity to isocyanate group or active hydrogen group, to disperse the unreactive gas as fine bubbles to prepare a bubble dispersion and then mixing the bubble dispersion with the remaining ingredient to cure the resultant mixture and forming finely cellular structure into the resultant polyurethane foam by the fine bubbles of the bubble dispersion.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: August 29, 2006
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Hiroshi Seyanagi, Kaoru Inoue, Kazuyuki Ogawa, Takashi Masui, Koichi Ono
  • Patent number: 7094811
    Abstract: Energy absorbing flexible foams can be produced by reacting an isocyanate with a first polyol, prepared at least in part by an active double metal cyanide catalyst and a second polyether polyol is prepared at least in part by a basic or acidic catalyst.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: August 22, 2006
    Assignee: Bayer Corporation
    Inventors: Neil H. Nodelman, David A. Radovich, Albert Magnotta, Carl E. Holsinger
  • Patent number: 7078442
    Abstract: A composition and method for consolidating aggregate material is disclosed. The method includes introducing a reaction composition into the aggregate material and allowing it to reach on form a polymer which binds the aggregate together. The composition includes polyol, isocyanate, and ester.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: July 18, 2006
    Assignee: Baysystems North America LLC
    Inventor: Scott A Brown
  • Patent number: 7078443
    Abstract: A viscoelastic foam is provided having an amine-based polyol system to impart strength, recoverability and endurance to the foam, and an appropriately selected trifunctional non-amine-based polyol system to provide flexibility to the foam. The combination of amine-based and non amine-based polyols provides a viscoelastic semi-rigid foam with excellent impact and recovery properties, recovering to substantially 100% of its initial volume and shape following an impact, yet with high rigidity and stiffness so that it is effective at absorbing high as well as low-energy impacts. A method of making the above viscoelastic foam is also provided. In a preferred embodiment, the foam is made using an allophanate-modified MDI prepolymer in order to provide the isocyanate in liquid form at standard temperature and pressure in order to simplify the production of the invented viscoelastic foams.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: July 18, 2006
    Assignee: Intellectual Property Holdings, LLC
    Inventor: Charles M. Milliren
  • Patent number: 7066724
    Abstract: An apparatus is disclosed for flatproofing a tire and wheel assembly with a flexible, lightweight foam-fill by supplying at least two polyurethane reactive materials to a static mixer. The static mixer mixes the reactants, and a nucleating gas is supplied to the mixed reactants in the static mixer to form a liquid reactant mixture with entrained gas. The reactant mixture is injected into the tire and wheel assembly where the mixture reacts and foams replacing the air in the tire with a flexible, lightweight semi-open cell foam-fill. The foam-filled tire and wheel assembly is then allowed to cure.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 27, 2006
    Assignee: Urethane International LLC
    Inventors: John Danules, Steve Anderson, Van Doesburg
  • Patent number: 7056957
    Abstract: The present invention features a method for the formation of superporous hydrogels using an ion-equilibration technique. Anionic polysaccharides are included in the hydrogel reaction mixture and cations are introduced either during or after hydrogel formation. Properties of the resulting hydrogel can be subsequently adjusted by treating the cation-complexed gel with a different cation or cation mixture under equilibrating conditions. It has been found that by properly adjusting the cations and the sequence in which they are used in the equilibration process, superporous hydrogels can be formed that are highly absorbent while maintaining favorable structural properties, including strength, ruggedness, and resiliency. It has also been found that applying appropriate dehydration conditions to them after their formation can further stabilize the superporous hydrogels formed by the method of the invention.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: June 6, 2006
    Assignee: KOS Pharmaceuticals, Inc.
    Inventors: Hossein Omidian, Jose Gutierrez-Rocca
  • Patent number: 7008974
    Abstract: Disclosed is a composition for preparing a rigid polyurethane foam having a good demolding property by defining polyol component and catalyst component. The polyol component comprises 40˜60 wt. % of polyol obtained by polymerization with an organic oxide using sorbitol as an initiator, 5˜10 wt. % of polyol obtained by polymerization with an organic oxide using ethylene diamine as an initiator, 20˜30 wt. % of polyol obtained by polymerization with an organic oxide using toluene diamine or toluene diamine and triethanol amine as a single or a complex initiator, and, optionally, 5˜20 wt. % of multivalent polyol of an ester structure, and the catalyst component is chosen in a group comprising a foaming catalyst, a gelling catalyst, a trimerization catalyst, a mixed form of the foaming catalyst and the gelling catalyst, and compound thereof.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: March 7, 2006
    Assignee: LG Electronics Inc.
    Inventors: Hyun-Keun Cho, Ju-Hyun Kim
  • Patent number: 7008973
    Abstract: A flexible, flame-retarded, polyurethane foam comprising brominated and/or phosphorous flame retardants and an acid scavenger.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: March 7, 2006
    Assignee: PABU Services, Inc.
    Inventors: Stephen B. Falloon, Richard S. Rose, Mathew D. Phillips
  • Patent number: 7005458
    Abstract: A static dissipative flexible polyurethane foam is formed under free rise expansion conditions from a polyether graft polyol and an isocyanate, wherein one or more anti-static additives are incorporated into the reaction mix in an amount from 0.10 to 20 parts by weight. Water is added in an amount of from 0.2 to 1.0 parts per weight. Upon curing, the foam has a density in the range of 6 to 20 pounds per cubic foot, a surface resistivity below 1×1011 ohms/square, and a pore size in the range of 100 to 250 pores per inch. The foam may be fabricated (cut or shaped) to form a shaped article, such as a roller, a clean room wipe, a cosmetic applicator or a packaging element.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: February 28, 2006
    Assignee: Foamex L.P.
    Inventor: Joseph W. Lovette
  • Patent number: 6979701
    Abstract: The present invention aims to provide a polyurethane foam, suitably usable as a polishing pad, having a uniform foam structure, which can achieve the improvements in the flatness of the surface of polished materials and in the planarization efficiency, and can extend the polishing pad life longer than that of the conventional polyurethane foams. This aim can be achieved by providing a polyurethane foam having a density of 0.5 to 1.0 g/cm3, a cell size of 5 to 200 ?m and a hardness [JIS-C hardness] of not less than 90, comprising a thermoplastic polyurethane which is obtained by a reaction of a high polymer polyol, an organic diisocyanate and a chain extender, contains not less than 6% by weight of a nitrogen atom derived from the isocyanate group, and has a storage elastic modulus measured at 50° C. [E?50] of not less than 5×109 dyn/cm2.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: December 27, 2005
    Assignee: Kuraray Co., Ltd.
    Inventors: Shunji Kaneda, Chihiro Okamoto
  • Patent number: 6960618
    Abstract: The present invention relates to a preparation method for low-density polyurethane foam excelling in the flame retardance and the dimensional stability, wherein rigid polyurethane foam having the average value for the ratio of lengthwise direction diameter/cross direction diameter of cells being 1.0 to 1.4 and the density of 20 to 40 kg/m3 is prepared by combining, as blowing agent, carbon dioxide generated in the reaction between water and polyisocyanate and carbon dioxide under supercritical state, subcritical state or liquid state, and by adding said water and said carbon dioxide under liquid state into said polyol component prior to mixing the polyisocyanate component and the polyol component, and to rigid polyurethane foam obtained by said method.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: November 1, 2005
    Assignee: Achilles Corporation
    Inventors: Yoshiyuki Ohnuma, Junichiro Mori, Hideki Tosaki
  • Patent number: 6946497
    Abstract: Process for preparing a visco-elastic polyurethane foam by reacting a polyisocyanate composition with a polyol composition comprising b1) an EO-rich polyol; b2) a polyol with an EO content between 20-50% and a primary hydroxy content of at least 50%; b3) a polyol with an EO content between 10-20% and a primary hydroxy content of at least 50%; and b4) a polyoxyalkyleneglycol. Further provided is a polyol composition.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: September 20, 2005
    Assignee: Huntsman International LLC
    Inventor: Jianming Yu
  • Patent number: 6919384
    Abstract: Process for preparing flexible polyurethane foam by reacting an MDI-based polyisocyanate terminated prepolymer and a polyether polyol with a high oxyethylene content and foams produced by such process.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: July 19, 2005
    Assignee: Huntsman International LLC
    Inventor: Jianming Yu
  • Patent number: 6908951
    Abstract: An expandable coating composition, yields a coating film having elasticity, a soft feeling, and strength which are sufficient for an instrument panel of an automobile by simple processes. An expandable coating composition yields an expanded coating film and contains (a) a polyol compound, (b) an isocyanate compound, and (c) water; the (a) polyol compound reacts with a part of the (b) isocyanate compound, thereby yielding polyurethane resin; the remaining (b) isocyanate compound reacts with the (c) water, thereby yielding carbon dioxide; the polyurethane resin has a breaking strength of 5 N/cm2 or greater and less than 200 N/cm2 in a case in which an elongation percentage thereof is 100% or less; and the polyurethane resin has a breaking strength of 5 N/cm2 to 1,500 N/cm2 in a case in which an elongation percentage thereof is more than 100%.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: June 21, 2005
    Assignees: Fujikura Kasei Co., Ltd., Toyota Jidosha Kobushiki Kaisha
    Inventors: Hiroya Dejima, Hiroyuki Kai, Kenji Kawazu
  • Patent number: 6906110
    Abstract: In a process for producing polyurethanes by reacting at least one polyisocyanate with at least one compound containing at least two hydrogen atoms which are reactive toward isocyanate groups, the compound having at least two active hydrogen atoms which is used is at least one polyether alcohol prepared by addition of alkylene oxides onto H-functional initiator substances by means of multimetal cyanide catalysis and the reaction is carried out in the presence of at least one metal salt.
    Type: Grant
    Filed: November 4, 2000
    Date of Patent: June 14, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Reinhard Lorenz, Stephan Bauer, Dieter Junge, Eva Baum, Kathrin Harre, Jörg Erbes, Thomas Ostrowski, Georg Heinrich Grosch
  • Patent number: 6887913
    Abstract: A method for producing a rigid foamed synthetic resin, which comprises reacting a polyol with a polyisocyanate compound in the presence of water, a catalyst and a fluorine-containing compound of the formula 1: Rf—O-(A-O)n—R??Formula 1 where in the formula 1, Rf is a C2-27 fluorine-containing organic group, n is an integer of from 1 to 100, A is an alkylene group having a carbon number in the straight chain portion between bonds of from 2 to 4, provided that when n is from 2 to 100, the plurality of A may be the same or different, and R is a hydrogen atom, a C1-18 alkyl group or a C1-18 acyl group.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: May 3, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Hiromichi Hotta, Hisashi Sato, Tadanobu Kuroki, Genichirou Enna
  • Patent number: 6887911
    Abstract: Foamed molded articles produced by reaction injection molding (RIM) are provided. The molded articles are formed by reaction of a polyisocyanate component with an isocyanate reactive component in a mold using a blowing agent. The molded articles are preferably composites formed in the presence of a fibrous reinforcing material. The foamed articles are characterized by relatively short minimum mold residence times, and can thereby be produced more economically than prior art composites. The foamed articles are further characterized by a reduction in physical defects, such as splits and voids.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: May 3, 2005
    Assignee: Huntsman International LLC
    Inventors: Trent A. Shidaker, David W. Bareis, Herbert R. Gillis
  • Patent number: 6884825
    Abstract: Process for preparing a flexible polyurethane foam comprising reacting at an isocyanate index of 70 to 130, 1) 40-65 parts by weight of a polyisocyanate composition comprising a) 80-100% by weight of a diphenylmethane diisocyanate component comprising, based on 100 parts by weight of the diphenylmethane diisocyanate component, i) 75-100 parts by weight of diphenylmethane diisocyanate comprising 15-75 parts by weight of 4,4?-diphenylmethane diisocyanate, and 25 to 85 parts by weight of 2,4?-diphenylmethane diisocyanate, and 2,2?-diphenylmethane diisocyanate and/or a liquid variant of such diphenylmethane diisocyanate, and ii) 0 to 25 parts by weight of homologues of diphenylmethane diisocyanates having an isocyanate functionality of 3 or more; and b) 20-0% by weight of toluene diisocyanate; 2) 20 to 45 parts by weight of a polyether polyol having an average molecular weight of 4500-10000, an average nominal functionality of 2-6 and comprising oxypropylene and optionally oxyethylene groups, the amount of oxypro
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: April 26, 2005
    Assignee: Huntsman International LLC
    Inventors: William Andrew Daunch, Jan-Willem Leenslag, Hans Godelieve Guido Verbeke
  • Patent number: 6878753
    Abstract: A process for producing a polyurethane foam which comprises mixing a polyol solution comprising 100 parts by weight of a polyester-polyol, 0.1 to 1.8 parts by weight of water and 0.1 to 5 parts by weight of urea, and a catalyst with a polyisocyanate compound and foaming the mixture. According to the process, there can be produced a polyurethane foam which satisfies both productivity and moldability even when having a low density, and is suitable for use in shoe soles.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: April 12, 2005
    Assignee: Kao Corporation
    Inventors: Kazunari Takemura, Kenichi Miyamoto, Minoru Sawai, Masahiro Mori
  • Patent number: H2233
    Abstract: A composition comprising a polyisocyanate, a polyol, a hydrofluorocarbon blowing agent, optionally water, a surfactant, and at least one catalyst for the reaction of the polyisocyanate with the polyol and/or the reaction of the polyisocyanate with water, the catalyst being selected from the group consisting of triethylenediamine; N-2-hydroxy-propyltriethylenediamine ammonium salt; N-cetyl-N,N-dimethylamine; N,N-diethylethanamine; N,N-dimethylaminoethylmorpholine; bis(3-dimethylaminopropyl)-N,N-dimethylpropanediamine; N-cyclohexyl-N-methylcyclohexylamine; 1,3,5-tris(3-(dimethylamino)propyl)hexahydro-s-triazine; bis(dimethylaminopropyl)methylamine; dibutyltin dilaurylmercaptide; dibutyltin diisooctylmaleate; dibutyltin bis(2-ethylhexylmercaptoacetate); stannous octoate, 1,2-dimethylimidizole, bis-(dimethylaminoethyl)ether; bis(3-dimethylaminopropyl)-N,N-dimethylpropanediamine and bis(N,N-dimethylaminoethyl)-ether and resulting in a decreased amount of decomposition of the hydrofluorocarbon blowing agent to fluo
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: November 3, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Jeffrey Kramer