From Carboxylic Acid Monomer Patents (Class 526/317.1)
  • Publication number: 20140212813
    Abstract: A radiation-sensitive resin composition includes a first polymer including an acid-labile group, an acid generator to generate an acid upon exposure to radiation, and a second polymer including a fluorine atom and a functional group shown by a general formula (x). The second polymer has a fluorine atom content higher than a fluorine atom content of the first polymer. R1 represents an alkali-labile group. A represents an oxygen atom, —NR?—, —CO—O—# or —SO2—O—##, wherein the oxygen atom represented by A is not an oxygen atom bonded directly to an aromatic ring, a carbonyl group, or a sulfoxyl group, R? represents a hydrogen atom or an alkali-labile group, and “#” and “##” each indicate a bonding hand bonded to R1.
    Type: Application
    Filed: April 2, 2014
    Publication date: July 31, 2014
    Applicant: JSR CORPORATION
    Inventors: Yuusuke ASANO, Mitsuo SATOU, Hiromitsu NAKASHIMA, Kazuki KASAHARA, Yoshifumi OIZUMI, Masafumi HORI, Takanori KAWAKAMI, Yasuhiko MATSUDA, Kazuo NAKAHARA
  • Patent number: 8785583
    Abstract: A process for continuously producing water-absorbing polymer particles by polymerizing a monomer solution comprising acrylic acid and/or salts thereof, wherein the acrylic acid supplied has a dimeric acrylic acid content of at least 0.02% by weight and the dimeric acrylic acid content is kept essentially constant.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: July 22, 2014
    Assignee: BASF SE
    Inventors: Rüdiger Funk, Thomas Pfeiffer, Jürgen Schröder
  • Patent number: 8785548
    Abstract: Styrenic (meth)acrylic oligomers that are prepared at lower temperature than conventional solid grade oligomers, or are hydrogenated, contain fewer terminal vinylic unsaturations, when compared to such conventional styrenic (meth)acrylic oligomers prepared by the customary high temperature processes. Styrenic (meth)acrylic oligomers that contain fewer terminal vinylic unsaturations demonstrate improved thermal stability and may provide improved resistance to UV weathering compared to the conventional and non-hydrogenated styrenic (meth)acrylic oligomers.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 22, 2014
    Assignee: BASF SE
    Inventors: Timothy D. Klots, Rafael Galvan, Jon Debling
  • Patent number: 8772422
    Abstract: A polymer composite composition wherein at least one of the constituents is a silicone ionomer and the other constituent is polymer.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 8, 2014
    Assignee: Momentive Performance Materials Inc.
    Inventors: Anubhav Saxena, Srividhya Marimuthu, Alok Sarkar, Pranav Ramchandra Joshi
  • Patent number: 8765898
    Abstract: The invention relates to a process for producing water-absorbing polymer particles, comprising handling water-absorbing polymer particles in intermediate silos, storage silos and/or big bag filing stations that are connected with vent lines having a mitered joint.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: July 1, 2014
    Assignee: BASF SE
    Inventors: Monte Peterson, Ronny De Kaey, Leo Van Miert, Oskar Stephan, Rüdiger Funk, Matthias Weismantel, Dominicus van Esbroeck, Frans van Dyck
  • Publication number: 20140179886
    Abstract: A method is disclosed for producing a water-absorbent resin by a reversed-phase suspension polymerization method, wherein an odor originating from a raw material component, in particular, a petroleum hydrocarbon dispersion medium, is further reduced as compared with a water-absorbent resin obtained by a conventional method, and a water-absorbent resin obtained by the method. More specifically, a method is disclosed for producing a water-absorbent resin by performing a reversed-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a petroleum hydrocarbon dispersion medium, comprising adding and dispersing an aqueous solution of a water-soluble ethylenically unsaturated monomer containing a hydrophilic polymeric dispersion agent to a petroleum hydrocarbon dispersion medium in the presence of a surfactant under stirring, and performing a reversed-phase suspension polymerization using a radical polymerization initiator, and a water-absorbent resin obtained by the method.
    Type: Application
    Filed: July 20, 2011
    Publication date: June 26, 2014
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Hideki Yokoyama, Atsushi Heguri, Nobuhiro Maeda
  • Patent number: 8754151
    Abstract: The present invention relates to aqueous multistage polymer dispersions obtainable by free-radically initiated aqueous emulsion polymerization, having a soft phase and a hard phase, and a hard-to-soft stage ratio of 25% to 95% by weight to 75% to 5% by weight, the glass transition temperature (Tg) of the soft phase, as first stage, being ?30 to 0° C. and that of the hard phase, as second stage, being 20 to 60° C., comprising at least one monomer of the general formula I in which the variables have the following definitions: n=0 to 2, R1, R2, R3=independently of one another hydrogen or methyl group, X=O or NH, Y=H, alkali metal or NH4, to processes for preparing these aqueous polymer dispersions, and to the use thereof as binders in coatings, and also to coatings comprising the polymer dispersion of the invention.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 17, 2014
    Assignee: BASF SE
    Inventors: Sebastian Roller, Ekkehard Jahns, Hans-Juergen Denu
  • Patent number: 8753479
    Abstract: The invention relates to a process for the production of paper, card and board, including the steps of draining a filler-containing paper stock, having a certain fibrous concentration and containing at least one water-soluble amphoteric copolymer, with sheet formation in a wire section, then pressing the paper in a press section, diluting the paper stock to a fibrous concentration in the range from 5 to 15 g/l, draining the diluted paper stock to form a sheet, and then pressing the sheet in the press section to a solids content G(x) wt % or greater, such that G(x) computes according to: G(x)=48+(x?15)·0.4, where x is the numerical value of a filler content of the dry paper, card or board (in wt %), and G(x) is a numerical value of the minimal solids content (in wt %) to which the sheet is pressed.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: June 17, 2014
    Assignee: BASF SE
    Inventors: Anton Esser, Hans-Joachim Haehnle
  • Publication number: 20140162928
    Abstract: A warewashing detergent composition is provided for use for in cleaning of alkaline sensitive metals such as aluminum or aluminum containing alloys. The compositions include alternatives to sodium tripolyphosphate and/or other phosphorous containing raw materials, while retaining cleaning performance and corrosion prevention. According to the invention, high molecular weight polyacrylates (polyacrylic acid homopolymers) with a molecular weight of at least about 5000 are used as corrosion inhibitors and can be included for aluminum protection in a number of different detergent compositions.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: ECOLAB USA INC.
    Inventors: Erik C. Olson, Devon Beau Hammel
  • Patent number: 8748000
    Abstract: A process for preparing water-absorbing polymer beads with high permeability by polymerizing droplets of a monomer solution in a gas phase surrounding the droplets, wherein a water-insoluble inorganic salt is suspended in the monomer solution and the polymer beads have a mean diameter of at least 150 ?m.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 10, 2014
    Assignee: BASF SE
    Inventors: Uwe Stueven, Matthias Weismantel, Wilfried Heide, Marco Krüger, Volker Seidl, Stefan Blei, Dennis Loesch, Rüdiger Funk, Annemarie Hillebrecht
  • Patent number: 8748545
    Abstract: The present invention relates to the manufacture of bioresourced polymer-grade acrylic acid from glycerol. The polymer grade acrylic acid produced has limited content of certain impurities harmful to polymerization processes, such as, total aldehydes, protoanemonin, maleic anhydride and nonphenolic polymerization inhibitors. The invention also relates to the use of the bioresourced acrylic acid obtained for manufacture of superabsorbents or for manufacture of polymers or copolymers using amide or ester derivatives of the bioresourced acrylic acid.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: June 10, 2014
    Assignee: Arkema France
    Inventors: Jean-Francois Devaux, Michel Fauconet, Denis Laurent
  • Publication number: 20140150338
    Abstract: [Task] The objects of the present invention are to provide: a polyvinyl alcohol (PVA) film for plant cultivation which is capable of suppressing root penetration while exhibiting excellent nutrient permeability; a method for producing the same; and a method for plant cultivation using the same. [Means to Achieve the Task] The present invention is directed to a PVA film for plant cultivation, wherein a thicknesswise-directional average value of birefringence in a machine direction of the film is from 4.0×10?3 to 12.0×10?3 and a swelling degree of the film is from 150 to 180%; a method for producing a PVA film for plant cultivation, which comprises a step in which a PVA film having a moisture content of from 5 to 20% by mass is stretched in the ratio of from 1.3 to 1.7 times and a step in which the stretched film is heat-treated at a temperature in the range of from 130 to 170° C.
    Type: Application
    Filed: September 9, 2011
    Publication date: June 5, 2014
    Inventors: Masahiro Takafuji, Takanori Isozaki
  • Patent number: 8741831
    Abstract: The present invention is directed to the use of hydrophilic terpolymers in hard surface cleaners which provide easier cleaning for surface soils such as hard water stains, soap scum, limescale, mud, food, toilet stains, oil, grease, particulates and the like as well as anti-fog effects on hard surfaces such as glass, mirrors, ceramic and plastic by causing water droplets to coalesce into a film.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 3, 2014
    Assignee: BASF SE
    Inventors: Bingham Scott Jaynes, Zhiqiang Song, Xian-Zhi Zhou, Yingxia He
  • Patent number: 8742026
    Abstract: The invention relates to a process for producing water-absorbing polymer particles with improved permeability, comprising the steps of polymerization, drying, grinding, classification and thermal surface postcrosslinking, with pneumatic conveying between grinding and classification.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: June 3, 2014
    Assignee: BASF SE
    Inventors: Matthias Weismantel, Markus Braun
  • Patent number: 8735516
    Abstract: Aqueous solutions of acrylic acid polymers are prepared by polymerization of acrylic acid in a feed operation with a free-radical initiator in the presence of hypophosphite in water as solvent, by a process comprising (i) initially charging water and optionally one or more ethylenically unsaturated comonomers, (ii) continuously adding acrylic acid in acidic, unneutralized form, optionally one or more ethylenically unsaturated comonomers, aqueous free-radical initiator solution and aqueous hypophosphite solution, and (iii) adding a base to the aqueous solution on completion of the acrylic acid feed, wherein a comonomer content does not exceed 30% by weight and the aqueous hypophosphite solution is added during a total feed time made up of three consecutive feed time spans ?tI, ?tII, and ?tIII, wherein the average feed rate in the second feed time span ?tII is greater than the average feed rates in the first and third feed time spans ?tI and ?tIII.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Howard Roger Dungworth, David Petty, Bolette Urtel, Ruth Wirschem
  • Patent number: 8729191
    Abstract: An embodiment of the present invention allows for production, with a high productivity, of a water-absorbent resin including an improved relationship between absorption capacity and water-soluble polymer which are conflicting properties of the water-absorbent resin, being easily controlled for polymerization reaction, being of no odor, being less colored, and being of high absorption properties. In one embodiment of the present invention, acrylic acid composition is neutralized with a basic composition including an iron content of 0.2 to 5 ppm by weight (relative to a basic compound exclusive of a solvent); and then polymerizing a resultant neutralized product, the acrylic acid composition including: (i) a methoxyphenol content of 10 to 200 ppm by weight relative to the weight of acrylic acid; and (ii) at least one compound content of which is 0 to 10 ppm by weight relative to the weight of acrylic acid, the compound being selected from the group consisting of protoanemonin and furfural.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: May 20, 2014
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Takaaki Kawano, Hirotama Fujimaru, Kunihiko Ishizaki, Katsuyuki Wada
  • Patent number: 8722787
    Abstract: The present disclosure includes a waterborne polyolefin based coating layer that has improved features as compared to epoxy coatings. The coating composition of the present disclosure include 40 to 80 weight percent (wt. %) of a base polymer; 10 to 30 wt. % of a polymeric stabilizing agent; 5 to 15 wt. % of a polymeric coupling agent; 0 to 35 wt. % of a polymeric performance improving agent; a neutralizing agent that partially or fully neutralize the polymeric stabilizing agent; and a fluid medium, where the wt. % values are based on the total weight of the base polymer, the polymeric coupling agent, the polymeric stabilizing agent and, when present, the polymeric performance improving agent (as used herein, this total weight of the base polymer, the polymeric coupling agent, the polymeric stabilizing agent and, when present, the polymeric performance improving agent may be referred to as the “solid content” of the coating composition).
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 13, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Jay D. Romick, Qing Zhang, David L. Malotky, Richard A. Lundgard, Jodi M. Mecca
  • Publication number: 20140120135
    Abstract: The current invention pertains to an aqueous composition containing a biological antigen and an acrylic acid polymer, wherein the composition comprises an electrolyte to provide an osmolarity higher than the osmolarity of a 0.9% (w/v) sodium chloride solution in water. The invention also pertains to the acrylic acid polymer for use in a one shot vaccine against porcine circo virus 2 (PCV2) and optionally Mycoplasma hyopneumoniae and in an aqueous composition for reducing fever induced by the biological antigens present in the aqueous composition when the composition is administered to a subject animal.
    Type: Application
    Filed: June 26, 2012
    Publication date: May 1, 2014
    Inventor: Erwin Mombarg
  • Patent number: 8703450
    Abstract: The present invention relates to a process for the production of polymers, such as water-absorbing polymer structures, by radical polymerization of acrylic acid, whereby the acrylic acid has been obtained by a synthesis process which comprises as a process step the splitting of an organic material by means of an enzyme or at least one component of an enzyme. The invention also relates to the water-absorbing polymers obtainable by this process, water-absorbing polymers which are based to at least about 25 wt % upon partially neutralized acrylic acid, a composite, a process for the production of a composite, the composite obtainable by this production, the use of acrylic acid in the production of polymers, preferably in the production of water-absorbing polymer structures, a device for the production of acrylic acid, and a process for the production of acrylic acid.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: April 22, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Günther Bub, Jürgen Mosler, Andreas Sabbagh, Franz-Felix Kuppinger, Franck Furno
  • Patent number: 8704000
    Abstract: PROBLEM There is provided a melting method of (meth)acrylic acid crystal which is capable of providing a higher quality of (meth)acrylic acid without carrying out an additional purification treatment to (meth)acrylic acid obtained by a crystallization operation accompanied by melting of (meth)acrylic acid. In addition, there is provided a simple method for adjusting a content of polymerization inhibitor in a product (meth)acrylic acid. SOLUTION In the crystallization method melting (meth)acrylic acid crystal while wetting with the crystalline molten liquid, a polymerization inhibitor is added to a molten liquid melted after initiation of melting, and all of crystal is melted while circulating and feeding the molten liquid containing said polymerization inhibitor to the crystal.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 22, 2014
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuhiko Sakamoto, Koji Ueno, Yoshitake Ishii, Harunori Hirao, Satoshi Nakagawa
  • Patent number: 8703875
    Abstract: The invention relates to novel crosslinkable copolymers which are obtainable by (a) copolymerizing at least two different hydrophilic monomers selected from the group consisting of N,N-dimethyl acrylamide (DMA), 2-hydroxyethyl acrylate (HEA), glycidyl methacrylate (GMA), N-vinylpyrrolidone (NVP), acrylic acid (AA) and a C1-C4-alkoxy polyethylene glycol(meth)acrylate having a weight average molecular weight of from 200 to 1500, and at least one crosslinker comprising two or more ethylenically unsaturated double bonds in the presence of a chain transfer agent having a functional group; and (b) reacting one or more functional groups of the resulting copolymer with an organic compound having an ethylenically unsaturated group.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 22, 2014
    Assignee: Novartis AG
    Inventors: Frank Chang, Norberto Arturo Medina
  • Patent number: 8697780
    Abstract: An improved concrete mix composition and its associated method of manufacture. A traditional concrete mix is created by mixing cementitious material with sand, aggregate, admixture chemicals and water. After the traditional mix has been thoroughly mixed, reinforcement fibers of polyvinyl alcohol are added to the mix. The reinforcement fibers chemically bond to the cementitious material, thereby chemically integrating the reinforcement fibers into the mixture. The reinforcement fibers are supplied in multiple sizes. The reinforcement fibers include both long thick fibers and short thin fibers. In this manner, the smaller reinforcement fibers can fill voids around the larger, thicker reinforcement fibers. This helps prevent the development of stress cracks in the concrete and significantly increases the strength, durability, and life expectancy of the concrete.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 15, 2014
    Inventor: Paul E. Bracegirdle
  • Publication number: 20140100346
    Abstract: A lithography method for forming nanoparticles includes patterning sacrificial material on a multilayer substrate. In some cases, the pattern is transferred to or into a removable layer of the multilayer substrate, and functional material is disposed on the removable layer of the multilayer substrate and solidified. At least a portion of the functional material is then removed to expose protrusions of the removable layer, and pillars of the functional material are released from the removable layer to yield nanoparticles. In other cases, the multilayer substrate includes the functional material, and the pattern is transferred to or into a removable layer of the multilayer substrate. The sacrificial layer is removed, and pillars of the functional material are released from the removable layer to yield nanoparticles.
    Type: Application
    Filed: January 31, 2011
    Publication date: April 10, 2014
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Frank Y. Xu, Sidlgata V. Sreenivasan
  • Patent number: 8691482
    Abstract: The instant disclosure describes methods for preparing latex resins for coated carriers using surfactant partitioning, which resins exhibit both lower ? potential and greater latex stability, while not adversely affecting particle size, toner charge or other metrics.
    Type: Grant
    Filed: June 1, 2013
    Date of Patent: April 8, 2014
    Assignee: Xerox Corporation
    Inventors: Daryl W Vanbesien, Michael Steven Hawkins, Corey Tracy, Richard P N Veregin, Karen A Moffat, Paul Joseph Gerroir, Thomas E Enright, Valerie Farrugia
  • Publication number: 20140094570
    Abstract: The present invention provides a water-absorbent resin produced by a reversed-phase suspension polymerization method, which contains a small amount of a petroleum hydrocarbon dispersion medium remaining therein used in reversed-phase suspension polymerization, and thus reducing an odor originating from the petroleum hydrocarbon dispersion medium, when the water-absorbent resin absorbs water, and also which is suitable for use in hygienic materials; an absorbent material and an absorbent article. More particularly, the present invention provides a water-absorbent resin obtained by subjecting an aqueous solution of a water-soluble ethylenically unsaturated monomer to reversed-phase suspension polymerization in a petroleum hydrocarbon dispersion medium in the presence of a surfactant, wherein the amount of the petroleum hydrocarbon dispersion medium remaining in the water-absorbent resin is 2,000 ppm or less; and an absorbent material and an absorbent article using the same.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 3, 2014
    Applicant: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Hideki Yokoyama, Yasuhiro Nawata
  • Publication number: 20140088280
    Abstract: The present invention relates to a method for the continuous production of a polymer by radical polymerization, wherein at least three materials are mixed with microstructures in one or more mixers and are then polymerized in at least one reaction zone.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 27, 2014
    Applicant: BASF SE
    Inventors: Wolfgang Mattmann, Wolfgang Loth, Bolette Urtel, Elke Gütlich-Hauk, Christian Hubert Weidl, Andreas Daiß
  • Patent number: 8673275
    Abstract: A process of free-radical copolymerization of a monomer composition comprising: a) 70 to 100% by weight of acrylic acid, b) 0 to 30% by weight of at least one hydrophilic nonionic compound, different from a), having a free-radically polymerizable, ?,?-ethylenically unsaturated double bond, c) 0 to 1% by weight of at least one free-radically polymerizable crosslinking compound which comprises at least two ?,?-ethylenically unsaturated double bonds per molecule, by the method of precipitation polymerization in the presence of an auxiliary composition H) comprising H1) at least one compound with a block structure which comprises at least one hydrophobic group and at least one hydrophilic group, and H2) at least one basic compound different from H1).
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 18, 2014
    Assignee: BASF SE
    Inventors: Son Nguyen Kim, Wolfgang Jahnel
  • Patent number: 8674044
    Abstract: The invention pertains to the field of membrane protein immobilization onto supports. It relates to a product comprising a support and at least one membrane protein attached to the surface thereof, characterized in that said membrane protein is attached to said support using an amphiphilic molecule with which said membrane protein is complexed. It also relates to a process for preparing such product, as well as to various applications in the fields of diagnosis, drug design and biotechnologies. It further relates to a kit, together with a functionalized amphiphilic molecule, for preparing a product according to the invention comprising a support and an amphiphilic molecule, wherein the amphiphilic molecule and the support interact through a hydrophobic bond, an ionic bond, a specific bond or a covalent bond.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: March 18, 2014
    Assignee: Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-Luc Popot, Delphine Charvolin, Fabrice Giusti
  • Publication number: 20140053478
    Abstract: The invention relates to a process for producing water-absorbing polymer particles, comprising handling water-absorbing polymer particles in intermediate silos, storage silos and/or big bag filing stations that are connected with vent lines having a mitered joint.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicant: BASF SE
    Inventor: Monte Peterson
  • Patent number: 8653215
    Abstract: A process for producing water-absorbing polymer particles by polymerizing an aqueous monomer solution in a kneader having at least two shafts in axially parallel rotation, wherein the reaction mixture is transported in axial direction and the region at the start of the kneader is trace-heated.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: February 18, 2014
    Assignee: BASF SE
    Inventors: Matthias Weismantel, Ulrich Riegel, Markus Braun, Martin Wendker, Thomas Gieger
  • Patent number: 8653212
    Abstract: Embodiments of the present invention include a branched aromatic ionomer, and a process of making it, by co-polymerizing a first monomer comprising an aromatic moiety and an unsaturated alkyl moiety and a second monomer represented by the general formula: [R-AZ]y-MX wherein R is a hydrocarbon chain having from 2 to 40 carbons and at least one polymerizable unsaturation; A is an anionic group; M is a cationic group; Z is ?1 or ?2; X is +1, +2, +3, +4, or +5; and y is an integer having a value of from 1 to 4. The branched aromatic ionomer has a melt flow index ranging from 1.0 g/10 min. to 13 g/10 min. Optionally the melt flow index ranges from 1.3 g/10 min. to 1.9 g/10 min.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: February 18, 2014
    Assignee: Fina Technology, Inc.
    Inventors: John Gaustad, Juan Aguirre, Joe Shuler
  • Patent number: 8648161
    Abstract: The purpose of the present invention is to improve the water absorption of a water-absorbent resin without sacrificing the productivity, production cost, safety, and so on. Provided is a sustainable and renewable water-absorbent resin with excellent whiteness, which is suitable for mass consumption as disposal diapers or the like, and which can dispense with excessive purification of raw material acrylic acid. Also provided is a process for the production of a water-absorbent resin, which comprises: a step of preparing acrylic monomers; a step of polymerizing the monomers; and a step of drying the obtained aqueous gel, wherein the monomers at the time of polymerization contain at least 400 ppm of propionic acid.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: February 11, 2014
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Shinichi Fujino, Eri Nagasawa, Satoshi Matsumoto, Kunihiko Ishizaki
  • Publication number: 20140034865
    Abstract: A fire-extinguishing and/or fire-retarding composition is based on swellable polymers. In the event of fires of lithium ion batteries, smoke gases containing fluorine and/or phosphorus are bound using alkaline earth metal ions, more particularly calcium ions.
    Type: Application
    Filed: February 6, 2012
    Publication date: February 6, 2014
    Applicants: Samsung SDI Co., LTD, Robert Bosch GmbH
    Inventors: Thomas Woehrle, Rainer Kern
  • Patent number: 8642177
    Abstract: A method to provide acid etch resistance to contacting a calcareous substrate with a copolymer prepared from fluorinated methacrylate, short chain branched (meth)acrylate, and (meth)acrylic acid salt and a treated substrate.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: February 4, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Brad M Rosen, Siddhartha R. Shenoy, Anilkumar Raghavanpillai, Ernest Bryon Wysong, Joel M Pollino, James J Hughes, John Russell Crompton, Jr.
  • Publication number: 20140031507
    Abstract: The invention provides a novel method for producing a water-absorbent resin comprising: subjecting at least one water-soluble ethylenic unsaturated monomer to reversed-phase suspension polymerization in a petroleum hydrocarbon dispersion medium, the reversed-phase suspension polymerization being conducted using a 0.00005 to 0.00016 mol of water-soluble azo initiator for radical polymerization per mol of the water-soluble ethylenic unsaturated monomer in the presence of 0.000015 to 0.00015 mol of hypophosphorous compound per mol of the water-soluble ethylenic unsaturated monomer. According to the method, the environmental impact can be lessened by reducing the amount of petroleum hydrocarbon dispersion medium released to the outside of the system, and the method makes it possible to obtain a water-absorbent resin having a high water-retention capacity and water-absorption capacity under a load, and a small content of water soluble component at the same time.
    Type: Application
    Filed: April 19, 2012
    Publication date: January 30, 2014
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Shinya Fukudome, Tetsuhiro Hinayama, Noriko Honda, Junichi Takatori
  • Publication number: 20140031501
    Abstract: A method of extracting (meth)acrylic acid from an aqueous reaction medium into an organic phase in contact therewith is described. The aqueous reaction medium is formed from at least one base catalyst and at least one dicarboxylic acid selected from maleic, fumaric, malic, itaconic, citraconic, mesaconic, and citramalic acid or mixtures thereof in aqueous solution and contains the base catalysed decarboxylation products of the base catalysed reaction. The method includes either the addition of at least one of the said dicarboxylic acids and/or a pre-cursor thereof to the aqueous reaction medium to enhance the solvent extraction of the (meth)acrylic acid into the organic solvent or maintaining the level of base catalyst to dicarboxylic acid and/or pre-cursor at a sub-stoichiometric level during the extraction process. The method extends to a process of producing (meth)acrylic acid, its esters and polymers and copolymers thereof.
    Type: Application
    Filed: February 8, 2012
    Publication date: January 30, 2014
    Applicant: LUCITE INTERNATIONAL UK LIMITED
    Inventors: David William Johnson, Graham Ronald Eastham, Martyn Poliakoff, Thomas Andrew Huddle
  • Patent number: 8633285
    Abstract: A process for producing water-absorbing polymer particles, comprising the addition of a solid additive to a polymer gel by means of a conveying screw (1), wherein the solid additive and a gas volume flow are fed to the conveying screw (1) by means of an addition channel (2).
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: January 21, 2014
    Assignee: BASF SE
    Inventors: Rüdiger Funk, Matthias Weismantel, Dominicus van Esbroeck, Filip Mees
  • Patent number: 8623981
    Abstract: An improved polymerization and process method allows the production of special nitrile rubbers which are characterized by a specific anion content and an excellent storage stability and allow a particularly good vulcanization rate and moreover result in vulcanized materials that have advantageous properties, especially with regard to the contact with metal components of molded parts based on said vulcanized materials.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: January 7, 2014
    Assignee: LANXESS Deutschland GmbH
    Inventors: Werner Obrecht, Rolf Josten, Michael Klimpel
  • Patent number: 8623977
    Abstract: The present invention involves a cross-linked carboxylic acid hydrophobically modified copolymer product in which cross-linked carboxylic acid is modified with a non-hydrocarbyl hydrophobe, namely, poly(dimethyl siloxane) or fluoronated alkyl methacrylates.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: January 7, 2014
    Assignee: Hercules Incorporated
    Inventors: Sung G. Chu, Dekai Loo, Hong Yang
  • Patent number: 8617711
    Abstract: A single layer film containing at least one anionic hydrophilic group selected from a sulfonic acid group, a carboxyl group and a phosphate group, wherein an anion concentration ratio (Sa/Da) of an anion concentration at a surface (Sa) to an anion concentration at a deep part (Da) is 1.1 or more. The single layer film is a copolymer prepared by polymerizing a composition containing a compound (I) represented by the general formula (1) ([X]s[M1]l[M2]m (1)) and a compound (II) having two or more (meth)acryloyl groups in a molecule at a molar ratio of 15:1 to 1:30 and having a water contact angle of 30° or less. Such a single layer film has high hydrophilicity and surface hardness and is excellent in antifogging property, antifouling property and antistatic property, thus is useful as an antifogging material, an antifouling material, an antistatic material and a multilayer body.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: December 31, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Koju Okazaki, Ryouichi Seki, Takazou Katou, Masatoshi Takagi
  • Patent number: 8618206
    Abstract: A process for producing water-absorbing polymer particles with low caking tendency and high absorption under pressure, comprising polymerization of a monomer solution or suspension, drying of the resulting polymer gel, grinding, classifying, thermal surface postcrosslinking and coating with silicon dioxide, wherein the water-absorbing polymer particles have been coated, before, during or after the surface postcrosslinking with aluminum cations.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Thomas Daniel, Christophe Bauduin, Norbert Herfert
  • Publication number: 20130345384
    Abstract: An ultrasonic-assisted injection molding system and method for making precisely-shaped articles. A source of ultrasonic energy is positioned to apply vibrational energy to a mold cavity connected to at least one gate in flow communication with a source of molten (co)polymer. The mold is heated to a temperature of 104-116° C., and the molten (co)polymer is injected into the mold cavity. After cooling the mold until the molten (co)polymer within the gate has solidified, ultrasonic energy is applied to the mold without remelting the solidified (co)polymer within the gate until the temperature increases to 116-122° C., thereby substantially relieving flow induced stresses. The mold is then cooled until the temperature decreases to 101-107° C., and is thereafter heated until the temperature increases to 116-122° C., thereby substantially relieving any thermally induced stresses. The mold is cooled until the molten (co)polymer has solidified, thereby forming a precision molded plastic optical element.
    Type: Application
    Filed: March 14, 2012
    Publication date: December 26, 2013
    Inventors: Stanley Rendon, Dennis E. Ferguson, Donald L. Pochardt, Joseph S. Warner, Timothy J. Rowell, Peter T. Benson, Satinder K. Nayar
  • Patent number: 8613833
    Abstract: Aqueous slurries of finely divided fillers which are at least partly covered by anionic latices, the slurries being obtainable by treating aqueous slurries of finely divided fillers with at least one anionic latex with a glass transition temperature of ?5 to ?50° C., preparation of the aqueous slurries and their use as an additive to the paper stock in the production of filler-containing paper, filler-containing cardboard or filler-containing board by draining the paper stock.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: December 24, 2013
    Assignee: BASF SE
    Inventors: Juergen Schmidt-Thuemmes, Anton Esser, Joerg Nieberle
  • Patent number: 8613834
    Abstract: A paper coating or binding formulation comprises an aqueous polymer dispersion comprising a copolymer obtained by polymerization of an unsaturated monomer and a carbohydrate derived compound and a tetrasulfonate-based fluorescent whitening agent. The carbohydrate derived compound can be selected from the group consisting of dextrins, maltodextrins, and mixtures thereof. Methods of preparing a paper coating or binding formulation and improving the whitening properties of paper are also provided. Furthermore, paper including a copolymer obtained by polymerization of an unsaturated monomer and a carbohydrate derived compound and a tetrasulfonate-based fluorescent whitening agent is also disclosed.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: December 24, 2013
    Assignee: BASF SE
    Inventors: Peter C. Hayes, Ralph Lewis De Jong
  • Publication number: 20130330566
    Abstract: A method for producing a water-absorbent resin including the step of subjecting primary particles obtained by a first-step reversed phase suspension polymerization to agglomeration according to a second-step reversed phase suspension polymerization, each step using an internal-crosslinking agent-added water-soluble ethylenically unsaturated monomer, characterized in that A and B satisfy the relationships of: A?5.0×10?3, and 2?B/A?10, wherein an amount of the internal-crosslinking agent added in the first-step monomers, based on 100 mol of the water-soluble ethylenically unsaturated monomer used in the first step, is defined as A mol, and an amount of the internal-crosslinking agent added in the second-step monomers, based on 100 mol of the water-soluble ethylenically unsaturated monomer used in the second step, is defined as B mol.
    Type: Application
    Filed: March 14, 2012
    Publication date: December 12, 2013
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventor: Junichi Takatori
  • Publication number: 20130324396
    Abstract: A method for producing a water-absorbent resin includes a polymerization step of polymerizing a polymerizable component containing a water-soluble ethylenically unsaturated monomer dissolved in water using a water-soluble azo-type radical polymerization initiator to obtain a reaction system including a water-absorbent resin precursor, and a dehydration step of removing water from the reaction system by heating. In the dehydration step, a water-soluble radical polymerization initiator is added to the reaction system at any first dehydration stage when the residual water rate calculated by the formula (1) is 50% or more, and a reducing substance is added to the reaction system at any second dehydration stage when the residual water rate decreases from that at the first dehydration stage by 10% or more. According to this production method, a water-absorbent resin having satisfactory water-absorption capacity can be produced while suppressing the content of residual monomers.
    Type: Application
    Filed: March 12, 2012
    Publication date: December 5, 2013
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Noriko Honda, Ayaka Watanabe, Kimihiko Kondo
  • Patent number: 8592543
    Abstract: Provided herein are polyfarnesenes derived from a farnesene and at least two different vinyl monomers. Also provided herein are polyfarnesenes derived from a farnesene; at least two different vinyl monomers, such as (meth)acrylic acid, (meth)acrylic esters, styrene, and substituted styrenes; and at least one functional comonomer such as maleic anhydride.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: November 26, 2013
    Inventors: Derek James McPhee, Adam Safir, Craig Reeder, Joseph G. Doolan
  • Patent number: 8586641
    Abstract: The present invention relates to a monolithic organic copolymer prepared by copolymerization of at least one monomer of the group consisting of styrene, (C1-C3)alkylstyrene, (meth)acrylic acid and esters thereof with a crosslinker in the presence of a macroporogen and a microporogen, wherein a) the sum of said at least one monomer of the group and the crosslinker is 10-20%, preferably 10-15%, by volume of the reaction mixture, with the rest being essentially macroporogen and microporogen, and the degree of said copolymerization is at least 70%, preferably at least 90%, more preferably at least 99%, or b) the sum of said at least one monomer of the group and the crosslinker is 30-50%, preferably 35-45%, by volume of the reaction mixture, with the rest being essentially macroporogen and microporogen, and the degree of said copolymerization is in the range of 25-60%, preferably 35-50%.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: November 19, 2013
    Assignee: Leopold-Franzens-Universitat Innsbruck
    Inventors: Lukas Trojer, Günther Bonn
  • Publication number: 20130295396
    Abstract: Disclosed herein is a (meth)acrylic resin film excellent in adhesiveness to vapor-deposited metal and external appearance. The (meth)acrylic resin film includes acrylic rubber particles (A) having an acid value of 0.2 mmol/g or more, wherein an acid value of an entire resin constituting the film is 0.15 mmol/g or more but 1.5 mmol/g or less.
    Type: Application
    Filed: October 18, 2011
    Publication date: November 7, 2013
    Applicant: KANEKA CORPORATION
    Inventors: Fujio Ishimaru, Yukihiro Shimamoto, Taizo Aoyama, Kimihide Nishimura
  • Patent number: 8569204
    Abstract: An absorbent core for an absorbent article comprising from 1 to 2000 mg of a not cross linked polycarboxylic acid based polymer having an average molecular weight between 1000 and 25000 Da.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 29, 2013
    Assignee: The Procter & Gamble Company
    Inventors: Giovanni Carlucci, Evelina Sara Toro, Silvia Steffan