Silicon Present In Organic Non-metal Compound Patents (Class 526/128)
  • Patent number: 6608152
    Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: August 19, 2003
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, Richard Kingsley Stuart, Jr.
  • Publication number: 20030144436
    Abstract: A solid metallocene-containing catalyst system of an organoaluminoxane, at least one metallocene having at least one olefinically unsaturated substituent and a polyolefin is disclosed. The polyolefin is formed from at least one olefin polymerized in the presence of a combination of a solution of the organoluminoxane in an aromatic liquid, the at least one metallocene, and an aliphatic liquid. The solid metallocene-containing catalyst system may also include one or more the particulate solids.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 31, 2003
    Inventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
  • Publication number: 20030139545
    Abstract: A clay-filled polyolefin composition and process for making it are disclosed. The process involves treatment of a non-acid-treated smectite clay with a Ziegler-Natta catalyst in the presence of a hydrocarbon and subsequent polymerization of an olefin in the presence of the treated clay and an organoaluminum cocatalyst. Results indicate that filled compositions produced by this process contain exfoliated clay.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 24, 2003
    Inventors: Douglas D. Klendworth, Mark K. Reinking
  • Publication number: 20030130108
    Abstract: The present invention provides a Ziegler-Natta catalyst useful in solution processes for the polymerization of olefins having a low amount of aluminum and magnesium. The catalysts of the present invention contain an alkyl silanol and have a molar ratio of Si:Ti from 0.25:1 to 4:1. The catalysts are effective for the solution polymerization of olefins at high temperatures.
    Type: Application
    Filed: December 9, 2002
    Publication date: July 10, 2003
    Applicant: NOVA Chemicals (International) S.A.
    Inventor: Isam Jaber
  • Patent number: 6586538
    Abstract: A novel process for producing homopolymers and interpolymers of olefins which involves contacting an olefin and/or an olefin and at least one or more other olefin(s) under polymerization conditions with a metallocene catalyst and dinitrogen monoxide in amounts sufficient to reduce the electrostatic charge in the polymerization medium. Also provided is a process for reducing electrostatic charge in the production of polyolefins by introducing dinitrogen monoxide into the polymerization medium.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: July 1, 2003
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, Jeffrey James Vanderbilt, Roxanna Lea Whitfield, Glenn Edward Moore
  • Patent number: 6583237
    Abstract: An olefin polymer production method is provided by which olefin polymers can be obtained at high polymerization activity under the conditions of reduced hydrogen concentration. Silyl-terminated olefin polymers may be obtained by this method. The olefin is polymerized using a catalyst of a transition metal compound (A) of Groups 3 to 10 of the periodic table, at least one compound (B) selected from organoaluminum oxycompounds (B-1), compounds (B-2) that react with the abovementioned compound (A) to form an ion pair, and organoaluminum compounds (B-3), under the coexistence of an organosilicon compound (C) or dialkylzinc compound (D) and in the presence or absence of hydrogen (E).
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: June 24, 2003
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Jun-ichi Imuta, Tetsuhiro Matsumoto
  • Patent number: 6583082
    Abstract: Functional polymers containing hydroxyl groups as supports for use with catalysts can increase the activity of these catalysts which results in improved ethylene polymerization. The present invention seeks to provide catalysts with improved activity by incorporating 2-hydroxyethyl methacrylate (HEMA) into the support of the catalyst.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: June 24, 2003
    Assignee: The Governors of the University of Alberta
    Inventors: Peter Phung Minh Hoang, Charles Russell, Jason Roy Kearns, Sieghard E. Wanke, David T. Lynch, Nai-Hong Li
  • Patent number: 6579961
    Abstract: Novel ethylene styrene interpolymers having triads with double reverse styrene incorporation (SSS) may be prepared in the presence of a transition metal phosphinimine compound and an activator.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: June 17, 2003
    Assignee: Nova Chemicals (International)S.A.
    Inventors: Qinyan Wang, Patrick Lam, Zengrong Zhang, Garry Yamashita, Lianyou Fan
  • Patent number: 6566464
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for &agr;-olefin polymerization, and a process for producing an &agr;-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with at least one member selected from the group consisting of an electron donor compound (E1) and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: May 20, 2003
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Patent number: 6562924
    Abstract: A process for the gas-phase (co-)polymerization of olefins in a fluidized bed reactor using a metallocene catalyst in that the polymerization is preformed in the presence of a process aid additive selected from at least one of 1) a polysulfone copolymer, 2) a polymeric polyamine, or 3) an oil-soluble sulfonic acid.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: May 13, 2003
    Assignee: BP Chemicals Limited
    Inventors: Gacem Benazouzz, Michel Camoin, Laurent Coupier, Jean-Pierre Isnard, Frederic Robert Marie Michel Morterol, John Paul McNally, Renaud Viguier
  • Patent number: 6562919
    Abstract: This application discloses triphenyl carbenium NCA's as catalyst activators for a class of asymmetrically bridged hafnocene catalyst precursors. These catalyst precursors are activated into olefin polymerization catalysts and are suitable for gas, solution, and slurry-phase polyermization reactions. The disclosed bridge is methylenyl- or silanylenyl-based and is optionally, alkyl or aryl substituted. The catalytic activity of the disclosed hafnocene catalyst precursors is substantially enhanced over identical catalysts that are activated with other activators.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: May 13, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna Jean Crowther, Bernard Jean Folie
  • Patent number: 6559249
    Abstract: The present invention provides a catalyst for producing an ultra high molecular weight polyethylene and also a method for preparation of an ultra high molecular weight polyethylene with the use of said catalyst. The catalyst of the present invention is prepared by a process comprising: (i) producing a magnesium compound solution by contact-reacting a magnesium compound and an aluminum or boron compound with alcohol; (ii) contact-reacting the said solution with an ester compound containing at least one hydroxy group and a silicon compound containing an alkoxy group; and (iii) producing of a solid titanium catalyst by adding a mixture of a titanium compound and a silicon compound thereto. The catalyst prepared by the present invention has excellent catalytic activity, and it helps to produce an ultra-high molecular weight polyethylene with large bulk density and narrow particle distribution without too large and minute particles.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: May 6, 2003
    Assignee: Samsung General Chemicals Co. Ltd.
    Inventors: Chun-Byoung Yang, Ho-Sik Chang, Weon Lee
  • Patent number: 6559250
    Abstract: The present invention relates to a method of homo- or co-polymerization of &agr;-olefin by means of using a catalyst system which comprises the following components: (1) a solid complex titanium catalyst produced by means of a production method comprising the following steps: (a) preparing a magnesium compound solution by dissolving a magnesium halide compound and a compound of Group IIIA of the Periodical Table in a solvent of mixture of cyclic ester, one or more types of alcohol, a phosphorus compound, and an organic silane; (b) precipitating the solid particles by reacting said magnesium compound solution with a transitional metal compound, a silicon compound, a tin compound, or the mixture thereof; and (c) reacting said precipitated solid particles with a titanium compound and electron donors; (2) an organometallic compound of metal of Group IIIA of the Periodical Table; and (3) external electron donors comprising three or more types of organo-silicon compounds, wherein the melt flow rates of the homopoly
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 6, 2003
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Ki-Su Ro, Il-Seop Kim, Chun-Byung Yang, Moon-Young Shin
  • Patent number: 6555632
    Abstract: Process for the preparation of a catalytic system according to which a mixture of a halogenated neutral metallocene derived from a transition metal chosen from groups IIIB, IVB, VB and VIB of the Periodic Table and of an organoaluminium compound is prepared and an ionising agent is added thereto. (Co)polymerisation process according to which a mixture of a halogenated neutral metallocene as defined above and of an organoaluminium compound is prepared, the olefin is brought into contact with this mixture and an ionising agent is added thereto.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: April 29, 2003
    Assignee: Solvay Polyolefins Europe-Belgium (Societe Anonyme)
    Inventor: Nicola Zandona
  • Patent number: 6552136
    Abstract: Provided are a catalyst for olefin polymer production, which contains an organosilicon compound having a specific structure and with which olefin polymers produced have increased stereospecificity and increased melt fluidity; and a method for producing such olefin polymers.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: April 22, 2003
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Tsuyoshi Ota, Takanori Sadashima, Yasunori Kadoi, Toshio Isozaki, Kiyokazu Katayama
  • Patent number: 6552210
    Abstract: Specifically substituted metallocenes can be used in the polymerization of olefins. The novel compounds contain a cationic group as substituents and are suitable as constituents of a catalyst system for the polymerization of olefins.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: April 22, 2003
    Assignee: Targor GmbH
    Inventors: Markus Göres, Hans Bohnen
  • Patent number: 6548441
    Abstract: This invention provides a catalyst composition for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises an organometal compound, an organoaluminum compound, and a treated solid oxide compound comprising nickel, a halogen, and a solid oxide compound.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: April 15, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Anthony P. Eaton, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 6545107
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an molybdenum-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: April 8, 2003
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh
  • Publication number: 20030064882
    Abstract: A method of making a solid procatalyst composition for use in a Ziegler-Natta olefin polymerization catalyst composition, said method comprising:
    Type: Application
    Filed: May 1, 2002
    Publication date: April 3, 2003
    Inventors: Peter A. Kilty, Thomas R. Cuthbert
  • Patent number: 6541582
    Abstract: A solid catalyst component for the polymerization of olefins CH2═CHR, in which R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, the solid catalyst component including Mg, Ti, halogen and an electron donor selected from &bgr;-substituted glutarates other than diisopropyl &bgr;-methyl glutarate and which are not alpha-substituted. The catalyst component, when used in the polymerization of olefins, and in particular polypropylene, is capable of providing polymers in high yield and with a high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: April 1, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin
  • Patent number: 6534606
    Abstract: Described are catalyst systems having aluminium alkyl complexes of the formula (I) described herein applied to magnesium chloride, SiO2 or SiO2 in combination with MgCl2 as support in the presence of titanium halides or vanadium halides and internal and, if desired, external donors act both as cocatalysts and as stereoselectivity promoters in heterogeneous polymerizations of &agr;-olefins. Also described are polymerization methods using these catalyst systems.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: March 18, 2003
    Assignee: Merck Patent Gesellschaft Mit Beschränkter Haftung
    Inventors: Katrin Köhler, Eike Poetsch, Herbert Schumann, Sebastian Dechert, Walter Kaminsky, Andre Laban, Manfred Arnold, Jana Knorr, Birgit Corinna Wassermann
  • Patent number: 6534609
    Abstract: Methods are disclosed for preparing a highly active solid metallocene-containing catalyst system and its use in the polymerization of olefins. The catalyst system is prepared by creating a catalyst system solution by combining an aluminoxane with a metallocene having a substituent which has olefinic unsaturation in an aliphatic liquid to form a liquid catalyst system, conducting prepolymerization of an olefin in the liquid catalyst system, preferably in multiple stages, and separating the resulting solid metallocene-containing catalyst system from the reaction mixture. Also polymerization of olefins using the inventive solid catalyst system is disclosed.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: March 18, 2003
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
  • Patent number: 6531553
    Abstract: This invention relates to a conventional supported heterogeneous Ziegler-Natta catalyst for the polymerization of olefins. It has been found that adding a lithium compound to a transition metal catalyst component and then adding an organoaluminum co-catalyst and an organosilicon electron donor produces a catalyst which yields polymer with increased molecular weight. The lithium compound is of the general formula LiCp wherein Cp is a cyclopentadienyl or substituted cyclopentadienyl and is preferably lithium cyclopentadienide or lithium indene. Preferably, the molar ratio of lithium compound/transition metal is at least 0.2.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 11, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Edwar Shoukri Shamshoum, Christopher Bauch
  • Patent number: 6521560
    Abstract: This invention provides a solid titanium catalyst component which comprises magnesium, titanium, halogen and an electron donor, is free from elimination of titanium when washed with hexane at room temperature, and has a titanium content decrease ratio of less than 15 % by weight when washed with o-dichlorobenzene at 90° C. The catalyst component can be prepared by a process wherein solid titanium (i) which is free from elimination of titanium when washed with hexane at room temperature is contacted with a polar compound having a dipole moment of 0.50 to 4.00 Debye to decrease the titanium content by at least 25 % by weight, whereby a solid titanium catalyst component having a weight ratio of an electron donor to titanium of at least 6 is prepared. Olefin polymerization catalyst containing the solid titanium catalyst component can be used for (co)polymerization of olefins with high activity to obtain a polyolefin of high stereoregularity in decreased quantities of a low stereoregular polyolefin.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: February 18, 2003
    Assignee: Mitsui Chemicals Inc.
    Inventors: Shinichi Kojoh, Mamoru Kioka
  • Patent number: 6512061
    Abstract: The invention provides a process for producing polypropylene and/or random copolymers of propylene type using a stereoregular catalyst which comprises a titanium-containing solid catalyst component (A), an organoaluminum compound (B) and if required an organosilicon compound (C), wherein [I] before carrying out homopolymerization of propylene or random copolymerization of propylene with an &agr;-olefin other than propylene, the above component (A), an organoaluminum compound (B′) and if required an organosilicon compound (C′) are used, and a small amount of propylene or ethylene and/or an &agr;-olefin of 4-20 carbon atoms for pre-activation treatment is supplied to the above component (A), and [II] a catalyst which is prepared by adding an organosilicon compound (C″) to the pre-activated stereoregular catalyst in a molar ratio of 0.1-50 as Si/Ti, is used to produce polypropylene or propylene random copolymers.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: January 28, 2003
    Assignee: Chisso Corporation
    Inventors: Masami Kimura, Takanori Nakashima, Chikashi Okayama
  • Patent number: 6503993
    Abstract: The present invention concerns nucleated propylene polymers having a xylene soluble fraction at 23° C. of less than 2.5%, a crystallization temperature of over 124 ° C. and a tensile modulus of greater than 2,000 MPa. These polymers can be prepared by nucleating a propylene polymer with a polymeric nucleating agent containing vinyl compound units, and by polymerizing propylene optionally with comonomers in the presence of a Ziegler-Natta catalyst system primarily transesterified with a phthalic acid ester—a lower alcohol pair to provide said propylene polymer. The catalyst contains a strongly coordinating external donor.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: January 7, 2003
    Assignee: Borealis Technology Oy
    Inventors: Päivi Huovinen, Pirjo J{umlaut over (aa)}skeläinen, Amir Karbasi, Christer Lind, Bo Malm, John Haugen
  • Publication number: 20020198337
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an molybdenum-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Application
    Filed: June 8, 2001
    Publication date: December 26, 2002
    Applicant: Bridgestone Corp.
    Inventors: Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh
  • Patent number: 6495634
    Abstract: Propylene polymers containing a matrix of a propylene homopolymer and a copolymer of propylene and other alkenes, wherein, during the separation of the propylene polymers according to tacticity and comonomer distribution of the polymer chains, by first dissolving the propylene polymers in boiling xylene, then cooling the solution at a cooling rate of 10° C./h to 25° C. and thereafter, increasing the temperature, separating the propylene polymers into fractions of different solubility, either one or more of the conditions that i) more than 20% by weight of the matrix remain undissolved on further heating to 112° C. or ii) more than 8% by weight of the matrix remain undissolved on further heating to 117° C. or iii) more than 1% by weight of the matrix remain undissolved on further heating to 122° C. are fulfilled by the matrix which remains undissolved on heating the cooled propylene polymer solution to 80° C.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: December 17, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Hüffer, Joachim Rösch, Franz Langhauser, Dieter Lilge, Roland Hingmann
  • Patent number: 6495639
    Abstract: Provided are a solid catalyst component for olefin polymerization and a catalyst comprising the component for olefin polymerization, in which the electron donor is free from the problem of lacking in safety and sanitation, and is inexpensive and easy to produce, and which exhibit high activity in producing olefin polymers with high stereospecificity, and also a method for producing olefin polymers in the presence of the catalyst. The solid catalyst component comprises titanium, magnesium and an electron donor compound of formula (I): wherein R1 and R2 each represent a linear or branched hydrocarbon residue having from 1 to 20 carbon atoms; R3 represents an alicyclic hydrocarbon residue having from 3 to 20 carbon atoms; and n represents an integer of from 1 to 10. The solid catalyst component is combined with an organic aluminium compound to prepare a catalyst, which is used in producing olefin polymers.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: December 17, 2002
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Yasunori Kadoi, Tsuyoshi Ota, Toshio Isozaki, Kiyokazu Katayama, Takanori Sadashima
  • Patent number: 6492465
    Abstract: This invention relates to propylene impact copolymer compositions. In particular, these unique and improved compositions can be produced using conventional, commercial-scale processes.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: December 10, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Terry John Burkhardt, Robert Tan Li, Aspy Keki Mehta, Udo M. Stehling, William T. Haygood, Jr., Francis C. Rix, Dawn C. Wiser
  • Patent number: 6492476
    Abstract: The present invention comprises a catalyst based on rare earth metal compounds which consists of a rare earth metal compound, an organic aluminum compound and a trihalosilane, of a process for the production thereof and of the use of the catalyst for polymerizing conjugated dienes to form high molecular weight polybutadienes.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: December 10, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Thomas Knauf, Wilfried Braubach
  • Patent number: 6489411
    Abstract: Processes for the polymerization of olefins with Zeigler-type catalyst systems which involve transition metal catalyst components comprising 4, 5 or 6 transition metals incorporating internal electron donors to provide desired polymerization characteristics, including yield and polymer characteristics. Specific olefins used in the polymerization process are C2-C4 alpha olefins such as propylene in the production of stereoregular polypropylene. The catalyst system comprised a transition metal component having an internal electron donor in an amount providing an internal donor/transition metal mole ratio of no more than 2/3. This is combined with an organoaluminum co-catalyst component to provide a precusor mixture having an aluminum/transition metal mole ration of at least 100. The precusor mixture is combined with an organosilicon external electron donor component in an amount to provide an aluminum/silicon mole ration of no more than 200.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: December 3, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Publication number: 20020173603
    Abstract: Described are catalyst systems having aluminium alkyl complexes of the formula (I) described herein applied to magnesium chloride, SiO2 or SiO2 in combination with MgCl2 as support in the presence of titanium halides or vanadium halides and internal and, if desired, external donors act both as cocatalysts and as stereoselectivity promoters in heterogeneous polymerizations of &agr;-olefins. Also described are polymerization methods using these catalyst systems.
    Type: Application
    Filed: March 8, 2001
    Publication date: November 21, 2002
    Inventors: Katrin Kohler, Eike Poetsch, Herbert Schumann, Sebastian Dechert, Walter Kaminsky, Andre Laban
  • Patent number: 6476164
    Abstract: This description addresses a process for the preparation of polyolefins from one or more olefinic monomers comprising combining under polymerization conditions said olefins with the product of combining i) an organometallic catalyst compound and ii) a cocatalyst complex comprising a trialkylsilyl-substituted carbenium cation and a suitable noncoordinating or weakly coordinating anion. These complexes exhibit good solubility in aliphatic solvents such that use in aliphatic solution based polymerization reaction processes can be conducted without the use of aromatic solvents or co-solvents and without the need for slurry means of introduction into chemical reaction environments. High number-average molecular weight polymers and copolymers at high rates of productivity were observed from the use of metallocene catalysts complexes when activated with [(3,5-Et3Si)2Ph)3C]+ [(C6F5) B]− and used in a hexane-based solution polymerization.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: November 5, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Francis C. Rix
  • Patent number: 6469110
    Abstract: Described herein is a process and an apparatus for polymerizing propylene. The process comprises carrying out the polymerization in at least one slurry reactor and at least one gas phase reactor without recycling unreacted monomers to the slurry reactor. A polymerization product containing unreacted monomers is recovered from the slurry reactor and volatile components are separated from the product in a separation unit. The polymerization product is recovered from the separation unit and conducted to a first gas phase reactor; and at least a part of the volatile components a recovered from the separation unit and conducted them to a gas phase reactor. At least 10% of the polymer product is produced in the gas phase reactor(s). The invention provides propylene homopolymers and alloys of propylene homopolymers and copolymers having good impact and creep properties.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: October 22, 2002
    Assignee: Borealis Technology Oy
    Inventors: Ali Harlin, Kauno Alastalo, Jouni Kivelä, Esa Korhonen
  • Patent number: 6465543
    Abstract: The present invention is a nanocomposite which is a dispersion of nanofiller particles derived from layered metal oxides or metal oxide salts. The nanocomposite is advantageously prepared by first swelling an untreated clay in water, then removing the water to form an organophilic clay that is dispersible in non-polar organic solvents. The organophilic clay can then be treated with an alkyl aluminoxane and subsequently a catalyst to form a complex that promotes olefin or styrenic polymerization and platelet dispersion. The nanocomposite can be prepared directly by in situ polymerization of the olefin or the styrene at the nanofiller particles without shear, without an ion exchange step, and without the need to incorporate polar substituents into the polyolefin or polystyrene.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: October 15, 2002
    Assignee: The Dow Chemical Company
    Inventors: Michael Alexandre, Philippe G. Dubois, Robert J. E. G. Jerome, Miguel Garcia-Marti, Tao Sun, Juan M. Garces, Dean M. Millar, Alexander Kuperman
  • Patent number: 6465585
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a chromium-containing compound; (b) an organomagnesium compound; and (c) a silyl phosphonate, also, a process for forming conjugated diene polymers by using the catalyst composition.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: October 15, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6451936
    Abstract: A polypropylene random copolymer obtained by copolymerizing propylene and an &agr;-olefin or propylene, ethylene, and &agr;-olefin using a Ziegler-Natta catalyst substantially in the absence of solvent, wherein propylene content is from 92.3 to 75.0% by weight, the ethylene content (E) is from 0 to 2.7% by weight, and the &agr;-olefin content is from 5.0 to 25.0% by weight, and wherein the content (C) of 20° C. xylene-soluble components in the random copolymer satisfies following formulae (1) to (3); in the copolymer wherein the ethylene content (E) is less than 1.5% by weight, C≦12.0 (weight %)  (1) in the copolymer wherein the ethylene content (E) is from 1.5% by weight to 1.8% by weight, C≦42.0−20.0×E (weight %)  (2) and in the copolymer wherein the ethylene content (E) is from 1.8% by weight to 2.7% by weight, C≦6.0 (weight %)  (3).
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: September 17, 2002
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hajime Sadatoshi, Seiichiro Ima, Kazuki Wakamatsu, Jiro Mori, Eisuke Shiratani
  • Publication number: 20020128402
    Abstract: There are provided (1) a process for producing a solid product, which comprises the step of reducing a titanium compound represented by the following formula [I] with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond, an inorganic fine particle and optionally an ester compound, 1
    Type: Application
    Filed: December 26, 2001
    Publication date: September 12, 2002
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Masayuki Fujita, Yoshinori Seki, Hiroyoshi Nakajima
  • Patent number: 6448349
    Abstract: Metallocene catalysts useful for the preparation of syndiotactic/atactic block polyolefins have the general formula R″(C4R′mC5C4R′n)XMeQ wherein X is an hetero-atom ligand with one or two lone pair electrons selected from the elements of Group VA or VIA which can be substituted or non-substituted; (C4Rm′C5C4Rn′) is a fluorenyl or a symmetrically substituted fluorenyl or cyclopentadienyl ring; R′ is hydrogen or hydrocarbyl radical having from 1-20 carbon atoms, a halogen, an alkoxy, and alkoxy alkyl or an alkylamino or alkylsilylo radical, each R′ may be the same or different and m and n independently are 0, 1, 2, 3 or 4, with the proviso that the bilateraly symmetry is maintained; R″ is a structural bridge between X and the (C4R′mC5C4R′n) ring to impart stereorigidity; Q is a hydrocarbyl radical having 1-20 carbon atoms or is a halogen; Me is a Group IIIB, IVB, VB, or VIB metal as positioned in the Periodic Table of Elements; and Me can be in any o
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: September 10, 2002
    Assignee: Fina Research, S.A.
    Inventor: Abbas Razavi
  • Publication number: 20020120079
    Abstract: The present invention relates to a method of homo- or co-polymerization of &agr;-olefin by means of using a catalyst system which comprises the following components: (1) a solid complex titanium catalyst produced by means of a production method comprising the following steps: (a) preparing a magnesium compound solution by dissolving a magnesium halide compound and a compound of Group IIIA of the Periodical Table in a solvent of mixture of cyclic ester, one or more types of alcohol, a phosphorus compound, and an organic silane; (b) precipitating the solid particles by reacting said magnesium compound solution with a transitional metal compound, a silicon compound, a tin compound, or the mixture thereof, and (c) reacting said precipitated solid particles with a titanium compound and electron donors; (2) an organometallic compound of metal of Group IIIA of the Periodical Table; and (3) external electron donors comprising three or more types of organo-silicon compounds, wherein the melt flow rates of the homopoly
    Type: Application
    Filed: May 30, 2001
    Publication date: August 29, 2002
    Inventors: Ki-Su Ro, Il-Seop Kim, Chun-Byung Yang, Moon-Young Shin
  • Publication number: 20020119888
    Abstract: The present invention provides a catalyst system that exhibits unexpected control of desired properties in polyolefin products. The catalyst system includes a Ziegler-Natta or Ziegler-Natta-type catalyst in combination with a mixture of silane electron donors. This catalyst system has been found to be effective in making polypropylene and polypropylene copolymers having relatively low melting points and high decalin solubles.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 29, 2002
    Inventor: Nemesio D. Miro
  • Patent number: 6437063
    Abstract: The present invention concerns a process for producing a propylene polymer nucleated with a polymeric nucleating agent containing vinyl compound units. The method comprises modifying a catalyst by polymerizing a vinyl compound in the presence of said catalyst in a medium, which does not essentially dissolve the polymerized vinyl compound, and by continuing the polymerization of the vinyl compound until the concentration of unreacted vinyl compounds is less than about 0.5 wt-%. The thus obtained modified catalyst composition is used for polymerizing propylene optionally together with comonomers to produce in the presence of said modified catalyst composition. Modification of the catalyst according to the present invention will reduce production costs and provide highly reliable catalyst activity.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: August 20, 2002
    Assignee: Borealis Technology Oy
    Inventors: Amir Karbasi, Pauli Leskinen, Pirjo J{umlaut over (aa)}skeläinen, Bo Malm, Päivi Pitkänen, Mika Härkönen, John Haugen
  • Patent number: 6437061
    Abstract: The present invention relates to MgCl2.mROH.nH2O adducts, where R is a C1-C10 alkyl, 2≦m≦4.2, 0≦n≦0.7 , characterized by an X-ray diffraction spectrum in which, in the range of 2&thgr; diffraction angles between 5° and 15°, the three main diffraction lines are present at diffraction angles 2&thgr; of 8.8±0.2°, 9.4±0.2° and 9.8±0.2°, the most intense diffraction lines being the one at 2&thgr;=8.8±0.2°, the intensity of the other two diffraction lines being at least 0.2 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and stereospecificity.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: August 20, 2002
    Assignee: Basell Technology Company BV
    Inventors: Mario Sacchetti, Gabriele Govoni, Anna Fait
  • Patent number: 6433237
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) (i) a halogen-containing iron compound or (ii) an iron-containing compound and a halogen-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: August 13, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6429270
    Abstract: Catalysts that have been preactivated and/or prepolymerized are disclosed whereby a magnesium and titanium-containing procatalyst component is contacted with a co-catalyst and an external electron donor (and optionally with an olefin monomer to prepare a prepolymerized catalyst) prior to polymerization to form a preactivated and/or prepolymerized catalyst. The preactivated and/or prepolymerized catalyst then is separated from the mixture, and dried to form a solid preactivated and/or prepolymerized catalyst. This dried catalyst then can be stored and subsequently shipped to a polymerization site where it can be used in gas phase polymerization. The preactivated and/or prepolymerized catalyst can be used in gas phase polymerization as extremely high activity catalysts, and do not cause a rapid rise in reaction temperature causing overheating, undesirable formation of agglomerates, coagulation of polymer, and ultimately, reactor failure.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: August 6, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: David Bell Morse
  • Publication number: 20020095014
    Abstract: Catalyst systems of the Ziegler-Natta type, which are suitable for the polymerization of olefins are prepared by:
    Type: Application
    Filed: August 28, 2001
    Publication date: July 18, 2002
    Inventors: Klaus Fottinger, Stephan Huffer, Rainer Karer
  • Patent number: 6413899
    Abstract: Isoblock polymers of 1-olefins with a narrow molecular weight distribution are obtained when 1-olefins are polymerized using a catalyst consisting of a chiral metallocene, containing bridges, of formula I: and an aluminoxane. The polymers have rubber-like properties.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: July 2, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Volker Dolle, Jürgen Rohrmann, Andreas Winter, Martin Antberg, Robert Klein
  • Patent number: 6410768
    Abstract: The present invention is related to diimino compounds of formulae (I) R2—N═C(R1)(R3)nC(R1)═N—R2 and (II) (R1)2C═N—(CR24)m—N═C(R1)2 functionalized with at least one siloxy group. Said diimino compounds are useful for obtaining a solid catalyst component for polymerizing olefins wherein the diimino compound of formulae (I) or (II) is bonded to a porous inorganic support and to a transition metal selected from groups 8, 9 and 10 of the periodic table. This invention also relates to a process for preparing said diimino compounds of formulae (I) or (II), to a process for obtaining said solid catalyst component comprising the combination of the diimino compound and a porous inorganic support. Further, the invention also relates to the use of said solid catalyst in combination with a cocatalyst to polirnenrze olefins.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: June 25, 2002
    Assignee: Repsol Quimica S.A.
    Inventors: Luis Mendez Llatas, Antonio Muñoz-Escalona Lafuente, Juan Campora Perez, Ernesto Carmona Guzman, Manuel Lopez Reyes
  • Patent number: H2060
    Abstract: One aspect of the present invention relates to a catalyst system for use in olefinic polymerization, containing a solid titanium catalyst component prepared by contacting a titanium compound and a magnesium compound; an organoaluminum compound having at least one aluminum-carbon bond; and an organosilicon compound comprising at least one of cyclobutyl group. Another aspect of the present invention relates to a method of making a catalyst for use in olefinic polymerization, involving the steps of reacting a Grignard reagent having a cyclobutyl group with an orthosilicate to provide an organosilicon compound having a cyclobutyl moiety; and combining the organosilicon compound with an organoaluminum compound having at least one aluminum-carbon bond and a solid titanium catalyst component prepared by contacting a titanium compound and a magnesium compound.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: March 4, 2003
    Assignee: Engelhard Corporation
    Inventors: Michael D. Spencer, Chung-Ping Cheng