Silicon Present In Inorganic Oxygen-containing Compound Patents (Class 526/130)
  • Patent number: 8362163
    Abstract: A supported metal complex comprising the reaction product of a transition metal complex of a polyvalent heteroaryl donor ligand containing at least one ortho-metallated aromatic ligand group and an ethylenically or poly(ethylenically) functionalized particulated organic or inorganic solid, a method for preparing the same and the use thereof as an addition polymerization catalyst.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: January 29, 2013
    Assignee: DOW Global Technologies, LLC
    Inventor: Edmund M. Carnahan
  • Patent number: 8338324
    Abstract: The present invention relates to the covalent anchorage of non-coordinating anions on mineral supports to prepare activating supports for the polymerisation of ethylene and alpha-olefins and wherein the activating species is provided by a phosphonium-borate or phosphonium alane pair. The invention also discloses the concomitant covalent anchorage of zwitterionic systems containing both the non-coordinating anion and the counter cation parts of the activating supports.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 25, 2012
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique
    Inventors: Abdelkrim El Kadib, Karine Molvinger, Daniel Brunel, Floran Prades, Sabine Sirol
  • Publication number: 20120316297
    Abstract: Olefin polymerization is carried out with a supported phosphinimine catalyst which has been treated with a long chain substituted amine compound.
    Type: Application
    Filed: September 19, 2011
    Publication date: December 13, 2012
    Inventors: Peter Phung Minh Hoang, Benjamin Milton Shaw, Victoria Ker, Cliff Robert Baar, Lee Douglas Henderson, Charles Ashton Garret Carter, Yan Jiang
  • Publication number: 20120309914
    Abstract: Methods of forming supported catalyst systems, supported catalyst systems and polymerization processes utilizing supported catalyst systems are described. The methods include providing an inorganic support material, contacting the inorganic support material with a support solvent to form a support solution, and contacting the support solution with a fluorine containing compound (AlFpX3?pBq) to form an intermediate. X is Cl, Br or OFF, B is H2O, p is from 1 to 3 and q is 0 to 6. The methods include drying and heating the intermediate to at least about 300° C. to form an impregnated support and contacting the impregnated support with a transition metal compound ([L]mM[A]n) to form a supported catalyst system. L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventor: Vladimir Marin
  • Patent number: 8318873
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: November 27, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kumudini C. Jayaratne, Michael D. Jensen, Qing Yang
  • Patent number: 8268946
    Abstract: A clay-supported complex that includes a metal complex containing a phosphinobenzenesulfonate ligand coordinated to Pd(II) or Ni(II), and a clay combined with the metal complex. The metal complex can be neutral or charged. The clay-supported complex is active in the homopolymerization and copolymerization of olefins, including polarized and non-polarized alpha-olefins.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: September 18, 2012
    Assignee: The Regents of the University of California
    Inventors: Susannah L. Scott, Mabel A. Caipa Campos
  • Publication number: 20120232229
    Abstract: The present invention provides polymerization processes utilizing a catalyst system containing an ansa-metallocene and a second metallocene compound for the production of olefin polymers.
    Type: Application
    Filed: April 2, 2012
    Publication date: September 13, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Richard M. Buck, Qing Yang, Albert P. Masino, Christopher E. Wittner
  • Publication number: 20120190803
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Errun Ding, Joel L. Martin, Albert P. Masino, Qing Yang, Youlu Yu
  • Patent number: 8183173
    Abstract: A method of preparing a catalyst comprising aging a silica support in an alkaline solution to produce an alkaline aged silica support, removing at least a portion of the alkaline solution from the alkaline aged silica support to produce a dried silica support, and activating the silica support to produce a catalyst composition, wherein alkaline aging lowers the surface area of the silica support to less than about 50% of the original value and wherein activation of the silica support is carried out in batches of equal to or greater than about 500 lbs for a time period of less than about 8 hours.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 22, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Ted Cymbaluk, George Neil
  • Publication number: 20120108764
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Publication number: 20120101240
    Abstract: Process for the preparation of a catalyst being in the form of solid particles comprising the steps of preparing a solution of a complex of a metal which is selected from one of the groups 1 to 3 of the periodic table (IUPAC) and an electron donor by reacting a compound of said metal with said electron donor in an organic liquid reaction medium; adding to said solution solid material obtaining a suspension, said solid material does not comprise catalytically active sites, has a specific surface area below 500 m2/g, and has a mean particle size below 200 nm; combining said suspension at a temperature of at least 50° C.
    Type: Application
    Filed: April 30, 2010
    Publication date: April 26, 2012
    Inventors: Anssi Haikarainen, Peter Denifl, Timo Leinonen
  • Publication number: 20120095174
    Abstract: Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH?, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Vladimir Marin, Margarito Lopez, Abbas Razavi, Tim Coffy, Michel Daumerie
  • Patent number: 8153745
    Abstract: Multi-branched polypropylene having a g? of less than 1.00.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: April 10, 2012
    Assignee: Borealis Technology Oy
    Inventors: Eberhard Ernst, Manfred Stadlbauer
  • Patent number: 8138116
    Abstract: The application discloses a Titanium oxide composition and the application thereof. The mentioned Titanium oxide composition comprises Titanium co-precipitate(s), organic acid, diol, and water. According to this application, a catalyzed poly-esterification with said Titanium oxide composition is also disclosed. The mentioned polyesterification comprises a step of adding said Titanium oxide composition into at least one stage selected from slurry stage, esterification stage, and polycondensation stage.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: March 20, 2012
    Assignee: Far Eastern New Century Corporation
    Inventors: Hsin-Chin Ho, Ching-Tsu Peng, Shih-Fong Lee, Yui-Chi Lin, Chun-Wei Chen
  • Patent number: 8129484
    Abstract: Disclosed herein are various processes, including continuous fluidized-bed gas-phase polymerization processes for making a high strength, high density polyethylene copolymer, comprising (including): contacting monomers that include ethylene and optionally at least one non-ethylene monomer with fluidized catalyst particles in a gas phase in the presence of hydrogen gas at an ethylene partial pressure of 100 psi or more and a polymerization temperature of 120° C. or less to produce a polyethylene copolymer having a density of 0.945 g/cc or more and an ESCR Index of 1.0 or more wherein the catalyst particles are prepared at an activation temperature of 700° C. or less, and include silica, chromium, and titanium.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 6, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Ronald S. Eisinger, Mark G. Goode, John H. Moorhouse, Cliff R. Mure, Stephen P. Jaker, Maria A. Apecetche
  • Patent number: 8119553
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 21, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen
  • Publication number: 20120022224
    Abstract: Embodiments of an invention disclosed herein relate to particles made from zeolite catalysts and their use in oligomerization processes. In particular, shaped particles (for example, spheroid particles) are made from compositions including the contact product of at least one zeolite catalyst and at least one binder.
    Type: Application
    Filed: June 9, 2011
    Publication date: January 26, 2012
    Inventors: Geraldine Tosin, Marcel J. G. Janssen, Paul Hamilton, Georges M.K. Mathys
  • Publication number: 20120010378
    Abstract: A method for preparing a catalyst precursor for an olefin polymerization catalyst involves the use of aqueous or alcoholic solutions of a chromium salt and of boric acid and aluminium carboxylate for deposition onto an inorganic support material, such as a silica xerogel. The chromium salt, aluminium carboxylate and boric acid are sufficiently soluble for deposition from a single solution to be effective. The catalyst precursor can be activated by calcination to form a catalyst for homo- or co-polymerisation of ?-olefins which has productivity and melt flow index for the resulting polymer or copolymer which is comparable to results obtained with catalysts prepared by prior art organometallic routes. The activation of the catalyst precursor gives reduced levels of toxic or noxious fumes during activation compared to use of organometallic sources of chromium or aluminium.
    Type: Application
    Filed: September 16, 2011
    Publication date: January 12, 2012
    Inventors: Christine Elizabeth Marsden, Robert Joseph Parker
  • Publication number: 20110294016
    Abstract: [Object] To provide a polypropylene resin composition for use in the formation of a microporous membrane having excellent heat resistance and low thermal shrinkage ratio. [Solution] A polypropylene resin composition for use in the formation of a microporous membrane according to the present invention comprises as an essential component a propylene homopolymer (A) that satisfies the following requirements (1) to (4) and (7): (1) the intrinsic viscosity [?] is 1 dl/g or more and less than 7 dl/g; (2) the mesopentad fraction ranges from 94.0% to 99.5%; (3) the integral elution volume during heating to 100° C. is 10% or less; (4) the melting point ranges from 153° C. to 167° C.; and (7) in an elution temperature-elution volume curve, the maximum peak has a peak top temperature in the range of 105° C. to 130° C. and a half-width of 7.0° C. or less.
    Type: Application
    Filed: January 6, 2010
    Publication date: December 1, 2011
    Applicants: PRIME POLYMER CO., LTD., MITSUI CHEMICALS, INC.
    Inventors: Satoshi Tamura, Keita Itakura, Ryoichi Tsunori, Satoshi Hashizume
  • Patent number: 8022154
    Abstract: This invention relates to an ethylene polymer comprising ethylene and up to 5 mole % of at least one comonomer, wherein the ethylene polymer has an Mw, of 10,000 to 50,000, an Mw/Mn of between 1.5 to 4.5, a density of at least 0.925 g/cc, an unsaturation level of less than 1 per 1000 carbons, a melting point of at least 120° C., a Tc of greater than Z° C., where Z=0.501×(density in kg/m3)?367, and a Brookfield viscosity o at 140° C. of 100,000 mPas or more.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: September 20, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Kuangyao Brian Peng
  • Publication number: 20110218309
    Abstract: The invention pertains to a method for the preparation of ultra high molecular mass polyethylene by polymerization in suspension or in gas phase in the presence of a chromium catalyst sitting on an alumosilicate support material. The chromium catalyst has been subjected to a fluorinating treatment and the polymerization is performed under low temperature conditions within a temperature range of from 50 to 100° C. The invention pertains also to ultra high molecular mass polyethylene prepared by that method and having a density in the range of from 0.930 to 0.950 g/cm3.
    Type: Application
    Filed: November 18, 2009
    Publication date: September 8, 2011
    Applicant: BASELL POLYOLEFINE GMBH
    Inventors: Shahram Mihan, Lars Koelling, Heinz Vogt, Dieter Lilge, Hans-Friedrich Enderle, Hans-Jörg Nitz, Lenka Lukesova
  • Publication number: 20110130531
    Abstract: Methods for gas phase olefin polymerization are provided. The method can include combining a spray dried catalyst system with a diluent to produce a catalyst slurry. The catalyst system can include a metallocene compound. Ethylene, a continuity additive, and the catalyst slurry can be introduced to a gas phase fluidized bed reactor. The reactor can be operated at conditions sufficient to produce a polyethylene. The spray dried catalyst system can have a catalyst productivity of at least 12,000 grams polyethylene per gram of the catalyst system.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 2, 2011
    Inventors: F. David Hussein, Kevin J. Cann, Ann M. Schoeb-Wolters, Phuong A. Cao, Bruce J. Savatsky, Eric J. Markel, Daniel P. Zilker, JR., Garth R. Giesbrecht
  • Patent number: 7939460
    Abstract: A production process is provided for an olefin polymerization catalyst component precursor, including the steps of (I) adding an organomagnesium compound to a solution containing a solvent, a Si—O bond-containing silicon compound, and a defined titanium compound, under agitation, and continuing the agitation until a magnesium concentration in a liquid phase of a reaction mixture decreases to 9 ppm by weight or lower, and (II) solid-liquid separating the reaction mixture. A production process is also provided for an olefin polymerization catalyst component using the above precursor. Further, producing process is provided for an olefin polymerization catalyst using the above catalyst component. Still further, a production process is provided for an olefin polymer using the above catalyst.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 10, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Wataru Hirahata, Shinya Nakahara
  • Publication number: 20110105705
    Abstract: The invention relates to a metallocene supported catalyst composition and a process for the preparation of polyolefin using the same. A metallocene supported catalyst composition according to the invention is prepared by bringing a compound of a group IV transition metal into contact with an inorganic or organic porous carrier treated with an ionic compound. Advantages of a metallocene supported catalyst composition of the invention include an increase in the catalyst activity during polymerization of slurry and an olefin compound in the vapor phase even at a low content of metallocene metal components within the carrier, and an improvement in solving process problems such as fouling, sheeting, plugging or the like.
    Type: Application
    Filed: March 26, 2009
    Publication date: May 5, 2011
    Applicant: SK ENERGY CO., LTD.
    Inventors: Seungyeol Han, Myungahn Ok, Young-Soo Ko, Chang-il Lee
  • Patent number: 7932331
    Abstract: The present invention discloses active oligomerization or polymerization catalyst systems based on imino-quinolinol complexes.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: April 26, 2011
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Caroline Hillairet, Guillaume Michaud, Sabine Sirol
  • Publication number: 20110065874
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Publication number: 20110060111
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 10, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, JR., Maria Apecetche
  • Publication number: 20100317813
    Abstract: The present invention is directed to a supported catalyst comprising 1. a precursor comprising a solid particulate support material in the form of mesoporous silicate structure MCM-48 wherein the silicate structure is treated with an aluminoxane compound and/or an organoaluminum compound and 2. a transition metal complex of a Group 4 transition metal of the periodic system being coordinative connected to two phenoxy-imine ligands. The catalyst is applied in the (co)polymerization of olefins.
    Type: Application
    Filed: February 20, 2008
    Publication date: December 16, 2010
    Inventors: Peter Tait, Atieh Abu-Raqabah, Rami Bakleh, Eyad Abdulrazk
  • Patent number: 7829641
    Abstract: A two-stage cascade polymerization process for the production of multimodal polyethylene film resins with improved bubble stability is provided. The process comprises polymerizing ethylene or a mixture of ethylene and a C4-8 ?-olefin in two reactors arranged in series using a mixed single-site catalyst comprised of a bridged and a non-bridged indenoindolyl transition metal complex to form a multimodal polyethylene resin comprised of a lower molecular weight, higher density component and a higher molecular weight, lower density component.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: November 9, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Philip J. Garrison
  • Publication number: 20100280199
    Abstract: This invention provides a compositions that are useful for polymerizing at least one monomer into at least one polymer.
    Type: Application
    Filed: June 14, 2010
    Publication date: November 4, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: MAX P. MCDANIEL, ELIZABETH A. BENHAM, SHIRLEY J. MARTIN, KATHY S. COLLINS, JAMES L. SMITH, GIL R. HAWLEY, CHRISTOPHER E. WITTNER, MICHAEL D. JENSEN
  • Publication number: 20100222529
    Abstract: The present invention discloses a homo- or co-polymer of ethylene characterised in that it combines the properties of: a) melt strength MS?0.021p?0.131 wherein melt strength MS is expressed in N and extruder head pressure p is expressed in MPa, when processed in a rheological extruder through a die with L/D of 30:2 at a rate of 500 s?1 and at temperature of 190° C.; b) long chain branching index g? determined by SEC-VISCO larger than 0.90; c) polydispersity index (Mw/Mn) of at most 7. It also discloses a method to prepare said polyethylene resin.
    Type: Application
    Filed: March 4, 2008
    Publication date: September 2, 2010
    Inventors: Jacques Michel, Marc Dupire, Prades Floran
  • Publication number: 20100204419
    Abstract: Disclosed herein is a method of forming a polymer, wherein the polymer is formed by a radical polymerisation reaction initiated by a solid oxide compound.
    Type: Application
    Filed: June 27, 2008
    Publication date: August 12, 2010
    Inventors: Rebecca Lesic, Thomas Maschmeyer, Anthony Frederick Masters, Antony John Ward
  • Publication number: 20100160579
    Abstract: The present invention provides a polymerization process which is conducted by contacting an olefin monomer and at least one olefin comonomer in the presence of hydrogen and a metallocene-based catalyst composition. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, low levels of long chain branches, and a ratio of Mw/Mn from about 3 to about 6.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Tony R. Crain, Randy S. Muninger, Jerry T. Lanier, Jeff S. Fodor, Paul J. Deslauriers, Chung C. Tso, David C. Rohlfing
  • Publication number: 20100137532
    Abstract: The invention relates to a catalyst for the heterogeneous phase polymerisation of conjugated dienes and olefins, comprising a pre-catalyst consisting of a mixture of metallocene hydride-aluminohydride compounds: (CpRx)Ty(CpR?z)MHAIH4 (I), [(CpRx)Ty(CpR?z)MHAIH4]2 (II), and [(CpRx)Ty(CpR?zMH]2AIH5 (III), in which M is a transition metal from group IV in the +4 oxidation state thereof; Cp is a cyclopentadienyl ring which may or may not be substituted with R or R? or a cyclopentadienyl ring in which two adjacent substituents are joined and form cycles in order to form saturated or unsaturated polycyclic cyclopentadienyl ligands; R or R? are substituents on the cyclopentadienyl rings and may be identical or different; “x” and “z” are integers between 0 and 5; T is a branched or linear acyclic or cyclic covalent bridging group which joins the (Cp) rings; and “y” is 0 or 1. The pre-catalyst is supported on a modified silica and is activated with a co-catalyst.
    Type: Application
    Filed: October 19, 2006
    Publication date: June 3, 2010
    Inventors: Odilia Perez-Camacho, Rogelio Alicavan Charles-Galindo, Rebeca Gonzalez-Hernandez, Sergei Kniajanski
  • Patent number: 7714091
    Abstract: Catalyst for the polymerization and/or copolymerization of olefins which is obtainable by application to a finely divided inorganic support and concluding calcination at temperatures of from 350 to 1050° C. and has a chromium content of from 0.1 to 5% by weight and a zirconium content of from 0.5 to 10% by weight, in each case based on the element in the finished catalyst, with the molar ratio of zirconium to chromium being from 0.6 to 5.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: May 11, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Andreas Haufe, Peter Kölle, Joachim Wulff-Döring, Ingo Treffkorn, Guido Funk
  • Publication number: 20100113706
    Abstract: This invention relates to an ethylene polymer comprising ethylene and up to 5 mole % of at least one comonomer, wherein the ethylene polymer has an Mw, of 10,000 to 50,000, an Mw/Mn of between 1.5 to 4.5, a density of at least 0.925 g/cc, an unsaturation level of less than 1 per 1000 carbons, a melting point of at least 120° C., a Tc of greater than Z, where Z=0.501×(density in kg/m3)?367, and a Brookfield viscosity o at 140° C. of 100,000 mPas or more.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Inventors: Donna J. Crowther, Kuangyao Brian Peng
  • Patent number: 7705097
    Abstract: Process for preparing a supported catalyst for the polymerization and/or copolymerization of olefins which has a chromium content of from 0.01 to 5% by weight, based on the element, which comprises (a) preparing a homogeneous solution comprising an organic or inorganic chromium compound and at least one further organic or inorganic compound of elements selected from among Mg, Ca, Sr, B, Al, Si, P, Bi, Sc, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W in a protic or aprotic polar solvent, (b) bringing the solution from a) into contact with a finely divided inorganic support to form a catalyst precursor, (c) if appropriate, removing the solvent from the catalyst precursor and (d) calcining the catalyst precursor at temperatures of from 350 to 950° C., preferably 400 to 900° C., under oxidative conditions.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: April 27, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Andreas Haufe, Peter Kölle, Joachim Wulff-Döring, Ingo Treffkorn, Guido Funk
  • Patent number: 7705095
    Abstract: A process for the polymerisation of olefin monomers selected from (a) ethylene, (b) propylene (c) mixtures of ethylene and propylene and (d) mixtures of (a), (b) or (c) with one or more other alpha-olefins is performed in a polymerisation reactor in the presence of a supported polymerisation catalyst characterised in that prior to injection into the reactor said supported polymerisation catalyst in the form of a powder is contacted with an inert hydrocarbon liquid in a quantity sufficient to maintain said catalyst in powder form. The preferred inert hydrocarbon liquid is hexane. The supported polymerisation catalyst is preferably a supported metallocene catalyst. According to the process of the prescrit invention the level of fines associated with the polymer products is reduced in particular the level of fines having a diameter<125 ?m and microfines of diameter<50 ?m.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 27, 2010
    Assignee: Ineos Europe Limited
    Inventors: Brian Stephen Kimberley, Gerard Lacane, Sergio Mastroianni
  • Publication number: 20100076167
    Abstract: Silica-coated alumina activator-supports, and catalyst compositions containing these activator-supports, are disclosed. Methods also are provided for preparing silica-coated alumina activator-supports, for preparing catalyst compositions, and for using the catalyst compositions to polymerize olefins.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 25, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: MAX P. MCDANIEL, Qing Yang, Randy S. Muninger, Elizabeth A. Benham, Kathy S. Collins
  • Publication number: 20100069587
    Abstract: A method for the preparation of copolymers of ethylene and ?-olefins having a fraction (%) of the molecular weight component of >1,000,000 of less than 6% comprises polymerising ethylene and an ?-olefin in the presence of a supported polymerisation catalyst system comprising (a) a transition metal compound (b) a porous support material, and (c) an activator characterized in that the support material has been (i) dried at a temperature in the range 0° C. to 195° C. in an inert atmosphere, and (ii) treated with an organometallic compound. The resultant supported catalyst systems show improved productivity and allow for control of the resultant polymer properties. Particularly preferred supported catalyst systems are those comprising metallocene complexes.
    Type: Application
    Filed: November 23, 2007
    Publication date: March 18, 2010
    Inventors: Sergio Mastroianni, Stefan Klaus Spitzmesser
  • Patent number: 7678726
    Abstract: A supported polymerization catalyst system is prepared by a method comprising the following steps: (i) addition of a cocatalyst to a porous support, (ii) mixing a polymerisation catalyst with a polymerisable monomer, and (iii) contacting together the components resulting from steps (i) and (ii). The porous support is preferably silica and the polymerisation catalyst is preferably a metallocene. The polymerisable monomer is typically 1-hexene and the supported catalyst system provides advantages a slowly decaying activity profile particularly when operating in the gas phase.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: March 16, 2010
    Assignee: Innovene Europe Limited
    Inventors: Grant B. Jacobsen, Brian S. Kimberley, Sergio Mastroianni
  • Patent number: 7678869
    Abstract: A polymerization process comprising initiating a first polymerization of monomers using an initiator functionalized with an ATRP initiating site, wherein the first polymerization is selected from the group of cationic polymerization, anionic polymerization, conventional free radical polymerization, metathesis, ring opening polymerization, cationic ring opening polymerization, and coordination polymerization to form a macroinitiator comprising an ATRP initiating site and further initiating an ATRP polymerization of radically polymerizable monomers using the macroinitiator comprising an ATRP initiating site. Novel block copolymers may be formed by the disclosed method.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: March 16, 2010
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca, Yoshiki Nakagawa
  • Patent number: 7666959
    Abstract: The present invention discloses a metallocene catalyst system for producing polyolefins comprising: A. a hafnocene-based catalyst component suitable for producing the high molecular weight fraction of the polyolefin; B. one or more metallocene or post-metallocene components different from the component A and suitable for producing the low molecular weight fraction of the polyolefin; C. an activating agent having a low or no coordinating capability.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: February 23, 2010
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Patent number: 7659321
    Abstract: Photoinitiator modified silicate and ethylenically unsaturated monomer are reacted in solvent to cause living polymerization of monomer and exfoliation of silicate layers and cause attachment of silicate layers to polymer chains, thereby providing dispersed homopolymer or block copolymer silicate nanocomposites.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: February 9, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Dotsevi Y. Sogah, Jianbo Di, Xiao-Ping Chen
  • Patent number: 7655740
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged indeno[1,2-b]indolyl zirconium complex. The process produces polyethylene characterized by good incorporation of the ?-olefin and moderate long-chain branching. The process is capable of forming high molecular weight polyethylene and has good catalyst activity.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 2, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jean A. Merrick-Mack, Natalia Nagy
  • Publication number: 20100016526
    Abstract: A two-stage cascade polymerization process for the production of multimodal polyethylene film resins with improved bubble stability is provided. The process comprises polymerizing ethylene or a mixture of ethylene and a C4-8 ?-olefin in two reactors arranged in series using a mixed single-site catalyst comprised of a bridged and a non-bridged indenoindolyl transition metal complex to form a multimodal polyethylene resin comprised of a lower molecular weight, higher density component and a higher molecular weight, lower density component.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 21, 2010
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Philip J. Garrison
  • Publication number: 20090326174
    Abstract: A clay-supported complex that includes a metal complex containing a phosphinobenzenesulfonate ligand coordinated to Pd(II) or Ni(II), and a clay combined with the metal complex. The metal complex can be neutral or charged. The clay-supported complex is active in the homopolymerization and copolymerization of olefins, including polarized and non-polarized alpha-olefins.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 31, 2009
    Inventors: Susannah L. Scott, Mabel A. Caipa Campos
  • Patent number: 7638586
    Abstract: A process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in a slurry reaction in the presence of a catalyst system which comprises an activator and an indenoindolyl transition metal complex on a support material. The catalyst system is slurried with an inert solvent prior to addition to the reactor. The process provides polyethylene with good bulk density.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Kenneth J. Klug
  • Publication number: 20090312508
    Abstract: The present invention relates to a catalytically active composition that can be used for the production of polyesters. According to the invention, good polyester products can be obtained in this way without having to use antimony components.
    Type: Application
    Filed: May 3, 2007
    Publication date: December 17, 2009
    Applicant: Lurgi Zimmer GmbH
    Inventors: Brigitta Otto, Eckhard Seidel
  • Publication number: 20090275713
    Abstract: Homogeneously dispersed solid reaction promoters having an average particle size from 0.01 ?m to 500 ?m are disclosed for preparing curable mixtures of at least one Michael donor and at least one Michael acceptor. The resulting curable mixtures are useful as coatings, adhesives, sealants and elastomers.
    Type: Application
    Filed: May 30, 2006
    Publication date: November 5, 2009
    Inventors: Pankaj V. Shah, David E. Vietti, David William Whitman