Cellular Product Derived From Ethylenically Unsaturated Reactants Only Patents (Class 521/142)
  • Patent number: 8772365
    Abstract: The present invention provides a resin composition capable of providing foams (non-crosslinked and crosslinked foams) which have low specific gravity and low compression set (CS) and are excellent in tensile strength properties, tear strength properties and vibration-damping properties at room temperature to high temperatures, and a foam of the resin composition. The resin composition for foams of the present invention comprises 5 to 95 parts by weight of an ethylene/?-olefin copolymer (A) and 5 to 95 parts by weight of a hydrogenated copolymer (B) obtained by hydrogenating a copolymer comprising a conjugated diene and a vinyl aromatic compound, and is characterized in that the hydrogenated copolymer (B) does not have a glass transition point of not higher than ?10° C. when measured at a frequency of 1 Hz in accordance with JIS-K7198.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: July 8, 2014
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takayuki Kajihara, Eiji Shiba, Masayoshi Yamaguchi, Kiminori Noda
  • Patent number: 8765826
    Abstract: Expandable composite resin particles for long-term storage, comprising 500 to 5000 ppm of water and 7.5 to 11.0% by weight of pentane in composite resin of polyolefin-based resin and polystyrene-based resin.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: July 1, 2014
    Assignee: Sekisui Plastics Co., Ltd.
    Inventors: Yasutaka Tsutsui, Masahiko Ozawa
  • Patent number: 8759410
    Abstract: This invention aims to provide a thermally foamable microsphere which is excellent in heat resistance, has a high expansion ratio, and shows stable foaming behavior; a method of producing the thermally foamable microsphere; and suitable use thereof. This invention provides a thermally foamable microsphere in which an outer shell encapsulating a foaming agent is formed of a copolymer having a polymethacrylimide structure. In particular, this invention provides a thermally foamable microsphere in which monomers capable of forming the polymethacrylimide structure by a copolymerization reaction are methacrylonitrile and methacrylic acid. Moreover, this invention provides a method of producing the thermally foamable microsphere and use of the thermally foamable microsphere as an additive.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: June 24, 2014
    Assignee: Kureha Corporation
    Inventor: Tetsuo Ejiri
  • Patent number: 8741973
    Abstract: The invention relates to elastic expanded polymer foams and also a process for producing expanded polymer foams by sintering a mixture comprising foam particles P1 and P2 composed of different thermoplastic polymers or polymer blends, wherein the foam particles P1 are obtained by prefoaming expandable, thermoplastic polymer particles comprising A) from 45 to 97.9 percent by weight of a styrene polymer, B1) from 1 to 45 percent by weight of a polyolefin having a melting point in the range from 105 to 140° C., B2) from 0 to 25 percent by weight of a polyolefin having a melting point below 105° C., C1) from 0.1 to 25 percent by weight of a styrene-butadiene or styrene-isoprene block copolymer, C2) from 0.0 to 10 percent by weight of a styrene-ethylene-butylene block copolymer, D) from 1 to 15 percent by weight of a blowing agent, E) from 0 to 5 percent by weight of a nucleating agent, where the sum of A) to E) is 100% by weight.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: June 3, 2014
    Assignee: BASF SE
    Inventors: Carsten Schips, Jens Aβmann, Georg Gräβel, Geert Janssens, Maximillian Hofmann, Holger Ruckdäschel, Jürgen Lambert, Christof Zylla
  • Patent number: 8741974
    Abstract: A method for forming a filter in a fluid flow path in a microfluidic device is provided. The method includes introducing a photopolymerization reaction solution into the microfluidic device; and performing polymerization of photopolymerization reaction solution to form a filter in the fluid flow path in a microfluidic device.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 3, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-eun Yoo, Jong-myeon Park
  • Patent number: 8741975
    Abstract: The present invention provides a vulcanizable rubber composition containing (A) an ethylene/?-olefin/nonconjugated polyene copolymer rubber, (B) a polyolefin resin and (C) a blowing agent, wherein the polyolefin resin (B) is microdispersed in a melted state in the ethylene/?-olefin/nonconjugated polyene copolymer rubber (A), the polyolefin resin (B) having an average dispersed particle diameter of 2 ?m or less, the polyolefin resin (B) is present in an amount of from 5 to 15 parts by mass per 100 parts by mass of the ethylene/?-olefin/nonconjugated polyene copolymer rubber (A), the blowing agent (C) is present in an amount of from 2 to 6 parts by mass per 10 parts by mass of the ethylene/?-olefin/nonconjugated polyene copolymer rubber (A), and the vulcanizable rubber composition has a specific gravity of from 1.05 to 1.15 and a Mooney viscosity (Vm) at 125° C. of from 25 to 55.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 3, 2014
    Assignee: Nishikawa Rubber Co., Ltd.
    Inventors: Hiroyuki Okuda, Takahiro Yoshida
  • Patent number: 8729145
    Abstract: Disclosed are bowing agent compositions, foamable compositions, foams, foaming methods and/or foamed articles comprising one or more C2 to C6 fluoroalkenes, more preferably one or more C3 to C5 fluoroalkenes, and even more preferably one or more compounds having Formula I as follows: XCFzR3-z??(I) where X is a C1, C2, C3, C4, or C5 unsaturated, substituted or unsubstituted radical, each R is independently Cl, F, Br, I or H, and z is 1 to 3, it generally being preferred that the fluoroalkene of the present invention has at least four (4) halogen substituents, at least three of which are F and even more preferably none of which are Br.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 20, 2014
    Assignee: Honeywell International Inc.
    Inventors: James M. Bowman, David J. Williams
  • Patent number: 8729143
    Abstract: Expandable, thermoplastic polymer bead material composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase of a thermoplastic polymer, where at least two different disperse phases P1 and P2 are present, disperse in the continuous phase, and also to processes for its production, and to use for the production of elastic molded foams.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: May 20, 2014
    Assignee: BASF SE
    Inventors: Carsten Schips, Klaus Hahn, Maximilian Hofmann, Holger Ruckdäschel, Jens Assmann, Geert Janssens, Georg Gräβel, Jurgen Lambert, Christof Zylla
  • Publication number: 20140121289
    Abstract: An organic-inorganic composite molded product formed by molding a composite material of an organic resin and inorganic fine particles is provided, and in this molded product, the average primary particle diameter of the inorganic fine particles is 1 to 30 nm, the concentration of the inorganic fine particles is 25 to 50 percent by volume, and the porosity is 20 to 55 percent by volume. Accordingly, an organic-inorganic composite molded product having a small content of the inorganic fine particles and a significantly low average coefficient of linear expansion of 20*10?6 to ?110*10?6/degree Celsius can be manufactured.
    Type: Application
    Filed: May 28, 2012
    Publication date: May 1, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shigeo Kiso, Katsumoto Hosokawa, Takeaki Kumagai, Takahiro Kojima, Emi Oishi
  • Patent number: 8703835
    Abstract: A blowing agent blend for making thermoplastic polymer foams includes methyl formate. The blowing agent blend can further comprise at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent (e.g. an inorganic agent, a hydrocarbon, a halogenated hydrocarbon, a hydrocarbon with polar, functional group(s), water or any combination thereof), or a chemical co-blowing agent, or combinations thereof. The thermoplastic polymer foam can be an alkenyl aromatic polymer foam, e.g. a polystyrene foam. The blowing agent blend includes methyl formate and one or more co-blowing agents. The methyl formate-based blowing agent blends produce dimensionally stable foams that have improved resistance to flame spread. A process for the preparation of such foams is also provided.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 22, 2014
    Assignee: Pactiv LLC
    Inventors: Y. Paul Handa, Gary A. Francis, Glenn C. Castner, Mohammad Zafar
  • Patent number: 8691896
    Abstract: Disclosed is a polymer foam with density in the range from 5 to 120 kg/m3 composed of a polymer component including at least one styrene polymer and from 0.1 to 5 parts by weight of a flame retardant mixture including at least one phosphorus compound of the formula PR1R2R3. A process for producing the polymer is also disclosed.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: April 8, 2014
    Assignee: BASF SE
    Inventors: Klaus Hahn, Olaf Kriha, Ingo Bellin, Patrick Spies, Sabine Fuchs, Peter Deglmann, Klemens Massonne, Hartmut Denecke, Christoph Fleckenstein, Geert Janssens, Maximilian Hofmann, Manfred Döring, Ciesielski Michael, Jochen Wagner
  • Patent number: 8691046
    Abstract: Energy-activated room temperature-pumpable polymer compositions, devices for activating and processing the same into solid cellular or non-cellular polymeric materials that can be used as adhesives, sealants, coatings or gasket materials, and methods of making and using the same. The compositions according to the invention include solid particles that include one or more polymers, which are emulsified, dispersed or suspended in a liquid carrier together with at least one processing aid, such as a reactive blowing agent, a low molecular weight surfactant, a high molecular weight surfactant, one or more compounds found in latex paint, starch, cellulosic derived products and combinations of two or more thereof. The processing aids provide various benefits including, for example, reduced density, improved process hygiene, improved foam stability, faster bonding times and/or lower processing temperatures.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: April 8, 2014
    Assignee: H.B. Fuller Company
    Inventors: Michael W. Jorgenson, David J. Alessio, Samuel Dipre, Kenneth E. Heyde, Jeffrey C. Krotine, Anthony A. Parker, William C. Stumphauzer, Joseph J. Wolf
  • Patent number: 8686056
    Abstract: Olefin polymer-based, durable, open-cell foam compositions, structures and articles derived from same; methods for preparation of such foams; and use of the dry durable foams in various applications are disclosed. Further described is use of the foams and structures and articles made of same in absorption, filtration, insulation, cushioning and backing applications, and in particular for odor removal, hygiene and medical applications due to, among other properties, good absorption capabilities, softness and/or flexibility of the foams and their recyclable nature.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Gary M. Strandburg, Mark W. VanSumeren, Shaofu Wu, Luther E. Stockton
  • Patent number: 8673423
    Abstract: A foaming composition for filling contains a polymer, an organic peroxide, and azodicarbonamide, and a viscosity thereof measured at a temperature of 120° C. and under a pressure of 500 MPa with a flow tester is in a range of 1050 to 4950 Pa·s.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 18, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Takehiro Ui, Youhei Hayashi
  • Patent number: 8648122
    Abstract: The presently disclosed subject matter relates generally to method of producing thermoplastic foam from a blend of polyolefin and acrylated epoxidized fatty acid using a phsyical blowing agent. Specifically, the presently disclosed subject matter includes embodiments wherein the acrylated epoxidized fatty acid is added to the polyolefin resin in an amount of from about 0.1% to about 10%, based on the total weight of the resin. The presently disclosed subject matter also includes the foam produced by the disclosed method.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: February 11, 2014
    Assignee: Sealed Air Corporation (US)
    Inventors: Edward F. Cassidy, William J. Mahon, Natarajan S. Ramesh, Parimal M. Vadhar
  • Patent number: 8629192
    Abstract: A method of producing a HIPE foam using Ultraviolet (UV) light to polymerize a High Internal Phase Emulsion (HIPE) having two or more layers. The method uses UV light to polymerize HIPEs having two or more layers wherein each of the layers comprises a continuous oil phase containing monomers, photoinitiator, and an aqueous phase.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: January 14, 2014
    Assignee: The Procter and Gamble Company
    Inventors: Steven Ray Merrigan, Thomas Allen Desmarais
  • Publication number: 20140011900
    Abstract: Methods for producing a silyl-functionalized polyolefin with silyl monomer incorporation are provided. The method includes reacting a silicon-containing olefin with an ?-olefin, in the presence of a catalytic amount of a group IV catalyst for a time sufficient to produce a silyl-functionalized polyolefin.
    Type: Application
    Filed: January 17, 2012
    Publication date: January 9, 2014
    Applicants: NORTHWESTERN UNIVERSITY, DOW CORNING CORPORATION
    Inventors: Gary Thomas Burns, Tobin J. Marks, Francois De Buyl, Valerie Smits, Peng-Fei Fu
  • Patent number: 8598242
    Abstract: Disclosed is an expanded polypropylene copolymer resin particle whose base resin is a polypropylene random copolymer resin having a melting point of not more than 145° C., the base resin having a H/W ratio of not more than 8 where H (%) is a maximum height of an elution peak and W (° C.) is a peak width at half a height of the peak in an elution curve obtained from a differential value of eluted content measured by cross fractionation chromatography, and a ratio (Mw/Mn) of a weight-average molecular weight (Mw) and a number-average molecular weight (Mn) being not less than 3.5 in a molecular weight distribution measurement of a whole of eluted components. With such an expanded polypropylene copolymer resin particle, it is possible to provide expanded polypropylene copolymer resin particles which are capable of producing an in-mold expansion-molded article with a low molding heating vapor pressure, and which causes few deformation or shrinkage of an obtained in-mold expansion-molded article (i.e.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 3, 2013
    Assignee: Kaneka Corporation
    Inventor: Kenichi Senda
  • Patent number: 8598241
    Abstract: Provided are polypropylene resin pre-foamed particles including, as base resin, polypropylene resin that satisfies the following requirements (a) through (c): (a) in cross fractionation chromatography, an amount of components eluted at a temperature of not more than 40° C. is not more than 2.0% by weight; (b) a melting point is not less than 100° C. but not more than 160° C.; and (c) propylene monomer units are present in an amount of not less than 90 mol % but not more than 100 mol %, and olefin units each having a carbon number of 2 or 4 or more are present in an amount of not less than 0 mol % but not more than 10 mol %. The polypropylene resin pre-foamed particles can be molded by in-mold foaming molding at a not high molding heating steam pressure, and a polypropylene resin in-mold foaming molded product excellent in dimensional stability at high temperatures can be prepared from the polypropylene resin pre-foamed particles.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: December 3, 2013
    Assignee: Kaneka Corporation
    Inventors: Toru Yoshida, Hiroshi Tsuneishi
  • Patent number: 8598244
    Abstract: A blowing agent blend for making thermoplastic polymer foams includes methyl formate. The blowing agent blend can further comprise at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent (e.g. an inorganic agent, a hydrocarbon, a halogenated hydrocarbon, a hydrocarbon with polar, functional group(s), water or any combination thereof), or a chemical co-blowing agent, or combinations thereof. The thermoplastic polymer foam can be an alkenyl aromatic polymer foam, e.g. a polystyrene foam. The blowing agent blend includes methyl formate and one or more co-blowing agents. The methyl formate-based blowing agent blends produce dimensionally stable foams that have improved resistance to flame spread. A process for the preparation of such foams is also provided.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 3, 2013
    Assignee: Pactiv LLC
    Inventors: Y. Paul Handa, Gary A. Francis, Glenn C. Castner, Mohammad Zafar
  • Publication number: 20130317130
    Abstract: The invention provides a new process for patterning TPE membranes for use in the design and fabrication of 3D microfluidic devices. The process involves patterning a TPE material without permitting the highest features of the mold to come into contact with the counter-plate, whereby adhesion between the TPE and the mold or counter-plate during demolding results directly in removal of the excess layer from the TPE membrane to produce well formed micrometric-sized open-through holes in the TPE membrane. The process permits rapid, reliable and efficient patterning of densely packed and arbitrarily placed micrometric open-through holes and channels of high aspect-ratio and any shape or wall profile in thin TPE membranes.
    Type: Application
    Filed: February 15, 2011
    Publication date: November 28, 2013
    Applicant: National Research Council of Canada
    Inventors: Daniel Brassard, Emmanuel Roy, Kebin Li, Teodor Veres
  • Patent number: 8586641
    Abstract: The present invention relates to a monolithic organic copolymer prepared by copolymerization of at least one monomer of the group consisting of styrene, (C1-C3)alkylstyrene, (meth)acrylic acid and esters thereof with a crosslinker in the presence of a macroporogen and a microporogen, wherein a) the sum of said at least one monomer of the group and the crosslinker is 10-20%, preferably 10-15%, by volume of the reaction mixture, with the rest being essentially macroporogen and microporogen, and the degree of said copolymerization is at least 70%, preferably at least 90%, more preferably at least 99%, or b) the sum of said at least one monomer of the group and the crosslinker is 30-50%, preferably 35-45%, by volume of the reaction mixture, with the rest being essentially macroporogen and microporogen, and the degree of said copolymerization is in the range of 25-60%, preferably 35-50%.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: November 19, 2013
    Assignee: Leopold-Franzens-Universitat Innsbruck
    Inventors: Lukas Trojer, Günther Bonn
  • Publication number: 20130266873
    Abstract: To provide a secondary battery porous membrane that has superior heat resistance and flexibility and contributes to improvements in battery cycle characteristics. Also provided is a secondary battery having high cycle characteristics that uses this porous membrane. [Solution] This secondary battery porous membrane contains nonconductive particles and a binder. The binder is characterized by being formed from a polymer containing a nitrile group, a novel group, and a C4+ straight-chain alkylene structural unit in the same molecule and the nitrile group content in the polymer constituting the binder being 1-25% by mass, with the iodine value of the polymer being 0 mg/100 mg-30 mg/100 mg.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 10, 2013
    Applicant: ZEON CORPORATION
    Inventors: Takuya Ishii, Takuya Kaneda
  • Patent number: 8552076
    Abstract: Disclosed herein is a method of preparing a fused aerogel-polymer composite in which aerogel and an organic polymer is mixed in a dry state to adsorb polymer particles on the surface of the aerogel and are then subjected to thermal treatment, thus forming a polymer coating on the aerogel. The fused aerogel-polymer composite can be used for thermal insulation in a variety of applications. The fused aerogel-polymer composite exhibits high thermal insulation properties and superior physical strength and processability while still maintaining the properties of an aerogel that does not have a polymer coated on its surface.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Myung Dong Cho
  • Patent number: 8529817
    Abstract: The present invention provides a stretched thermoplastic resin foam sheet that has excellent flexibility even compressed to a thickness as thin as about 0.05 mm, and a method for producing the same. The stretched thermoplastic resin foam sheet of the present invention is producible by stretching a thermoplastic resin foam sheet and has a compressive strength of 1 to 500 kPa as measured in accordance with JIS K6767 when compressed in a thickness direction thereof to a thickness of 0.05 mm. Accordingly, the stretched thermoplastic resin foam sheet has excellent flexibility even compressed to a thickness as thin as about 0.05 mm and is suitably used as a sealing material for a small electronic device such as mobile phones.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: September 10, 2013
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Takumei Uno, Eiji Tateo, Futoshi Kanazawa
  • Publication number: 20130217794
    Abstract: Molded article prepared by in-mold forming of pre-expanded polyolefin particles, wherein the pre-expanded poly-olefin particles contain carbon black and powdered activated carbon. The invention is also directed to pre-expanded polyolefin particles containing carbon black and powdered activated carbon and a process for producing pre-expanded polyolefin product.
    Type: Application
    Filed: October 26, 2011
    Publication date: August 22, 2013
    Applicant: KANEKA BELGIUM N.V.
    Inventors: Pierre Van Ravestyn, Nancy Laeveren
  • Patent number: 8513317
    Abstract: Provided is a process for producing expanded polyolefin resin particles whose cells are not made nonuniform or extremely smaller as seen in conventional expanded particles, whose cell diameter and expansion ratio can be easily controlled independently, and which, when subjected to in-mold expansion molding, give in-mold expanded molded products satisfactory in fusibility and excellent in surface properties.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: August 20, 2013
    Assignee: Kaneka Corporation
    Inventors: Jun Fukuzawa, Hiroshi Tsuneishi
  • Publication number: 20130209768
    Abstract: A vinylpyridine resin that is hardly pulverized and thermally decomposed such that the degradation of the catalytic activity is suppressed while having a pore volume and a specific surface area to maintain a sufficient catalytic activity, and also a method of manufacturing the vinylpyridine resin are provided. The resin represents: a volume ratio of the pores having a diameter of 3 through 5 nm to all the pores of not less than 4% and not more than 60%; a total pore volume of not less than 0.15 cc/g and not more than 0.35 cc/g; and a specific surface area of not less than 20 m2/g and not more than 100 m2/g. The resin can be manufactured by using a poor solvent and not less than 50 wt % and not more than 90 wt % of a good solvent as porous agent.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: CHIYODA CORPORATION
    Inventors: Zhixiong You, Takeshi Minami, Chikako Hashimoto, Yoichi Umehara
  • Publication number: 20130202828
    Abstract: Disclosed herein is a process for printing on a microporous substrate using a laser to melt or soften the substrate so that the pores collapse and produce clear regions on a white background. The preferred substrate is one based on polypropylene where the microvoids are produced by orienting an extruded, precursor sheet that contains the beta crystalline form of polypropylene. A dark co-extruded layer or a pigmented adhesive can be placed on the non-laser treated side of the film, so that the treated side shows the color of the backing layer through the clear regions. This type of printing or laser marking does not require any inks, solvents, or other consumable additives, and the printing can be done at very high production rates and at low cost. The small void size of the film allows for fine print detail and excellent print contrast.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 8, 2013
    Applicant: Mayzo Corporation
    Inventor: Philip Jacoby
  • Patent number: 8481159
    Abstract: The present invention relates to a process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the temperature of the gas leaving the polymerization chamber is 130° C. or less, the gas velocity inside the polymerization chamber is at least 0.5 m/s, and the droplets are generated by using a droplet plate having a multitude of bores.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: July 9, 2013
    Assignee: BASF SE
    Inventors: Rainer Dobrawa, Thomas Daniel, Uwe Stueven, Marco Krüger, Francisco Javier Lopez Villanueva, Norbert Herfert, Karin Flore, Stefan Blei, Michael A. Mitchell
  • Patent number: 8481155
    Abstract: An EPDM foam is obtained by foaming a foam composition containing, based on 100 parts by weight of an ethylenepropylenediene rubber, 0.1 to 5 parts by weight of a vulcanizer, 0.1 to 10 parts by weight of a vulcanization accelerator, 1 to 30 parts by weight of a foaming agent, and a foaming auxiliary agent. The vulcanization accelerator contains a thiourea vulcanization accelerator, a thiazole vulcanization accelerator, a dithiocarbamate vulcanization accelerator, and a thiuram vulcanization accelerator such that a thiourea vulcanization accelerator/thiazole vulcanization accelerator/dithiocarbamate vulcanization accelerator/thiuram vulcanization accelerator weight ratio is in a range of 1 to 20/1 to 20/1 to 20/1 to 30.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 9, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Takayuki Iwase, Joji Kawata, Takumi Kousaka, Nobuyuki Takahashi
  • Publication number: 20130172436
    Abstract: Compositions containing polymers and one or more heat labile and/or incompatible components adsorbed on carrier materials are provided. The heat labile components include materials that are inactivated, that volatilize, decompose, or undergo a chemical reaction or transformation at the polymer's processing temperatures (heat labile biocides). Incompatible components are materials that generally react or form gels or precipitates upon mixing. The carrier materials generally include inorganic or organic porous materials capable of remaining solid during processing temperatures. Methods for preparing the polymer compositions are provided.
    Type: Application
    Filed: July 16, 2012
    Publication date: July 4, 2013
    Inventors: Frank M. Fosco, JR., Edward E. Sowers
  • Patent number: 8476325
    Abstract: A method for producing styrene-modified polyethylene-based resin beads, including the steps of: dispersing 100 parts by weight of polyethylene-based resin beads which contain an inorganic nucleating agent and have a melting point of 95° C. to 115° C., 20 parts by weight or more and less than 300 parts by weight of a styrene-based monomer and a polymerization initiator into an aqueous suspension containing a dispersant; impregnating the polyethylene-based resin beads with the styrene-based monomer under heating the resulting dispersion at such a temperature that the styrene-based monomer does not substantially polymerize; and performing polymerization of the styrene-based monomer at a temperature of (T)° C. to (T+25)° C. (where T° C. is a melting point of the polyethylene-based resin beads.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: July 2, 2013
    Assignee: Sekisui Plastics Co., Ltd.
    Inventors: Hideyasu Matsumura, Tatsuya Matsugashita
  • Patent number: 8470901
    Abstract: A composition for manufacturing an organic aerogel including at least one monomer having at least two substituted or unsubstituted acrylamide groups and a solvent is provided, along with an organic aerogel including a polymeric reaction product of the monomer or monomers.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ho Park, Sung-Woo Hwang, Myung-Dong Cho
  • Patent number: 8461223
    Abstract: Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic. The aerogels provided herein are suitable for use in various applications, including but not limited to thermal and acoustic insulation, radiation shielding, and vibrational damping applications.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: June 11, 2013
    Assignee: Aspen Aerogels, Inc.
    Inventors: Je Kyun Lee, George L. Gould
  • Patent number: 8461222
    Abstract: There is provided a shoe sole component that has properties such as strength and cushioning property that are suppressed from being changed even under a wide temperature range from severe cold at ?10° C. or lower to high temperature conditions exceeding 30° C. A shoe sole component includes a cross-linked foam of a resin composition, the resin composition containing a thermoplastic polyolefin resin, in which tan ? (?20° C. to 40° C.) at a frequency of 10 Hz measured according to JIS K 7244-4 is 0.01 to 0.5, and tan ? (?20° C.)/tan ? (40° C.) at a frequency of 10 Hz is 0.7 to 1.3.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 11, 2013
    Assignee: ASICS Corporation
    Inventors: Sadaki Mori, Katsuhiro Imazato, Kenichi Harano, Akiyuki Morikawa
  • Publication number: 20130143976
    Abstract: A medical device includes a substrate having at least a portion thereof functionalized with at least one reactive member and a chemotactic agent functionalized with at least one complementary reactive member, wherein the at least one reactive member and the at least one complementary reactive member are covalently bonded, adhering the chemotactic agent to the substrate.
    Type: Application
    Filed: June 30, 2011
    Publication date: June 6, 2013
    Applicant: SOFRADIM PRODUCTION
    Inventors: Sébastien Ladet, Philippe Gravagna
  • Patent number: 8420706
    Abstract: Various uses of fluoroalkenes, including tetrafluoropropenes, particularly (HFO-1234) in a variety of applications, including as blowing agents are disclosed.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 16, 2013
    Assignee: Honeywell International Inc.
    Inventors: James M. Bowman, David J. Williams, Rajiv R. Singh, Ian Shankland
  • Patent number: 8399531
    Abstract: A foamable composition comprises at least about 50 wt % of a copolymer of ethylene and alkyl (meth)acrylate having a broad chemical composition distribution (CCD), and having a melt index between about 7 and about 30; about 2 to about 40 wt % of a polyolefin having a carboxylic acid or carboxylic acid anhydride functionality; about 1 to about 10 wt % of one or more foaming agents; and about 1 to about 5 wt % of one or more crosslinking agents. This foamable composition combines ease of processing with good foaming characteristics while avoiding unwanted characteristics, such as fogging.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: March 19, 2013
    Assignees: C H Erbsloh KG, E I du Pont de Nemours and Company
    Inventors: Karlheinz Hausmann, Yefim Brun, Joerg Wallach
  • Patent number: 8394867
    Abstract: Improved polypropylene resin foamed beads that without detriment to the excellence in properties, such as compression properties and heat resistance, characterizing the polypropylene resin foamed beads, can provide a polypropylene resin foamed bead molded article with equal properties by an molding conducted at low heating temperature. There are disclosed polypropylene resin foamed beads composed of a polypropylene resin of 115 to 135° C. melting point and 500 MPa or higher Olsen flexural modulus. The amount of ash at the surface of the foamed beads is 3000 wt. ppm or less (including 0). With respect to the foamed beads, in the first DSC curve obtained by heating 1 to 3 mg of polypropylene resin foamed beads from room temperature to 200° C. at a temperature elevation rate of 10° C.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: March 12, 2013
    Assignee: JSP Corporation
    Inventors: Hidehiro Sasaki, Yasunori Nakamura
  • Patent number: 8388809
    Abstract: The invention relates to thermally expandable thermoplastic microspheres comprising a polymer shell made from ethylenically unsaturated monomers encapsulating a propellant, said ethylenically unsaturated monomers comprising from 20 to 80 wt % of acrylonitrile, from 20 to 80 wt % of monomers selected from the group consisting of esters of acrylic acid, from 0 to 10 wt % of methacrylonitrile, from 0 to 40 wt % of monomers selected from the group consisting of esters of methacrylic acid, the total amount of acrylonitrile and esters of acrylic acid constituting from 50 to 100 wt % of said ethylenically unsaturated monomers, and said propellant comprising at least one of methane, ethane, propane, isobutane, n-butane and isopentane. The invention further relates to the production and use of the microspheres.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: March 5, 2013
    Assignee: Akzo Nobel N.V.
    Inventors: Ove Nordin, Heléne Ström, Christina Nyholm, Anna Kron
  • Patent number: 8383693
    Abstract: An aerogel including a polymeric reaction product of (a) a first monomer including an aromatic compound having at least two unsaturated functional groups, and (b) a second monomer represented by the following Chemical Formula 1 and including at least two groups independently chosen from (meth)acrylate groups and NR?R? (where R? and R? are the same or different and are (meth)acryloyl groups) is provided. Each substituent is as defined in the specification.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Hee Kim, Myung-Dong Cho, Sang-Ho Park, Sung-Woo Hwang
  • Publication number: 20130046038
    Abstract: The disclosure provides a composition as well as a set of compositions and method for producing cellular or foamed or blown fluoropolymers such as perfluoropolymers and other thermoplastics articles allowing for the creation of a lower cost communications cable, conductor separator, conductor support-separator, jacketing, tape, wire insulation and in some cases a conduit tube as individual components or combined configurations that exhibit improved electrical, flammability and optical properties. Specifically, the foamable or blown fluoropolymer such as a perfluoropolymer cellular insulation composition comprises; talc and the selected fluoropolymer such as perfluoropolymers. Compounded pellets or products resulting in cellular or foamable products using these pellets has also been realized by providing the melt combination in the pellets of only talc and a perfluoropolymer.
    Type: Application
    Filed: October 24, 2012
    Publication date: February 21, 2013
    Applicant: Cable Components Group, LLC
    Inventor: Cable Components Group, LLC
  • Patent number: 8357727
    Abstract: Olefin polymer-based, durable, open-cell foam compositions, structures and articles derived from same; methods for preparation of such foams; and use of the dry durable foams in various applications are disclosed. Further described is use of the foams and structures and articles made of same in absorption, filtration, insulation, cushioning and backing applications, and in particular for odor removal, hygiene and medical applications due to, among other properties, good absorption capabilities, softness and/or flexibility of the foams and their recyclable nature.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: January 22, 2013
    Inventors: Gary M. Strandburg, Mark W. VanSumeren, Shaofu Wu, Luther E. Stockton
  • Patent number: 8354185
    Abstract: The present invention relates to a microporous polyethylene film for use as battery separator. The microporous polyethylene film according to the present invention is characterized by having a film thickness of 5-40 ?m, a porosity of 35-55%, a permeability from 2.5×10?5 to 10.0 10?5 Darcy, a puncture strength of at least 0.10 N/?m at 90° C., a puncture angle of at least 30° at 90° C., and a permeability from 2.0 10?5 to 8.0 10?5 Darcy after shrinking freely at 120° C. for 1 hour. The microporous polyethylene film in accordance with the present invention has very superior puncture strength and thermal stability at high temperature and takes place of less decrease of permeability due to low thermal shrinkage at high temperature, as well as superior permeability. Therefore, it can be usefully applied in a high-capacity, high-power battery to improve thermal stability and long-term stability of the battery.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: January 15, 2013
    Assignee: SK Innovation Co., Ltd.
    Inventors: Inhwa Jung, Jang-Weon Rhee, Gwigwon Kang, Youngkeun Lee, Yongkyoung Kim
  • Patent number: 8344037
    Abstract: A resin composition for cross-linking foam molding having a polymer composition which comprises 100 parts by weight of the following component (A) and 0.5 to 20 parts by weight of the following component (B); a foaming agent; and a cross-linking agent, wherein the component (A) is an ethylene-based polymer satisfying the following conditions (a1) to (a2): (a1) the density is 860 to 935 kg/m3, and (a2) the melt flow rate (MFR) is 0.1 to 10 g/10 minutes, and the component (B) is an ethylene-?-olefin copolymer satisfying the following conditions (b1) to (b3): (b1) the density is 890 to 925 kg/m3, (b2) the intrinsic viscosity [?] determined in a tetralin solution is 4 to 15 dL/g, and (b3) the activation energy of flow (Ea) is less than 50 kJ/mol.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: January 1, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Katsuhiro Yamada, Yoshinobu Nozue
  • Publication number: 20120301705
    Abstract: Coatings are disclosed comprising cellulosic polymers, silver nanowires, and surfactants that exhibit resistivities less than about 150 ohms per square and void densities less than about ? voids per square inch. Such coatings and transparent films made from such coatings are useful in electronics applications.
    Type: Application
    Filed: March 15, 2012
    Publication date: November 29, 2012
    Inventor: Karissa L. Eckert
  • Patent number: 8318824
    Abstract: Disclosed is a hydrophilic polyolefin sintered material which is a water-absorbing sintered material of a polyolefin resin ice having a graft chain composed of at least one molecular chain selected from hydrophilic ethylenically unsaturated group-containing monomers and their polymers. This hydrophilic polyolefin sintered material has an average porosity of 20-80% by volume and an open cell having an average pore diameter of 1-150 ?m.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: November 27, 2012
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Naoki Matsuoka, Minoru Yamamoto, Shigeru Nakajima, Takahiro Deguchi
  • Patent number: 8309619
    Abstract: A blowing agent blend for making thermoplastic polymer foams includes methyl formate. The blowing agent blend can further comprise at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent (e.g. an inorganic agent, a hydrocarbon, a halogenated hydrocarbon, a hydrocarbon with polar, functional group(s), water or any combination thereof), or a chemical co-blowing agent, or combinations thereof. The thermoplastic polymer foam can be an alkenyl aromatic polymer foam, e.g. a polystyrene foam. The blowing agent blend includes methyl formate and one or more co-blowing agents. The methyl formate-based blowing agent blends produce dimensionally stable foams that have improved resistance to flame spread. A process for the preparation of such foams is also provided.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: November 13, 2012
    Assignee: Pactiv LLC
    Inventors: Y. Paul Handa, Gary A. Francis, Glenn C. Castner, Mohammad Zafar
  • Patent number: RE44682
    Abstract: Described is a process for making closed cell fluoropolymer foam, and the foam so made. The process includes subjecting a fluoropolymer resin an inert gas at a pressure higher than atmospheric to drive gas into the resin, raising the temperature of the resin to or above its softening point, and reducing the pressure while maintaining the temperature at or above the softening point of the resin, in order to expand the resin to result in closed cell fluoropolymer foam. The resin is cross-linked prior to expansion. The resulting foams can be used in various applications, such as in flotation devices and for making thermal and/or acoustic insulation.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 31, 2013
    Assignee: Zotefoams PLC
    Inventors: Paul M. Jacobs, Roger Lock, Neil Witten, Michael Werth, Ramin Amin-Sanayei