Contains A Magnesium Compound As The Group Iia Metal Compound Patents (Class 526/124.2)
  • Publication number: 20110269926
    Abstract: A solid catalyst component for olefin polymerization includes a solid component obtained by causing a magnesium compound (a), a titanium halide compound (b), and an electron donor compound (c) to come in contact with each other, the titanium compound in an amount equivalent to a titanium content of 0.2 to 2.5 wt % in the solid catalyst component being washed away from the solid catalyst component by washing with heptane. A granular or spherical polymer that has high stereoregularity and a narrow particle size distribution can be obtained in high yield while suppressing production of a fine powder by polymerizing an olefin using a catalyst that includes the solid catalyst component.
    Type: Application
    Filed: December 17, 2009
    Publication date: November 3, 2011
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Hiroyuki Kono, Takashi Fujita
  • Publication number: 20110269925
    Abstract: The invention relates to a catalyst for the production of polyethylene comprising a solid reaction product obtained by reaction of: (a) a hydrocarbon solution comprising (1) an organic oxygen containing magnesium compound and (2) an organic oxygen containing titanium compound and (b) a compound comprising a transition metal from Group IV or V of Mendeleev's Periodic System of Chemical Elements and containing at least two halogen atoms. Preferably the catalyst is applied during the polymerisation of ethylene to obtain ultra high molecular weight polyethylene and to obtain bimodal polyethylene.
    Type: Application
    Filed: July 10, 2009
    Publication date: November 3, 2011
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventor: Nicolaas Hendrika Friederichs
  • Publication number: 20110263802
    Abstract: Methods of forming a catalyst, catalysts, polymerization processes and polymers formed therefrom are described herein. The method of forming a catalyst generally includes contacting an alkyl magnesium compound with an alcohol to form a magnesium alkoxide compound; contacting the magnesium alkoxide compound with a first titanium alkoxide and a first agent to form a reaction product “A”, wherein the titanium alkoxide and the first agent are nonblended individual components prior to contacting the magnesium alkoxide; and sequentially contacting the reaction product “A” with a second agent, followed by a third agent, and subsequently a first reducing agent to form a catalyst component.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Lei Zhang, William Gauthier
  • Patent number: 8044155
    Abstract: A catalyst system obtainable by the process comprising the steps of contacting an adduct of formula (I) MgT2.yAlQj(OR?)3-j??(I) wherein T is chlorine, bromine, or iodine; R? is a linear or branched C1-C10 alkyl radical; y ranges from 1.00 to 0.05; and j ranges from 0.01 to 3.00; with at least one metallocene compound having titanium as central metal and at least one ligand having a cyclopentadienyl skeleton.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: October 25, 2011
    Assignee: Stichting Dutch Polymer Institute
    Inventors: John Richard Severn, John Clement Chadwick
  • Patent number: 7989382
    Abstract: An olefin polymerization catalyst whose molar ratio of residual alkoxy groups to titanium is 0.60 or less, obtained by reacting (a1) an oxide of an element from Groups II to IV elements and which supports an alcohol-free halogen-containing magnesium compound, with (b1) an alcohol, at a hydroxyl group/magnesium molar ratio of 1.0 or more, then reacting that reaction mixture with (c1) a halogen-containing silicon compound, at a halogen/magnesium molar ratio of 0.20 or more, then reacting the resultant reaction mixture with (d1) an electron-donating compound, and (e) a halogen-containing titanium compound at a temperature of 120° C. to 150° C., washing the reaction mixture with an inert solvent, reacting the reaction mixture with (e) again at that temperature and washing the reaction mixture with an inert solvent, thereby providing a solid catalyst component for olefin polymerization.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: August 2, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 7947788
    Abstract: The invention is directed to a process for the preparation of a catalyst component wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2?x and each Alk, independently represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor. The invention also relates to a polymerization catalyst comprising the catalyst component and furthermore the invention relates to the polymerization of an olefin in the presence of the polymerization catalyst comprising the catalyst component.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: May 24, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Yves Johann Elizabeth Ramjoie, Sergei Andreevich Sergeev, Mark Vlaar, Vladimir Aleksandrovich Zakharov, Gennadii Dimitrievich Bukatov
  • Patent number: 7910670
    Abstract: A method of making an olefin oligomerization catalyst, comprising contacting a chromium-containing compound, a heteroatomic ligand, and a metal alkyl, wherein the chromium-containing compound comprises less than about 5 weight percent chromium oligomers. A method of making an olefin oligomerization catalyst comprising a chromium-containing compound, a nitrogen-containing compound, and a metal alkyl, the method comprising adding a composition comprising the chromium-containing compound to a composition comprising the metal alkyl. A method of making an olefin oligomerization catalyst comprising a chromium-containing compound, a nitrogen-containing compound, and a metal alkyl, the method comprising abating all or a portion of water, acidic protons, or both from a composition comprising the chromium-containing compound, a composition comprising the nitrogen-containing compound, or combinations thereof prior to or during the preparation of the catalyst.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: March 22, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Ronald G. Abbott, Bruce E. Kreischer, Eduardo J. Baralt, Brooke L. Small
  • Patent number: 7897710
    Abstract: Film formed from a polyethylene resin composition which obeys a dynamic rheological relationship at 190° C. between melt storage modulus G?, measured in Pa and at a dynamic frequency where the loss modulus G?=3000 Pa, and dynamic complex viscosity ?*100, measured in Pa·s at 100 rad/s, such that (a) G?(G?=3000)>?0.86?*100+z where z=3800, and at the same time (b) G?(G?=3000)>0.875?*100?y where y=650, and having an impact strength (DDT) of at least 250 g, measured on 15 ?m thick film (blown under conditions with BUR=5:1 and Neck Height=8×D) conditioned for 48 hours at 20°-25° C., according to ASTM D1709.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: March 1, 2011
    Assignee: Ineos Manufacturing Belgium NV
    Inventors: John Amos, Choon Kooi Chai, Luc Marie Ghislain Dheur
  • Patent number: 7893181
    Abstract: A polymer, and a process of producing the polymer, that comprises at least one olefin and has a density of 0.955 g/cc to 0.959 g/cc and a secant modulus 140,000 psi to 220,000 psi. A film that comprises the polymer, that has a thickness of 0.5 mil to 10 mil, a drop dart impact of 10 g to 200 g, a tear strength of 10 to 1200 g and a secant modulus of 140,000 psi to 220,000 psi.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: February 22, 2011
    Assignee: Fina Technology, Inc.
    Inventors: Gerhard Guenther, Curtis D. Clark
  • Patent number: 7893175
    Abstract: A method for making a solid catalytic component for a Ziegler-Natta catalyst includes contacting a particulate porous support with a solution of a hydrocarbon soluble organomagnesium precursor compound in a hydrocarbon solvent; and reacting said hydrocarbon soluble organo-magnesium precursor compound with an amount of aliphatic or aromatic alcohol, said amount being within an acceptable range of a molar equivalent of aliphatic or aromatic alcohol calculated according to formula (I): Equ Alkanol = 2 · [ ( mmole ? ? MgR / g ? ? support ) - 2.1 - 0.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: February 22, 2011
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Frank Wolf Spaether, David Andrew Presken
  • Patent number: 7888437
    Abstract: The process for producing an olefin polymer according to the present invention is characterized in that it comprises polymerizing an olefin having 3 or more carbon atoms in the presence of a catalyst for olefin polymerization containing a solid titanium catalyst component (I) which contains titanium, magnesium, halogen, and a cyclic ester compound (a) specified by the following formula (1): wherein n is an integer of 5 to 10, R2 and R3 are each independently COOR1 or a hydrogen atom, and at least one of R2 and R3 is COOR1; and R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is a hydrogen atom) in the cyclic backbone may be replaced with a double bond, and an organometallic compound catalyst component (II), at an internal pressure of the polymerization vessel which is 0.25 times or more as high as the saturation vapor pressure of the olefin at a polymerization temperature.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: February 15, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7888438
    Abstract: A catalyst for olefin polymerization of the present invention includes a solid titanium catalyst component (I) including titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is a hydrogen atom, and an organometal compound catalyst component (II). When this catalyst for olefin polymerization is used, an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: February 15, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7875568
    Abstract: The present invention provides a method for supporting a nonmetallocene olefin polymerization catalyst, comprising the following steps: a carrier reacts with a chemical activator to obtain a modified carrier; a magnesium compound is dissolved in a tetrahydrofuran-alcohol mixed solvent to form a solution, then the modified carrier is added to the solution to perform a reaction, then filtered and washed, dried and suction dried to prepare a composite carrier; a nonmetallocene olefin polymerization catalyst is dissolved in a solvent, and then reacts with said composite carrier, then is washed and filtered, dried and suction dried, to prepare a supported nonmetallocene olefin polymerization catalyst. The present invention further relates to a supported nonmetallocene olefin polymerization catalyst as prepared by this method.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: January 25, 2011
    Assignee: Yangzi Petrochemical Company Co., Ltd.
    Inventors: Houliang Dai, Houping You, Chuanfeng Li, Xiaoli Yao, Lijin Zhou, Xiaoqiang Li, Yarning Wang, Zhonglin Ma, Jiye Bai
  • Patent number: 7867939
    Abstract: The present invention relates to a catalyst for polymerization of ethylene, a process for preparing the same, and a method for controlling kinetic behavior of said catalyst in ethylene polymerization. Said catalyst contains a titanium-containing main catalyst component and a co-catalyst. The titanium-containing main catalyst component is prepared by reacting the following components: (1) a hydrocarbon solution of dialkylmagnesium compound of formula RMgR?.yEt3Al; (2) an alcohol compound of formula R1OH; (3) a silica support thermally activated at 200-800° C.; (4) an alkylaluminum compound of formula R2nAlCl3-n; (5) a linear halogenated alkane of formula R3X; and (6) a titanium compound of formula Ti(OR4)mCl4-m. The co-catalyst is an organoaluminum compound. Three different types of ethylene polymerization kinetic curves can be obtained by adjusting the temperature for thermally activating the silica support and the ratio of titanium to magnesium in the titanium-containing main catalyst component.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: January 11, 2011
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Chemical Industry
    Inventors: Mingwei Xiao, Shijiong Yu, Xiaofeng Ye
  • Patent number: 7851578
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for succinate-containing Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity along with broadened molecular weight distribution.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 14, 2010
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth P. Blackmon, Joseph L. Thorman, Shabbir Ahmedbhai Malbari, Michael Wallace
  • Patent number: 7834117
    Abstract: A process for preparing crystalline ethylene (co)polymers comprising (co)polymerizing ethylene in the presence of carried out in the presence catalyst system comprising (a) a solid catalyst component comprising Ti, Mg, halogen, ORI groups, where RI is a C1-C12 hydrocarbon group optionally containing heteroatoms, having ORI/Ti molar ratio of at least 0.5, an amount of titanium, with respect to the total weight of said solid catalyst component, higher than 4% by weight, and showing a specific pattern of the SS-NMR; and (b) an aluminum alkyl compound as a cocatalyst. The process allows to obtain in good yields ethylene polymers with narrow MWD.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: November 16, 2010
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Isabella Camurati, Tiziano Dall'Occo, Dario Liguori, Gianni Vitale
  • Publication number: 20100273962
    Abstract: A polyethylene may be prepared using a mixture of a silica supported catalyst and a magnesium chloride supported catalyst. By changing the ratio of the two catalysts, the polyethylene produced may have a varying bulk density and shear response. The method allows for the tuning or targeting of properties to fit a specific application, such as a blow molding or vapor barrier film.
    Type: Application
    Filed: July 8, 2010
    Publication date: October 28, 2010
    Applicant: Fina Technology, Inc.
    Inventors: Vincent Barre, Kayo Vizzini, Steven Gray
  • Patent number: 7786237
    Abstract: A polyethylene may be prepared using a mixture of a silica supported catalyst and a magnesium chloride supported catalyst. By changing the ratio of the two catalysts, the polyethylene produced may have a varying bulk density and shear response. The method allows for the tuning or targeting of properties to fit a specific application, such as a blow molding or vapor barrier film.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: August 31, 2010
    Assignee: Fina Technology, Inc.
    Inventors: Vincent Barre, Kayo Vizzini, Steven D. Gray
  • Patent number: 7781553
    Abstract: External donor systems, catalyst systems and olefin polymerization processes are described herein. The external donor systems generally include a first external donor represented by the general formula SiR2m(OR3)4-m, wherein each R2 is independently selected from alkyls, cycloalkyls, aryls and vinyls, each R3 is independently selected from alkyls and m is from 0 to 4. The external donor systems further include a second external donor represented by the general formula SiR4m(OR5)4-m, wherein each R4 is independently selected from alkyls, cycloalkyls, aryls and vinyls, each R5 is independently selected from alkyls, m is from 0 to 4 and at least one R4 is a C3 or greater alkyl.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: August 24, 2010
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Blackmon, Shabbir Malbari
  • Patent number: 7776986
    Abstract: Butene-1 (co)polymers characterized by the following properties: content of butene-1 units in the form of isotactic pentads (mmmm) from 25 to 55%; intrinsic viscosity [?] measured in tetraline at 135° C. from 1 to 3 dL/g; content of xylene insoluble fraction at 0° C. from 3 to 60%; and a ratio ES2/ES1?1, where ES1 is the boiling diethyl ether soluble fraction determined on the polymer as such and ES2 is the boiling diethyl ether soluble fraction determined after milling the polymer. The butene-1 (co)polymers show a good balance between processability and elastomeric behavior.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: August 17, 2010
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Dino Bacci, Friederike Morhard, Fabrizio Piemontesi, Maria Silvia Tonti, Gianni Vitale, Giampiero Morini, Anteo Pelliconi
  • Patent number: 7772346
    Abstract: Propylene polymers having a content of isotactic pentads (mmmm) higher than 97%, molecular weight distribution, expressed by the formula (a) ratio, equal to or higher than 6 and a value of formula (b) ratio equal to or lower than 5.5. The said polymers are prepared in the presence of a particular combination of Ziegler-Natta solid catalyst components and highly stereoregulating electron-donor compounds. Laminated articles, in particular bi-axially oriented films and sheets, can be prepared with the said polymers.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: August 10, 2010
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Els Meesters, Jean News, Alessandro Guidicini
  • Patent number: 7767772
    Abstract: Spherical particles comprising magnesium alcoholate and having a poured cone height of less than 17 mm are prepared by reacting magnesium, an alcohol or a mixture of various alcohols and a halogen and/or an optionally organic halogen compound with one another at below the boiling point of the alcohols. The spherical particles are employed as a precursor for olefin polymerization catalysts.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: August 3, 2010
    Assignee: Degussa AG
    Inventors: Michael Grün, Klaus Heyne, Claudine Mollenkopf, Sam Lee, Roger Uhrhammer
  • Patent number: 7759445
    Abstract: For the (co) polymerization of ethylene with other 1-olefins, a Ziegler catalyst which comprises the product from the reaction of a magnesium alkoxide suspended or dispersed as ge in an inert solvent with a tetravalent transition metal compound and is subjected to a thermal after-treatment for a period of not more than 180 minutes is prepared. The catalyst gives a high yield of a polymer powder which has a broad molar mass distribution and is best suited to the production of films, hollow bodies and pipes.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: July 20, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Friedhelm Gundert, Maria Schmitt (nee Fusto), Martin Schneider
  • Patent number: 7718563
    Abstract: The invention provides a process for producing an olefin polymerization catalyst, comprising an organometallic compound of a transition metal or of an actinide or lanthanide, in the form of solid catalyst particles, comprising forming a liquid/liquid emulsion system which comprises a solution of one or more catalyst components dispersed in a solvent immiscible therewith; and solidifying said dispersed phase to convert said droplets to solid particles comprising the catalyst and optionally recovering said particles.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: May 18, 2010
    Assignee: Borealis Technology Oy
    Inventors: Peter Denifl, Erik Van Praet, Michael Bartke, Marita Oksman, Marja Mustonen, Thomas Garoff, Kari Pesonen
  • Patent number: 7718742
    Abstract: A synthesis process of trans-1,4-polyisoprene, using bulk precipitation polymerization of isoprene catalyzed by supported titanium catalyst TiCl4/MgCl2. The process includes prepolymerizing carried out in a prepolymerization reactor with an anchor agitator; polymerizing carried out in a polymerization reactor with a helical ribbon agitator; and devolatilizing and drying carried out in a vacuum rake dryer. Not only does the process require lower energy consumption and thus a lower production cost, but it also eliminates the emission of three wastes.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: May 18, 2010
    Assignee: Qingdao Qust Fangtai Material Engineering Co., Ltd.
    Inventors: Baochen Huang, Zhichao Zhao, Wei Yao, Aihua Du, Yongxian Zhao
  • Publication number: 20100113716
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerisation catalyst component in particulate form having an improved high temperature activity and the use thereof in a process for polymerising olefins.
    Type: Application
    Filed: December 18, 2009
    Publication date: May 6, 2010
    Applicant: Borealis Polymers Oy
    Inventors: Timo Leinonen, Peter Denifl, Holger Pöhler
  • Publication number: 20100099833
    Abstract: The component of magnesium halide adduct is represented by MgX2 mROH nE pH2O, in which X is chlorine, bromine, C1-C14alkoxy or aryloxy; R is C1-C12 alkyl, C3-C10 cycloalkyl or C6-C10 aryl; E is represented by the general formula (II), wherein R1 and R2 which can be the same or different to each other, are hydrogen or linear or branched C1-C10 hydrocarbon groups, C3-C10 cycloalkyl, C6-C10 aryl, C7-C10 alkaryl or aralkyl, optionally, the said aryl or alkylaryl or arylalkyl is substituted by one or more halogen in the aromatic ring, R1 and R2 can form ring or fused ring. R3 and R4 have the same meaning of R1 and R2 except that they can't be hydrogen, m is 1-5, n is 0.005-1.0, and p is 0-0.8. Spherical catalyst component and catalyst made from the above spherical magnesium halide adduct and their use in polymerising the alpha-olefins CH2=CHR and their mixture are provided, in which R is hydrogen or C1-C12 alkyl or aryl.
    Type: Application
    Filed: April 6, 2007
    Publication date: April 22, 2010
    Inventors: Xianzhi Xia, Yuexiang Liu, Xinsheng Wang, Tianyi Zhang, Mingzhi Gao, Ping Gao, Suzhen Qiao, Maoping Yin, Ying Chen, Renqi Peng, Jing Ma
  • Patent number: 7683003
    Abstract: A method for identifying a catalyst composition for use in the heterogeneous Ziegler-Natta addition polymerization of an olefin monomer, said catalyst composition comprising a procatalyst comprising a magnesium and titanium containing procatalyst and a cocatalyst said method comprising: a) providing a library comprising at least one procatalyst compound, b) forming a catalyst composition library by contacting the member of said procatalyst library with one or more cocatalysts and contacting the resulting mixture with an olefin monomer under olefin polymerization conditions thereby causing the polymerization reaction to take place, c) measuring at least one variable of interest during the polymerization, and d) selecting the catalyst composition of interest by reference to said measured variable.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 23, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Richard E. Campbell, Jr., Sylvie Desjardins, Phillip D. Hustad, Duane R. Romer
  • Patent number: 7671149
    Abstract: The present invention provides a process for preparing a catalyst useful in gas phase polymerization of olefins wherein the hydrogen response of the catalyst can be improved by using a ketone as the electron donor in the catalyst. The catalyst consists of compounds of Ti, Mg, Al and a ketone preferably supported on an amorphous support.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 2, 2010
    Assignees: Nova Chemical Corporation, INEOS Europe Limited
    Inventors: Mark Kelly, Brian Stephen Kimberley
  • Patent number: 7666810
    Abstract: A magnesium titanium olefin polymerization procatalyst is prepared by A) reacting a diorganomagnesium compound with a source of active chlorine, (with the proviso that the amount of chlorine is insufficient to completely convert the diorganomagnesium to magnesium dichloride); then B) removing unreacted diorganomagnesium from the reaction product; then depositing a tetravalent titanium species on the reaction product. This procatalyst is highly active for the solution polymerization of olefins when combined with a cocatalyst.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: February 23, 2010
    Assignee: NOVA Chemicals (International) S.A.
    Inventor: Qinyan Wang
  • Patent number: 7666960
    Abstract: A process for the copolymerization of ethylene and ?-olefins which utilizes a mixed modifier comprised of a conjugated diene and alkoxysilane is disclosed.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: February 23, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Mark K. Reinking
  • Patent number: 7659223
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having an improved high temperature activity and the use thereof in a process for polymerizing olefins.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 9, 2010
    Assignee: Borealis Technology Oy
    Inventors: Timo Leinonen, Peter Denifl, Holger Pöhler
  • Patent number: 7655590
    Abstract: Catalyst components, methods of forming catalyst compositions, polymerization processes utilizing the catalyst compositions and polymers formed thereby are described herein. The methods generally include providing a magnesium dialkoxide compound, contacting the magnesium dialkoxide compound with a first agent to form a solution of a reaction product “A1”, contacting the solution of reaction product “A1” with a reducing agent to form a reduced reaction product “A2”, contacting reduced reaction product “A2” with a second agent to form a solid reaction product “A3”, contacting solid reaction product “A3” with a metal halide to form reaction product “B” and contacting reaction product “B” with an organoaluminum compound to form a catalyst component.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 2, 2010
    Assignee: Fina Technology, Inc.
    Inventors: Henry Enriquez, Kayo Vizzini, Steven Gray
  • Patent number: 7649061
    Abstract: The invention relates to a process for preparing a poly-1-olefin by polymerization of a 1-olefin of the formula R4CH?CH2, where R4 is hydrogen or an alkyl radical having from 1 to 10 carbon atoms, in suspension, in solution or in the gas phase, at a temperature of from 20 to 200° C. and a pressure of from 0.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: January 19, 2010
    Assignee: Basell Polyolefine GmbH
    Inventor: Friedhelm Gundert
  • Patent number: 7649062
    Abstract: A solid titanium catalyst component (I) of the present invention is characterized in that it contains titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom. When using this solid titanium catalyst component (I), an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: January 19, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7638584
    Abstract: A process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of a catalyst system which comprises a bridged indenoindolyl transition metal complex on a support material, an alkylalumoxane, a titanium tetralkoxide, and a branched alkyl aluminum compound. The process provides polyethylenes with low density from ethylene alone.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: December 29, 2009
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Ronald J. Clemons
  • Patent number: 7638585
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component and an antistatic agent. Also disclosed are methods of making a polyolefin involving contacting an olefin with a catalyst system containing an antistatic agent. The use of the antistatic agent added to the catalyst system can improve flowability and/or dispersibility of the catalyst system.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: December 29, 2009
    Assignee: BASF Catalysts, LLC
    Inventors: Stephen L. Van Pelt, Neiman T. Eaton
  • Publication number: 20090312507
    Abstract: The present invention relates of a polymerization process for the production of propylene polymers with low ash content using a Ziegler-Natta catalyst with a diether as internal electron donor. The present invention also relates to the propylene polymers produced with said process as well as to films, fibers and nonwovens made with said propylene polymer.
    Type: Application
    Filed: April 24, 2007
    Publication date: December 17, 2009
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Alain Standaert, Jerome Gromada, David Vandewiele
  • Patent number: 7618913
    Abstract: A high activity magnesium-based supported catalyst component useful in a catalyst system for the compolymerization of ethylene and alpha-olefin and a process for preparing the catalyst component is described. In the process, alkoxysilane ester is contacted with a halogen-substituted silane to form an organic silicon complex. Optionally, the organic silicon complex is contacted with an aminosilane compound to form an organic silicon complex containing nitrogen. The organic silicon complex containing nitrogen or the organic silicon complex is contacted with a transition metal compound to form an organic silicon complex containing transition metal. The organic silicon complex containing transition metal is then contacted with a substituted aromatic ring nitrogen compound to form a fourth reaction complex, which is then contacted with a magnesium-based composite support that has been prepared in situ by reacting metallic magnesium with an alkyl or aromatic halide to form the catalyst component.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 17, 2009
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Chih-Jian Chen
  • Patent number: 7615602
    Abstract: The invention relates to a process for producing a polypropylene film having a small dynamic coefficient of friction (CoF) and to a film obtained by this process. The invention further relates to the use of a polypropylene composition in a film forming process in order to reduce the required amount of slip agent for achieving a certain CoF and, alternatively, to the use of a polypropylene composition in a film forming process in order to reduce the required storage time for achieving a certain CoF.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: November 10, 2009
    Assignee: Borealis Technology Oy
    Inventors: Johannes Wolfschwenger, Manfred Kirchberger, Peter Niedersuess, Holger Poehler, Peter Denifl, Timo Leinonen
  • Patent number: 7605215
    Abstract: A process for producing an olefin copolymerization catalyst, comprising the step of contacting, with one another, (A) a solid catalyst component containing a titanium atom, a magnesium atom and a halogen atom, (B) an organoaluminum compound and/or organoaluminumoxy compound, and (C) a nitrogen-containing aromatic heterocyclic compound, whose one or more carbon atoms adjacent to its nitrogen atom are linked to an electron-donating group, or a group containing an electron-donating group; and a process for producing an olefin copolymer using the an olefin copolymerization catalyst.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: October 20, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shinya Nakahara, Shin-ichi Kumamoto
  • Patent number: 7582712
    Abstract: Methods and apparatus to form a catalyst precursor, comprising combining in a reactor magnesium, an alkoxysilane compound, a halogenized silicon compound, a halogenized transition metal compound, a substituted aromatic furan compound having a structural formula, and an alkyl halide or aromatic halide compound to obtain a solid catalyst precursor, wherein the alkoxysilane compound and halogenized silicon compound are combined prior to either being exposed to the halogenized transition metal compound, and wherein the alkyl halide or aromatic halide compound is introduced to the reactor as the final step.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 1, 2009
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu
  • Patent number: 7566676
    Abstract: The present invention relates to a preparation method of solid titanium catalyst for olefin polymerization comprising the steps of: (1) preparing a magnesium compound solution by dissolving a magnesium halide compound into a mixed solvent of a cyclic ether and one or more of alcohol; (2) preparing a carrier by adding firstly a titanium halide compound to the magnesium compound solution at low temperature, elevating the temperature of the resulted solution or aging it, and then thereto adding secondly the titanium halide compound additionally; (3) preparing a titanium catalyst by reacting the carrier with a titanium compound and an electron donor; and (4) washing the titanium catalyst with hydrocarbon solvent at high temperature.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 28, 2009
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Ho-Sik Chang, Ki-Hwa Lee
  • Patent number: 7560521
    Abstract: A catalyst component for the polymerization of olefins comprising a titanium compound, a Mg-dihalide, a difunctional electron donor compound (ED) selected from diesters, diketones, diamines or diethers, and a monofunctional electron donor compound (MD) selected from ethers, esters, amines or ketones, wherein a molar ratio ED/MD is higher than 10.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: July 14, 2009
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Collina, Ofelia Fusco, Diego Brita
  • Patent number: 7531605
    Abstract: A process for producing a polyolefin-based resin composition comprises, in the first polymerization stage, polymerizing an ?-olefin having 4 to 20 carbon atoms, a styrene or a cyclic olefin in the presence of a specific catalyst and, in the second polymerization stage, copolymerizing the obtained polymer with an ?-olefin having 2 to 20 carbon atoms, a styrene or a cyclic olefin in the presence of a polyene. A polypropylene composition has a branching parameter a and a branching index g in specific ranges. The curve showing the change in viscosity under elongation with time, the degradation parameter D or the content of a high molecular weight component is specified. The polyolefin-based resin composition exhibits excellent uniformity and improved workability in melting due to improved tension in melted condition. The polypropylene composition exhibits excellent melting elasticity and secondary workability and provides foamed molded articles, sheets and blow molded articles.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: May 12, 2009
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shuji Machida, Masayuki Shinohara, Tatsuya Housaki
  • Publication number: 20090118446
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2?CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from ?-butyrolactone derivatives of a particular formula. Said catalyst components, when used in the polymerization of olefins and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
    Type: Application
    Filed: May 27, 2005
    Publication date: May 7, 2009
    Applicant: Basell Poliolefine Italia s.r.l.
    Inventors: Yuri Gulevich, Giulio Balbontin, Remco Kelder, Giampiero Morini, Jan Dirk Van Loon
  • Patent number: 7528091
    Abstract: Solid fine particles which contain a magnesium atom, an aluminum atom and a C1-20 alkoxy group simultaneously, are insoluble in a hydrocarbon solvent, and have an average particle diameter of 3 to 80 ?m, and an olefin polymerization catalyst containing the solid fine particles and a transition metal compound in the groups 3 to 11 in the periodic table, exhibit a very high olefin polymerization activity without combination with an expensive organoaluminum oxy compound or organoboron compound and maintains a high activity in polymerization for a long time, and an olefin polymer excellent in powdery properties can be produced by using the olefin polymerization catalyst. The transition metal compound in the groups 3 to 11 in the periodic table includes a transition metal compound having a ligand containing two or more atoms selected from a boron atom, a nitrogen atom, an oxygen atom, a phosphorus atom and a sulfur atom.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 5, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Nakayama, Hideki Bando, Yoshiho Sonobe, Makoto Mitani, Terunori Fujita
  • Patent number: 7521512
    Abstract: A catalyst composition for the polymerization of olefins comprising the combination of one or more Ziegler-Natta procatalysts comprising one or more transition metal compounds; one or more aluminum containing cocatalysts; and a mixture comprising two or more selectivity control agents (SCA's), corresponding to the formula: (CH3O)nSi(OR)4-n, wherein R, independently each occurrence, is C2-12 alkyl, C3-12 cycloalkyl, C6-18 aryl or (poly)alkyl-substituted aryl, or C7-18 poly(aryl)-substituted alkyl, and n is an integer from zero to 4.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 21, 2009
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Stanley E. Wilson
  • Patent number: 7504352
    Abstract: A catalyst for use in the formation of polypropylene is disclosed that comprises a titanium compound having at least one titanium-halogen bond, supported on an activated, amorphous magnesium dihalide support that is essentially free of alkoxy functionality, with a titanium metal content of no more than about 2 wt %, based on the weight of the support, and an internal donor component.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: March 17, 2009
    Assignee: Basell Polidefine Italia s.r.l.
    Inventors: Ronald Alan Epstein, William Thomas Wallack
  • Patent number: 7504464
    Abstract: A gas phase polymerization process comprising: (1) preparing a solution of a catalyst precursor comprising a mixture of magnesium and titanium compounds, an electron donor and a solvent; (2) adding a filler to the solution from step (1) to form a slurry; (3) spray drying the slurry from step (2) at a temperature of 100 to 140° C. to form a spray dried precursor, (4) slurring the spray dried precursor from step (3) in mineral oil, (5) partially or fully pre-activating the catalyst precursor by contacting the slurry of (4) with one or more Lewis Acids, and (6) transferring the partially or fully activated precursor from step (5) into a gas phase reactor in which an olefin polymerization reaction is in progress.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: March 17, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Stephanie M. Whited, Michael D. Turner, Michael A. Kinnan, Robert J. Jorgensen