At Least Six Carbon Atoms Patents (Class 526/348.2)
  • Patent number: 7884165
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 8, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Publication number: 20110028654
    Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst, co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of minimum amounts of activating co-catalyst and metallocene pre-catalyst. Also disclosed is a method of producing a block polyolefin composition comprising contacting a metallocene pre-catalyst, a co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; polymerizing the first monomer for a time sufficient to form the polyolefin; adding a second monomer; and polymerizing the second olefin monomer for a time sufficient to form said block polyolefin composition. Also disclosed are amorphous atactic polymer and copolymer compositions made according to the present invention.
    Type: Application
    Filed: November 10, 2008
    Publication date: February 3, 2011
    Applicant: University of Maryland, college Park Office of Technology Commercialization
    Inventors: Lawrence R. Sita, Wei Zhang
  • Publication number: 20110015354
    Abstract: Embodiments of the invention provide a class of mesophase separated propylene/?-olefin block interpolymers with controlled block sequences. The propylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.4. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block propylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (“TREF”), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the propylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Application
    Filed: January 30, 2009
    Publication date: January 20, 2011
    Applicant: Dow Global Technologies Inc.
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Lipishan, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Publication number: 20110015363
    Abstract: Embodiments of the invention provide a class of propylene/?-olefin block interpolymers. The propylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.3. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block propylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (‘TREF’), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the propylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Application
    Filed: January 30, 2009
    Publication date: January 20, 2011
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Lipishan, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Publication number: 20110009580
    Abstract: A copolymer of ethylene and an alpha-olefin, said copolymer having a (a) density>0.930 g/cm3, (b) melt index (g/10 min)>4, (c) molecular weight distribution (MWD)>3.0, and (d) FNCT>250 hours., and is described suitable for use in rotomoulding applications. In particular the novel copolymers result in improved impact strength, improved permeation resistance and improved environmetal stress crack resistance and may suitably be prepared by use of metallocene catalysts.
    Type: Application
    Filed: August 27, 2010
    Publication date: January 13, 2011
    Applicant: Ineos Europe Limited
    Inventor: Choon Kooi Chai
  • Publication number: 20110009576
    Abstract: The present invention relates to a polymerisation process and in particular to a process for the copolymerisation of ethylene and an ?-olefin comonomer having 7 to 10 carbon atoms in a fluidised bed gas phase reactor in the presence of a multi-site Ziegler-Natta polymerisation catalyst characterised in that (i) said process is operated in condensed mode, (ii) the amount of said ?-olefin is maintained below that at which substantial condensation in the reactor occurs and (iii) at least one of the following apply: a) the catalyst has an uptake rate of 1-octene of at least 700; b) the polymerisation is performed in the presence of an activity promoter.
    Type: Application
    Filed: February 24, 2009
    Publication date: January 13, 2011
    Inventors: Jean-Louis Chamayou, Claudine Viviane Lalanne-Magne, Melanie Muron
  • Publication number: 20110003951
    Abstract: A copolymer of 1-butene and at least a C8-C12 alpha-olefin derived units, having a content of C8-C12 alpha-olefin derived units equal to or higher than 7.2% and lower than 20.0% by mole; endowed with the following features: a) no detectable melting point TmII as the highest melting peak in the second melting transition; b) intrinsic viscosity (IV) measured in tetraline at 135° C. comprised between 0.8 and 5.0 dL/g; c) isotactic pentad mmmm higher than or equal to 90%; pentads (mmrr+mrrm) lower than 4 and pentad rmmr not detectable at 13C NMR; d) the tensile modulus (TM) measured with DMTA in MPa and the comonomer content fulfill the following relationship: TM<?14×C+200 wherein C is the molar content of the C8- C12 alpha-olefin derived units; e) the tension set at 100% of deformation is lower than 55%; and f) the melting point measured by DSC (TmI) and the C8-C12 alpha-olefin content fulfill the following relationship: TmI<?0.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 6, 2011
    Applicant: BASELL POLIOLEFINE ITALIA S.R.L.
    Inventors: Luigi Resconi, Davide Balboni, Simona Esposito
  • Patent number: 7858723
    Abstract: Ethylene-based resin, which exhibits a satisfactorily high melt tension and can provide a molded object excellent in mechanical strength, the ethylene-based resin characterized in simultaneously satisfying the requirements [1] to [5] described below: [1] melt flow rate (MFR) under a loading of 2.16 kg at 190° C. is in the range of 0.1 to 100 g/10 minutes; [2] density (d) is in the range of 875 to 970 kg/m3; [3] ratio [MT/?*(g/P)] of melt tension [MT(g)] at 190° C. to shearing viscosity [?*(P)] at 200° C. at an angular velocity of 1.0 rad/sec. is in the range of 1.50×10?4 to 9.00×10?4; [4] sum [(A+B)(/1000C)] of the number of methyl branches [A(/1000C)] and the number of ethyl branches [B(/1000C)] per 1000 carbon atoms measured by 13C-NMR is 1.8 or less; and [5] zero shear viscosity [?0(P)] at 200° C. and weight-average molecular weight (Mw) measured by GPC-viscosity detector method (GPC-VISCO) satisfy the following relational expression (Eq-1): 0.01×10?13×Mw3.4??0?4.5×10?13×Mw3.4??(Eq-1).
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: December 28, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasuo Satoh, Hideki Bando, Yoshiho Sonobe, Masao Suzuki, Daisuke Tanifuji, Chiaki Tomata, Makoto Mitani
  • Patent number: 7858718
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-aryl-8-anilinoquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: December 28, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Michael W. Lynch
  • Publication number: 20100324242
    Abstract: Provided are a highly-pure, terminal-unsaturated olefin polymer which is produced through homopolymerization or copolymerization of one or more ?-olefins having from 3 to 28 carbon atoms, or copolymerization of at least one ?-olefin having from 3 to 28 carbon atoms and ethylene, in the presence of a catalyst, and which satisfies the following (1) to (4); and a method of efficiently producing the olefin polymer having a high degree of terminal unsaturation degree and containing little catalyst residue. (1) The content of the transition metal derived from the catalyst is at most 10 ppm by mass, the content of aluminium is at most 300 ppm by mass, and the content of boron is at most 10 ppm by mass; (2) The polymer has from 0.5 to 1.0 vinylidene group/molecule as the terminal unsaturated group; (3) The polymer has an intrinsic viscosity [?], as measured in decalin at 135° C., of from 0.01 to 2.5 dl/g; (4) The polymer has a molecular weight distribution (Mw/Mn) of at most 4.
    Type: Application
    Filed: October 18, 2007
    Publication date: December 23, 2010
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Shuji Machida, Ryo Aburatani, Takenori Fujimura, Takehiro Tsuda, Yutaka Minami
  • Publication number: 20100324238
    Abstract: A terpolymer of 1-butene, ethylene and a at least a C8-C12 alpha-olefin derived units, containing from 0.1% to 5% by mole of ethylene derived units and from 1 from 20% by mol of C8-C12 alpha-olefin derived units, endowed with the following properties: i) isotactic pentad mmmm higher than or equal to 90%; pentads (mmrr+mrrm) lower than 4 and pentad rmmr not detectable by 13C NMR. ii) intrinsic viscosity (IV) measured in tetrahydronaphthalene at 135° C. comprised between 0.8 and 5.0 dL/g; iii) the melting point measured by DSC (TmI) and the C8-C12 alpha-olefin content fulfil the following relationship: TmI<130×C?0.3 wherein C is the molar content of C8-C12 alpha-olefin derived units and TmI is the highest melting peak in the first melting transition measured by DSC otherwise the melting point TmI is not detectable.
    Type: Application
    Filed: February 27, 2009
    Publication date: December 23, 2010
    Applicant: Basell Poliolefine Italia s.r.l
    Inventors: Luigi Resconi, Davide Balboni, Simona Esposito
  • Patent number: 7855258
    Abstract: Improved thermoplastic polymer blend compositions comprising an isotactic polypropylene component and an alpha-olefin and propylene copolymer component, said copolymer comprising crystallizable alpha-olefin sequences. In a preferred embodiment, improved thermoplastic polymer blends are provided comprising from about 35% to about 85% isotactic polypropylene and from about 30% to about 70% of an ethylene and propylene copolymer, wherein said copolymer comprises isotactically crystallizable propylene sequences and is predominately propylene. The resultant blends manifest unexpected compatibility characteristics, increased tensile strength, and improved process characteristics, e.g., a single melting point.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: December 21, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Charles Cozewith, Periagaram Ravishankar, Edmund J. Stachowski
  • Publication number: 20100305531
    Abstract: The invention relates to a hot-melt adhesive substance for sticking together fibrous materials such as matted nonwovens or woven textiles with smooth substrate surfaces, such as plastic or metal films, and for laminating said materials. Said substance is characterized in that it contains at least one polyolefin which has been produced by polymerization in the presence of metallocene as a catalyst and has a ring/ball softening point of between 50 and 165° C. and a melting viscosity, measured at a temperature of 170° C., of between 20 and 40,000 mPa·s. The hot-melt adhesive substance can also contain at least one adhesive component and is used in a quantity of between 3 and 6 g/m2, preferably between 4 and 5.5 g/m2, for sticking a film to a nonwoven material during the production of hygiene items such as disposable nappies, baby nappies, incontinence products, panty liners and/or sanitary towels.
    Type: Application
    Filed: October 6, 2007
    Publication date: December 2, 2010
    Applicant: Clariant Finance (BVI) Limited
    Inventors: Sebastijan Bach, Gerd Hohner
  • Publication number: 20100298517
    Abstract: The present invention provides a process for producing an ?-olefin polymer comprising polymerizing or copolymerizing (a) C3 or higher a-olefin(s) in the presence of an olefin polymerization catalyst comprising solid titanium catalyst component (I) containing titanium, magnesium, halogen, and a compound with a specific structure having two or more ether linkages and organometallic catalyst component (II) with high catalytic activity. In this process, particularly even in (co)polymerizing (a) higher olefin(s), demineralization is unnecessary. A 4-methyl-1-pentene-based polymer obtained by polymerization using the catalyst of the present invention is excellent in tacticity, transparency, heat resistance, and releasability, and the polymer is particularly suitable for a release film.
    Type: Application
    Filed: August 6, 2010
    Publication date: November 25, 2010
    Applicant: Mitsui Chemicals, Inc.
    Inventor: Tooru TANAKA
  • Patent number: 7838611
    Abstract: An object of the present invention relates to provide an ethylene polymer having excellent mechanical strength and excellent molding processability in a wide molding processing temperature range. The invention relates to use an ethylene polymer comprising a repeating unit derived from ethylene, or a repeating unit derived from ethylene and a repeating unit derived from a C3-8 ?-olefin, the ethylene polymer being satisfied with the following (A) to (F). (A) Density (d (kg/m3)) is from 910 to 970, (B) MFR (g/10 min)) is from 0.01 to 50, (C) terminal vinyl number is 0.2 or less per 1,000 carbon atoms, (D) melt strength (MS160 (mN)) measured at 160° C. and MFR are satisfied with MS160>90?130×log(MFR), (E) melt strength (MS190 (mN)) measured at 190° C. and MS160 are satisfied with MS160/MS190<1.8, and (F) fluidized activation energy (Ea (kJ/mol)) and d are satisfied with 127?0.107d<Ea<88?0.060d.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: November 23, 2010
    Assignee: Tosoh Corporation
    Inventors: Satoru Yamada, Kei Inatomi, Yasutake Wakabayashi, Shigehiko Abe, Morihiko Sato, Masao Tanabiki, Satoshi Hamura, Ryuji Ikeda
  • Publication number: 20100273692
    Abstract: Provided are ethylene-based copolymers, methods of preparing the same, lubricating oil compositions including the same, methods for preparing such lubricating oil compositions, and end uses for such ethylene-based copolymers and lubricating oil compositions. The ethylene-based copolymers may include less than about 80 wt. % of units derived from ethylene and one or more alpha-olefin comonomers having 3 to 20 carbon atoms. The ethylene-based copolymers have a melting peak (Tm), as measured by DSC, of 80° C. or less, and a polydispersity index of about 2.8 or less. In some embodiments, the ethylene-based copolymers have an intramolecular composition distribution of about 50 wt. % or less and/or an intermolecular composition distribution of about 50 wt. % or less.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 28, 2010
    Inventors: Rainer Kolb, Sudhin Datta, Liehpao Oscar Farng, Vera Minak-Bernero, Eric B. Sirota, Thomas Tungshi Sun, Mun Fu Tse
  • Publication number: 20100267908
    Abstract: [Task] To provide a catalyst for olefin polymerization having an excellent olefin polymerization performance and capable of producing a polyolefin with excellent properties.
    Type: Application
    Filed: March 18, 2010
    Publication date: October 21, 2010
    Inventors: Kenji Michiue, Mitsuhiko Onda, Shigekazu Matsui, Sadahiko Matsuura, Koji Endo, Makoto Mitani, Terunori Fujita
  • Publication number: 20100267884
    Abstract: The present invention relates to arborescent polymers and to a process for making same. In one embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with a polymer or copolymer having a low glass transition temperature (Tg), and to a process for making such arborescent polymers. In another embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with less than about 5 weight percent end blocks derived from a polymer or copolymer having a high glass transition temperature (Tg), and to a process for making such arborescent polymers.
    Type: Application
    Filed: November 20, 2009
    Publication date: October 21, 2010
    Applicant: LANXESS, INC.
    Inventors: Gabor Kaszas, Kevin Kulbaba
  • Patent number: 7816478
    Abstract: A thick film and process to prepare polyethylene useful for the film are disclosed. Ethylene is polymerized in two reaction zones with a C6-C10 ?-olefin in the presence of a catalyst system comprising an activator, a supported bridged zirconium complex, and a supported non-bridged zirconium complex. The process yields medium density to linear low density polyethylene having a melt index from 0.20 to 1.0 dg/min. Thick films from the polyethylene have a superior combination of high impact strength and high modulus.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 19, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Mohan Sasthav
  • Publication number: 20100255236
    Abstract: Heterophasic propylene copolymer (HECO) comprising wherein the heterophasic propylene copolymer (HECO) is ?-nucleated and the elastomeric phase has an intrinsic viscosity measured in tetraline at 135° C. of equal or below 4.0 dl/g.
    Type: Application
    Filed: October 27, 2008
    Publication date: October 7, 2010
    Applicant: Borealis Technology Oy
    Inventors: Bo Malm, Klaus Bernreitner, Franz Ruemer
  • Patent number: 7803728
    Abstract: A fiber is obtainable from or comprises an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: September 28, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Patent number: 7799877
    Abstract: Methods of monitoring and controlling polymerization reactions are disclosed. The ratio of concentrations of two reactor components are determined in a gas stream of a reactor to obtain a leading indicator function L. The value of L or a function of L, such as a rescaled value or a reciprocal, is compared to a target value, and at least one reactor parameter is adjusted in response to a deviation between L or the function of L and the target value. Monitoring of the leading indicator permits rapid diagnosis of reactor problems, and rapid adjustments of reactor parameters, compared to laboratory analysis of samples of polymer properties.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: September 21, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Kenneth G. Schurzky, Robert L. Santana, Fred D. Ehrman, Pradeep P. Shirodkar
  • Patent number: 7795365
    Abstract: The subject invention pertains to homogeneous liquid low molecular weight ethylene/alpha-olefin polymers having a number average molecular weight (Mn) as determined by gel permeation chromatography, of less than 25,000, a total crystallinity, as measured by DSC, of less than 10%, and a pour point, as measured by ASTM D97, of less than 50° C. The subject invention also pertains to homogeneous gel-like low molecular weight ethylene/alpha-olefin polymers having a number average molecular weight (Mn) as determined by gel permeation chromatography, of less than 25,000, a total crystallinity, as measured by DSC, of less than 50%, and a pour point, as measured by ASTM D97, of less than 90° C.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: September 14, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Teresa P. Karjala, Selim Yalvac, Thomas Karjala, Daniel D. Vanderlende, Brian W. Kolthammer, James C. Stevens, Charles F. Diehl
  • Patent number: 7772339
    Abstract: A process for producing electrophoretic particles containing core particles includes a step of forming the core particles by polymerization of a composition comprising a colorant, a first polymerizable monomer, a second polymerizable monomer having a functional group which is capable of reacting with a living radical polymerization initiation group precursor, and a polymerization initiator; a step of providing a living radical polymerization initiation group at a surface of each core particle by reacting a compound having the living radical polymerization initiation group precursor with the functional group; and a step of providing a polymer chain to the living radical polymerization initiation group by living radical polymerization.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: August 10, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masato Minami
  • Patent number: 7763675
    Abstract: nuc-PP nanocomposite is made from the mixing of nuc-PP with olefin elastomer and organoclay, and optionally, a dispersion agent. Unexpectedly, processing properties such as higher melt flow, and performance properties such as higher toughness and higher stiffness, are obtained when compared with commercially available PP nanocomposite.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: July 27, 2010
    Assignees: Polyone Corporation, AMCOL International Corporation
    Inventors: David A. Jarus, Guoqiang Qian
  • Publication number: 20100168330
    Abstract: An ethylenic polymer comprising amyl groups from about 0.1 to about 2.0 units per 1000 carbon atoms as determined by Nuclear Magnetic Resonance and both a peak melting temperature, Tm, in ° C., and a heat of fusion, Hf, in J/g, as determined by DSC Crystallinity, where the numerical values of Tm and Hf correspond to the relationship Tm?(0.2143*Hf)+79.643. An ethylenic polymer comprising at least one preparative TREF fraction that elutes at 95° C. or greater using a Preparative Temperature Rising Elution Fractionation method, where at least one preparative TREF fraction that elutes at 95° C. or greater has a gpcBR value greater than 0.05 and less than 5 as determined by gpcBR Branching Index by 3D-GPC, and where at least 5% of the ethylenic polymer elutes at a temperature of 95° C. or greater based upon the total weight of the ethylenic polymer.
    Type: Application
    Filed: March 12, 2009
    Publication date: July 1, 2010
    Applicant: Dow Global Technologies Inc.
    Inventors: Mehmet Demoirors, Teresa P. Karjala, Christopher R. Eddy, Lonnie G. Hazlitt, Pak-Meng Cham, Sarat Munjal, Wallace W. Yau
  • Patent number: 7745557
    Abstract: Methods of polymerizing at least one olefin include contacting the olefin with a catalyst comprising chromium and with a cocatalyst comprising a non-transition metal cyclopentadienyl (Cp) compound. The polymerization may be performed in the presence of hydrogen. Using the cocatalyst in conjunction with the catalyst increases several properties, such as the high load melt index (HLMI), the MW, and the MN, of the polymers produced by this polymerization method. Polymer compositions produced by such methods have various unique properties, including a PDI greater than about 30. Additional embodiments include articles of manufacture or end use articles formed from such polymer compositions.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 29, 2010
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Steven J. Secora, Michael D. Jensen, Kathy S. Collins
  • Patent number: 7741407
    Abstract: The present invention is directed to golf balls having at least one layer which comprises a polymer produced by a process wherein one or more monomers are contacted with a composition comprising the admixture or reaction product resulting from combining (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by the first olefin polymerization catalyst under equivalent polymerization conditions, and (C) a chain shuttling agent. Golf balls of the present invention include one-piece, two-piece, and multi-layer golf balls. In two-piece and multi-layer golf balls of the present invention, the polymer may be present in a core layer, a cover layer, an intermediate layer (in the case of multi-layer balls), or a combination thereof.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 22, 2010
    Assignee: Acushnet Company
    Inventors: Brian Comeau, David A. Bulpett, Kevin M. Harris, Murali Rajagopalan
  • Publication number: 20100151172
    Abstract: The present invention concerns a propylene copolymer composition, a molded article comprising the composition and the use of the propylene copolymer composition for preparing molded articles, preferably pipes.
    Type: Application
    Filed: April 10, 2008
    Publication date: June 17, 2010
    Applicant: BOREALIS TECHNOLOGY OY
    Inventors: Juergen Emig, Karl Ebner, Franz Ruemer
  • Patent number: 7737229
    Abstract: The invention relates to a process for the continuous preparation of ethylene homopolymers or copolymers in the presence of free-radical polymerization initiators and, if desired, molecular weight regulators at from 120° C. to 350° C. and pressures in the range from 100 to 4000 bar, in which the polymer is separated from unpolymerized ethylene in a high-pressure stage at a pressure of from 100 to 500 bar and at least one low-pressure stage at a pressure of from 1 to 100 bar and the ethylene separated off in the high-pressure stage is separated from remaining monomeric, oligomeric and/or polymeric constituents and recirculated to the inlet of the tube reactor in a high-pressure circuit and the ethylene separated off in the low-pressure stage is separated from remaining monomeric, oligomeric and/or polymeric constituents and recirculated to the inlet of the tube reactor in a low-pressure circuit. The initiator is used as a solution in an isoparaffinic solvent having a boiling point of not more than 160° C.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: June 15, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Andrei Gonioukh, Gernot Köhler, Theo Teuber, Thomas Dröge
  • Publication number: 20100130662
    Abstract: The crosslinked material of the present invention is obtainable by crosslinking a propylene resin composition through irradiation with an ionizing radiation wherein the propylene resin composition comprises 100 parts by mass of a propylene resin comprising 15 to 99% by mass of a propylene polymer (A) having a melting point, as measured by a differential scanning calorimeter (DSC), of 120 to 170° C., and 1 to 85% by mass of propylene polymer (B) having a melting point, as measured by a differential scanning calorimeter (DSC), of below 120° C. or not observed (provided that the total of the components (A) and (B) is 100% by mass), and 0.1 to 5 parts by mass of a crosslinking assistant (C). The production process of the crosslinked material of the present invention comprises a step of molding the propylene resin composition into a molded form, and a step of crosslinking the molded form through irradiation with an ionizing radiation.
    Type: Application
    Filed: April 23, 2008
    Publication date: May 27, 2010
    Inventors: Hiroshi Uehara, Kiminori Noda, Masayoshi Yamaguchi
  • Publication number: 20100119793
    Abstract: The instant invention is a polyethylene film, and method of making the same. The polyethylene film according to instant invention includes at least one heterogeneously branched ethylene/?-olefin copolymer having a density in the range of about 0.910 to about 0.930 g/cm3, a molecular weight distribution in the range of about 2.8 to 3.8, a melt index (I2) in the range of about 0.3 to about 4 g/10 min, and an I10/I2 ratio in the range of 6.5 to about 7.8. The film has a normalized dart impact strength of equal or greater than (6666-7012*density) g/mil, a normalized tear strength of equal or greater than (440*e?(density?0.915)2/2*(0.00949)2) g/mil, and a haze in the range of 3 to 10 percent. The method of making the polyethylene film according to instant invention includes the following steps: (1) providing at least one heterogeneously branched ethylene/?-olefin copolymer having a density in the range of about 0.910 to about 0.930 g/cm3, a molecular weight distribution in the range of about 2.8 to 3.
    Type: Application
    Filed: April 4, 2008
    Publication date: May 13, 2010
    Inventors: Sylvie Desjardins, Marc A. Springs, Phillip D. Hustad, Nathan J. Wiker, Jesus Nieto, Wayde V. Konze
  • Publication number: 20100113729
    Abstract: Provided are ethylene copolymers with excellent impact resistance. More specifically, provided are ethylene copolymers satisfying certain correlation between the falling dart impact strength (F) or high rate impact resistant breakage energy (E) and Vicat softening point. The ethylene copolymers with improved impact properties are applicable to film, injection, compound, sheet, roto, pipe or blow molding.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 6, 2010
    Inventors: Seungbum Kwon, Hyeongtek Ham, Choonsik Shim, Sungseok Chae, Myungahn Ok, Daeho Shin
  • Patent number: 7709586
    Abstract: An olefin polymerization catalyst which includes an organometallic compound of the following Formula 1; aluminoxane; and an organic transition metal compound of the following Formula 2: M1R11R2mR3n or R2mR3nM1R11M1R2mR3n??[Formula 1 ] in Formula 1, M1 is selected from the group consisting of Group 2A, 2B and 3A of the Periodic Table, R1 is cyclic hydrocarbyl group of 5 to 30 carbon atoms, R2 and R3 are independently hydrocarbyl group of 1 to 24 carbon atoms, l is an integer of more than 1, m and n are independently an integer of 0 to 2, l+m+n is equal to the valence of M1, Q is a divalent group; M2R4pXq??[Formula 2 ] in Formula 2, M2 is Ti, Zr or Hf; R4 is cyclic hydrocarbyl group of 5 to 30 carbon atoms, X is halogen atom, p is an integer of 0 or 1, q is an integer of 3 or 4, p+q is equal to the valence of metal M2.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: May 4, 2010
    Assignee: Daelim Industrial Co., Ltd.
    Inventors: Sah-Mun Hong, Sung-Woo Kang, Young-Jae Jun, Jin-Sook Oh
  • Patent number: 7700708
    Abstract: An ethylene polymer containing 0.01 to 1.20 mol % of a constitutional unit derived from ?-olefin having 6 to 10 carbon atoms, wherein with respect to cross fractionation chromatography (CFC), either (1) the weight average molecular weight (Mw) of the components eluted at 73 to 76° C. does not exceed 4,000, or (2) the ethylene polymer satisfies the following relationship (Eq-1), provides a molded product having excellent moldability and therefore excellent mechanical strength and appearance: Sx/Stotal?0.1??(Eq-1) wherein Sx is the sum of the total peak areas related to the components eluted at 70 to 85° C., and Stotal is the sum of the total peak areas related to the components eluted at 0 to 145° C.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: April 20, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Takahashi, Masahiko Okamoto, Tetsuji Kasai, Yasushi Tohi, Shiro Otsuzuki, Shinichi Nagano, Yasuo Funabara, Takahiro Akashi
  • Patent number: 7687579
    Abstract: An ethylene (co)polymer of the present invention is a (co)polymer with excellent moldability and mechanical properties and either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 4 to 20 carbon atoms. The (co)polymer has methyl branches measured by 13C-NMR less than 0.1 in number per 1,000 carbon atoms and Mw/Mn measured by GPC not lower than 1.8 and lower than 4.5. The (co)polymer is either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 3 to 20 carbon atoms. The melt tension (MT) and the swell ratio (SR) satisfy the relation; log(MT)>12.9?7.15×SR; and the intrinsic viscosity ([?]) and the melt flow rate (MFR) satisfy the relation; [?]>1.85×MFR?0.192 in the case of MFR<1 and the relation; [?]>1.85×MFR?0.213 in the case of MFR?1. Such an ethylene (co)polymer can be usable for various molding applications and especially suitable for pipes.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: March 30, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Takahashi, Tetsuji Kasai, Junji Saito, Naoto Matsukawa, Kazutaka Tsuru, Makoto Mitani, Terunori Fujita, Shiro Otsuzuki, Tetsuhiro Matsumoto, Toshiyuki Tsutsui
  • Patent number: 7666961
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged bis-indeno[2,1-b]indolyl zirconium complex. The process uses a highly active catalyst and provides polyethylene characterized by a high level of long-chain branching.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 23, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jean A. Merrick-Mack, Natalia Nagy
  • Publication number: 20100036077
    Abstract: Regioregular polymers of C4-C20 alpha-olefins of Mn greater than 1000 g/mol, are obtained.
    Type: Application
    Filed: December 1, 2006
    Publication date: February 11, 2010
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Geoffrey W. Coates, Anna Cherian, Jeffrey M. Rose
  • Patent number: 7645844
    Abstract: The present invention relates to a transition metal complex and a transition metal catalyst composition comprising the same for the preparation of an ethylene homopolymer or a copolymer of ethylene and ?-olefin. More particularly, it relates to a group IV transition metal catalyst having a cyclopentadiene derivative and at least one aryl oxide ligand in which an oxygen-containing heterocycle is fused at the ortho-position around a group IV transition metal, with no crosslinkage between the ligands, a catalyst composition comprising the transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and a process for preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin using the same.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: January 12, 2010
    Assignee: SK Energy Co., Ltd.
    Inventors: Dong-Cheol Shin, Ho-Seong Lee, Myung-Ahn Ok, Jong-Sok Hahn
  • Patent number: 7615598
    Abstract: A method of continuously manufacturing a high viscosity polyalphaolefin product by introducing a monomer and an ionic liquid catalyst together into a reaction zone while simultaneously withdrawing from the reaction zone a reaction zone effluent that contains the high viscosity polyalphaolefin. The reaction zone is operated under reaction conditions suitable for producing the high viscosity polyalphaolefin product. The preferred high viscosity polyalphaolefin has a kinematic viscosity exceeding about 8 cSt and is the reaction product of the trimerization, oligomerization, or polymerization of an alpha olefin or a mixture of one or more product thereof. The high viscosity polyalphaolefins are useful as lubricants or lubricant additives.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: November 10, 2009
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth D. Hope, Donald A. Stern, Donald W. Twomey, J. Barry Collins
  • Publication number: 20090274921
    Abstract: Terpolymer of propylene, ethylene and C4 to C8 ?-olefin with good barrier properties and processing properties, wherein the amount of propylene in said terpolymer is at least 94 percent by weight and the melting temperature of said terpolymer is more than 140° C.
    Type: Application
    Filed: June 2, 2009
    Publication date: November 5, 2009
    Inventors: Nina Ackermans, Mark De Ryck, Guido Boelaers
  • Patent number: 7601409
    Abstract: Stretch films are disclosed, the films having at least one layer formed of or including a polyethylene copolymer and having a natural draw ratio of at least 250%, a tensile stress at the natural draw ratio of at least 22 MPa, and a tensile stress at second yield of at least 12 MPa. In some embodiments, the polyethylene copolymer can have a CDBI of at least 70%, a melt index I2.16 of from 0.1 to 15 g/10 min., a density of from 0.910 to 0.940 g/cm3, a melt index ratio I21.6/I2.16 of from 30 to 80, and an Mw/Mn ratio of from 2.5 to 5.5. The stretch films are particularly useful in bundling and packaging applications.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: October 13, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Stefan Bertil Ohlsson
  • Patent number: 7595371
    Abstract: An ethylene-?-olefin copolymer comprising repeating units derived from ethylene and repeating units derived from an ?-olefin having 3 to 20 carbon atoms and having a melt flow rate (MFR) of from 0.01 to 100 g/10 min, a density (d) of from 890 to 970 kg/m3, a flow activation energy (Ea) of 50 kJ/mol or more, a molecular weight distribution (Mw/Mn) of 3 or more measured by gel permeation chromatography, and a hexane extraction rate (C) of 2.8% or less.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: September 29, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasutoyo Kawashima, Katsuhiro Yamada, Yoshinobu Nozue
  • Publication number: 20090240012
    Abstract: A process for the preparation of oligomeric poly alpha-olefins includes oligomerizing low molecular weight PAO oligomer in the presence of a Lewis acid catalyst such as promoted aluminum trichloride or boron trifluoride under oligomerization conditions. The low molecular weight PAO oligomers used as a feed or feed component of the present process are the light olefinic by-product fractions including the dimers and light fractions from the metallocene-catalyzed PAO oligomerization process which are characterized by a molecular weight of 150 to 600 and a terminal olefin (vinylidene) content of at least 25%.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 24, 2009
    Inventors: Abhimanyu Onkar Patil, Margaret May-Som Wu, Norman Yang
  • Publication number: 20090233091
    Abstract: A method for the preparation of a polymer film containing 300-600 gels/m2 of size in the range 100-2000 ?m as measured by an optical control system (OCS) as hereinbefore described, said film being derived from an ethylene-?-olefin copolymer is characterised in that said copolymer is prepared in a particle forming polymerisation process in the presence of a single site catalyst system. The preferred single site catalyst system comprises a metallocene and the preferred polymerisation process is a gas phase process. The invention is particularly directed to blown films.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 17, 2009
    Inventors: Grant Berent Jacobsen, Claudine Viviane Lalanne-Magne, Sergio Mastroianni, Melanie Muron, Eric Nicolas Vincent Osmont
  • Patent number: 7589162
    Abstract: A polymer composition comprising a density equal to or greater than about 0.947 g/cc, a high load melt index from about 1 g/10 min to about 30 g/10 min, and a tensile natural draw ratio less than about 14167 ?-12958, where ? is the density (g/cc) of the composition. A polymer composition comprising a tensile natural draw ratio less than about 14167?-12958, where ? is the density (g/cc) of the composition and wherein less than about 1 weight percent of the composition comprises non-polymeric additives.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: September 15, 2009
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Rajendra K. Krishnaswamy, Qing Yang, David C. Rohlfing, Max P. McDaniel, Kumudini C. Jayaratne, Jim E. French
  • Publication number: 20090209721
    Abstract: Copolymers when used as lubricating oil viscosity modifiers enable lubricating oils to show excellent low-temperature properties. Processes for producing the copolymers are disclosed. Lubricating oil viscosity modifiers and lubricating oil compositions contain the copolymers. A copolymer includes structural units derived from ethylene and structural units derived from a C3-20 ?-olefin and satisfies the following requirements (1) to (8): (1) the melting point (Tm) according to DSC is in the range of 0 to 60° C.; (2) the melting point (Tm) and the density D (g/cm3) satisfy the equation: Tm?1073×D?893; (3) Mw/Mn according to GPC is from 1.6 to 5.0; (4) the half-value width (?Thalf) of a melting peak measured by DSC is not more than 90° C.; (5) the half-value width (?Thalf) and the melting point (Tm) satisfy the equation: ?Thalf??0.71×Tm+101.4; (6) the heat of fusion (?H) as measured by DSC is not more than 60 J/g; (7) the crystallization temperature (Tc) measured by DSC is not more than 70° C.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 20, 2009
    Inventors: Satoshi Ikeda, Akihiro Matsuda, Yoshiki Shimokawatoko, Junichi Mohri, Toshiyuki Shimazaki, Hiroshi Terao, Koji Takeda
  • Patent number: 7569647
    Abstract: A process for producing a copolymer of ethylene containing from 0.1 to 99% by mol of one or more derived units of alpha-olefins of formula CH2?CHA, wherein A is a C2-C20 alkyl radical, comprising contacting, under polymerization conditions, ethylene and one or more alpha-olefins in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I): wherein M is zirconium, titanium or hafnium; X, same or different, is a hydrogen atom, a halogen atom, or an hydrocarbon group; R1, is a hydrocarbon group; R2 R3, R4, R5 and R6, are hydrogen atoms or hydrocarbon groups; Q is a radical of formula (II), being bonded to the indenyl at the position marked by the symbol *; (II) wherein: T1, T2, T3, T4 and T5, are carbon atoms (C) or nitrogen atoms (N); m1, m2, m3, m4 and m5 are 0 or 1; R7, R8, R9, R10 and R11 are hydrogen atoms or hydrocarbon groups; and b) an alumoxane or a compound capable of forming an alkyl metallocene cation.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: August 4, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Nicoletta Mascellani
  • Patent number: 7569648
    Abstract: A process for producing a polymer of ethylene containing from 0.1 to 50% by weight of one or more derived units of alpha-olefins fo formula CH2?CHR, wherein R is a C2-C20 alkyl radical, comprising contacting, under polymerization conditions, ethylene and one or more alpha-olefins in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I) wherein: M is zirconium titanium or hafminum, X, equal to or different from each other, is hydrogen halogen or an hydrocarbyl radical, R1, R2, R3, R4, R5, R6, R7, R8 and R9, equal to or different from each other are hydrogen atoms, halogen atoms, or hydrocarbyl radicals; and b) an alumoxane or a compound capable of forming an alkyl metallocene cation.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: August 4, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Anna Fait, Alexander Koeppl, Luigi Resconi
  • Patent number: RE41897
    Abstract: Catalyst compositions and methods, useful in polymerization processes, utilizing at least two metal compounds are disclosed. At least one of the metal compounds is a Group 15 containing metal compound and the other metal compound is preferably a bulky ligand metallocene-type catalyst. The invention also discloses a new polyolefin, generally polyethylene, particularly a multimodal polymer and more specifically, a bimodal polymer, and its use in various end-use applications such as film, molding and pipe.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: October 26, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Donald R. Loveday, David H. McConville, John F. Szul, Kersten Anne Terry, Simon Mawson, Tae Hoon Kwalk, Frederick J. Karol, David James Schreck