Monomer Polymerized In Vapor State In Presence Of Transition Metal Containing Catalyst Patents (Class 526/901)
  • Publication number: 20040092680
    Abstract: Low molecular weight olefin polymers are prepared by a polymerization process employing titanium complexes comprising a 3-aryl-substituted cyclopentadienyl ring or substituted derivatives thereof as polymerization catalysts.
    Type: Application
    Filed: September 18, 2003
    Publication date: May 13, 2004
    Inventors: David D. Graf, Jerzy Klosin, Timothy A. Herzog, Peter N. Nickias, Carlos G. Ortiz, Jorge Soto, Ravi B. Shankar, Daniel D. VanderLende
  • Publication number: 20040082740
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with halogenating/titanating agents, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
    Type: Application
    Filed: October 16, 2003
    Publication date: April 29, 2004
    Applicant: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6727329
    Abstract: A compound useful as a cocatalyst or cocatalyst component, especially for use as an addition polymerization catalyst compound, corresponding to the formula: (A*hu +a)b(Z*J*j)−cd, wherein: A* is a proton or a cation of from 1 to 80 atoms, preferably 1 to 60 atoms, not counting hydrogen atoms, said A* having a charge +a; Z* is an anion group of from 1 to 50 atoms, preferably 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites, said Z* being the conjugate base of an inorganic Bronsted acid or a carbonyl- or non-cyclic, imino-group containing organic Bronsted acid; J* independently each occurrence is a Lewis acid of from 1 to 80 atoms, preferably 1 to 60 atoms, not counting hydrogen atoms, coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality; j is a number from 1 to 12; and a, b, c, and d are integers from 1 to 3, with the proviso that a
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: April 27, 2004
    Assignee: Dow Global Technology Inc.
    Inventor: Alexander Vogel
  • Patent number: 6723805
    Abstract: A process for producing high density polyethylene (HDPE) or linear low density polyethylene (LLDPE) in gas phase reactors, isolated or combined, using chromium or Ziegler-Natta catalysts, provided with on-line control of certain process variables as well as physical properties of the produced resin is described. Such process comprises the use of models for the inference of the physical properties and of the process variables that are not continuously measured as well as models which are relevant for the control of said properties and of the operating conditions of the process. The control of the process variables provides further the maximization of the production rate and of the catalyst productivity in the polymerization reaction.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: April 20, 2004
    Assignee: Braskem S.A.
    Inventors: Antonio Luiz Duarte Braganca, Esdras Piraguacy Demoro, Artur Toledo Martins De Oliveira
  • Publication number: 20040063878
    Abstract: The present invention relates to a process for the gas-phase (co-) polymerisation of olefins in a fluidised bed reactor using a late transition metal catalyst characterised in that the polymerisation is performed in the presence of a process aid additive.
    Type: Application
    Filed: October 21, 2003
    Publication date: April 1, 2004
    Inventors: Patrick Daniel Yves Behue, Gacem Benazouz, Laurent Coupier, David Heslop, Sebastien Huchette, Jean-Pierre Isnard, Willy Lemesle, Renaud Viguier
  • Publication number: 20040063871
    Abstract: A method for controlling resin properties during the production of polyolefins is provided. The method utilizes coordinated manipulation of reaction temperature in combination with a secondary process variable to control resin flow properties to rapidly respond to manufacturing upsets or specification changes to minimize off-grade or transition polymer material when moving from one polymer grade to another, or during a disturbance in a steady state production.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Inventors: John R. Parrish, Ivan J. Hartley, Lonnie L. Pinson
  • Patent number: 6713573
    Abstract: The present invention relates to the use of thermally triggered compounds that when used with a polymerization catalyst in a polymerization process results in the controllable generation of one or more catalyst inhibitors that renders the polymerization catalyst substantially or completely inactive.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: March 30, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Dick Alan Nagaki, Thomas Henry Peterson, David James Schreck
  • Publication number: 20040059072
    Abstract: An ethylene styrene copolymer having isolated styrene monomer units separated by 5 or 6 methylene groups as determined by 13C-NMR may be polymerized in the presence of an activator and a transition metal catalyst containing a phosphinimine ligand.
    Type: Application
    Filed: September 20, 2002
    Publication date: March 25, 2004
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Qinyan Wang, Patrick Lam, Gail Baxter, James Arthur Auger
  • Patent number: 6710144
    Abstract: There is provided a process for producing an olefin polymer, which comprises a step of polymerizing an olefin in a gas phase in the presence of a homogeneous solid catalyst having a content of particles having a particle size of not more than 180 &mgr;m of not more than 15% by weight based on 100% by weight of the total weight of the homogeneous solid catalyst.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: March 23, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masashi Hamba, Kazuki Wakamatsu, Tomoaki Gotou
  • Publication number: 20040044148
    Abstract: Catalysts for the polymerization of C2-C20-olefins are preactivated by a process in which the catalyst is first mixed with the respective monomer, then, if appropriate, the respective cocatalyst is added and the resulting mixture is subsequently subjected to preactivation in a tube reactor and the catalyst which has been preactivated in this way is finally introduced into the actual polymerization reactor, wherein the mixture of catalyst, any cocatalyst and monomer is passed through the tube reactor in turbulent plug flow at a Reynolds number of at least 2 300.
    Type: Application
    Filed: July 15, 2003
    Publication date: March 4, 2004
    Inventors: Wolfgang Bidell, Joachim Zitzmann, John Lynch, Juergen Oelze, Hermann Gebhart
  • Publication number: 20040044153
    Abstract: A gas phase polymerization process for producing a polyolefin composition is described, which includes passing a gaseous stream containing hydrogen gas and one or more monomers, including ethylene monomers, through a reactor that includes a fluidized bed, under reactive conditions, in the presence of a catalyst that includes metallocene, to provide a polyolefin composition, wherein in one embodiment the fluidized bulk density is 60% or more of the settled bulk density (or, a voidage of 40% or less); and wherein the voidage is controlled by a number of factors including, in certain embodiments, (a) the reactor temperature being maintained at 100° C. or below; (b) the molar ratio of hydrogen gas to ethylene introduced into the reactor being 0.015 or below.
    Type: Application
    Filed: February 18, 2003
    Publication date: March 4, 2004
    Inventors: Fred David Ehrman, Michael Elroy Muhle, Pradeep Pandurang Shirodkar, Keith Wesley Trapp
  • Publication number: 20040037752
    Abstract: The present invention relates to an apparatus and a process for locating and for measuring variations in temperature and/or in degree of fouling over the internal suface of equipment
    Type: Application
    Filed: August 6, 2003
    Publication date: February 26, 2004
    Inventor: Marc Jacques Herzog
  • Publication number: 20040034179
    Abstract: Catalyst compositions and methods, useful in polymerization processes, utilizing at least two metal compounds are disclosed. At least one of the metal compounds is a Group 15 containing metal compound and the other metal compound is preferably a bulky ligand metallocene-type catalyst. The invention also discloses a new polyolefin, generally polyethylene, particularly a multimodal polymer and more specifically, a bimodal polymer, and its use in various end-use applications such as film, molding and pipe.
    Type: Application
    Filed: August 1, 2003
    Publication date: February 19, 2004
    Inventors: Donald R. Loveday, David H. McConville, John F. Szul, Kersten Anne Erickson, Simon Mawson, Tae Hoon Kwack, Frederick J. Karol, David James Schreck
  • Publication number: 20040030064
    Abstract: The present invention provides a catalyst component used for homopolymerization or co-polymerization of ethylene, comprising at least one suitable electron donor compound supported on a composition containing magnesium and titanium, wherein the electron donor compound is selected from the group consisting of aliphatic ethers, alicyclic ethers, aromatic ethers, aliphatic ketones and alicyclic ketones, and wherein the composition containing magnesium and titanium is prepared by dissolving a magnesium compound into a solvent system to form a homogeneous solution and then contacting the solution with a titanium compound in the presence of a precipitation aid to precipitate the composition. The present invention also relates to a method for the preparation of said catalyst component and a catalyst comprising thereof, and to use of the catalyst in homopolymerization of ethylene or co-polymerization of ethylene with at least one C3-C8 &agr;-olefln.
    Type: Application
    Filed: June 5, 2003
    Publication date: February 12, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Zhiwu Wang, Zhong Tan, Tianyi Li, Xingbo Li, Kai Zhang, Peng Kou, Haixiang Cui, Zhengyang Guo, Liang Pan
  • Publication number: 20040030065
    Abstract: The present invention relates to a process for the gas-phase (co-)polymerisation of olefins in a fluidised bed reactor using a chromium oxide catalyst characterised in that the polymerisation is performed in the presence of a polymer structure modifier.
    Type: Application
    Filed: September 11, 2003
    Publication date: February 12, 2004
    Inventors: Jean-Jacques Kuhlburger, Kenneth John Rowley
  • Publication number: 20040028574
    Abstract: Installation for the gas-phase polymerisation of at least one olefinic monomer, comprising a horizontal stirred reactor consisting of an undivided space, provided with a number of gas feeds (13a-13) in the bottom section of the reactor (1) and a number of liquid feeds (7a-7) in the top section of the reactor (1) and at least two gas outlets (9, 11) at the top of the reactor (1), the installation being provided with means (43, 45) to regulate the discharge capacities of the gas outlets.
    Type: Application
    Filed: August 27, 2003
    Publication date: February 12, 2004
    Inventors: Paul J. Diepen, Stanislaus M.P. Mutsers
  • Publication number: 20040030070
    Abstract: Catalyst compositions and methods, useful in polymerization processes, utilizing at least two metal compounds are disclosed. At least one of the metal compounds is a Group 15 containing metal compound and the other metal compound is preferably a bulky ligand metallocene-type catalyst. The invention also discloses a new polyolefin, generally polyethylene, particularly a multimodal polymer and more specifically, a bimodal polymer, and its use in various end-use applications such as film, molding and pipe.
    Type: Application
    Filed: August 5, 2003
    Publication date: February 12, 2004
    Inventors: Donald R. Loveday, David H. McConville, John F. Szul, Kersten Anne Erickson, Simon Mawson, Tae Hoon Kwack, Frederick J. Karol, David James Schreck
  • Patent number: 6689849
    Abstract: The present invention provides a catalyst for bulk or vapor-phase polymerization having high polymerization activity during bulk or vapor-phase polymerization and providing an olefin polymer having excellent properties in melt flow rate and stereoregularity by adding a small amount of hydrogen. The catalyst for bulk or vapor-phase polymerization of an &agr;-olefin compound under a presence of hydrogen, the catalyst is made by contacting the following ingredients (A) to (C). (A) a solid catalyst ingredient, comprising: (a) a magnesium compound, (b) titanium tetrachloride, and (c) dialkyl phthalate (Each of the alkyl group denotes a straight-chain or branched-chain hydrocarbon group having a carbon number of 3 to 20.); (B) an organoaluminum compound; and (C) an organosilicon compound, which is expressed by the following general chemical formula (1).
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: February 10, 2004
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Takanori Sadashima, Masami Kanamaru, Tsuyoshi Ota, Hideo Funabashi
  • Publication number: 20040014917
    Abstract: The present invention relates to a support for catalysts which has a content of physisorbed water of at least 2.5% by weight. Further subject-matters of the application are a process for preparing heterogeneous catalysts containing these supports and the use of these catalysts for olefin polymerization and also a polymerization process using the catalysts.
    Type: Application
    Filed: April 24, 2003
    Publication date: January 22, 2004
    Inventors: Thomas Eberle, Dieter Lubda, Katrin Kohler, Jens Eichhorn
  • Publication number: 20040014914
    Abstract: Novel supported, titanized chromium catalysts can be used for the homopolymerization of ethylene and the copolymerization of ethylene with &agr;-olefins.
    Type: Application
    Filed: July 24, 2003
    Publication date: January 22, 2004
    Inventors: Martin Schneider, Rainer Karer, Dieter Lilge, Volker Rauschenberger, Philipp Rosendorfer, Joachim Wulff-Doring, Gunther Schweier, Martin Lux, Peter Bauer
  • Publication number: 20040010104
    Abstract: A solid catalyst for olefin polymerization, which comprises a silica carrier (A) having a specific surface area of from 600 to 850 m2/g, a pore volume of from 0.1 to 0.8 ml/g and an average particle size of from 2 to 12 &mgr;m, and an organoaluminum-oxy compound (B) and a Group IVB transition metal compound (C) containing a ligand having a cyclopentadienyl skeleton, supported on the carrier (A).
    Type: Application
    Filed: June 18, 2003
    Publication date: January 15, 2004
    Applicant: MARUZEN PETROCHEMICAL CO., LTD.
    Inventors: Toshifumi Takemori, Masashi Iida, Minoru Iijima, Yoshihisa Hayashida, Masao Kawahara
  • Patent number: 6677267
    Abstract: The present invention relates to a process for the polymerization and copolymerization of 1-olefins and to a catalyst to be used in said process wherein the catalyst comprises (1) a complex having formula (I) wherein M is Fe[II], Fe[III], Co[I], Co[II], Co[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; X represents an atom or group covalently or ionically bonded to the metal M; T is the oxidation state of the metal; b is the valency of the atom or group X; and R 1 to R 7 are each independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl, substituted heterohydrocarbyl or SiR′ 3 where each R′ is independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl, substituted heterohydrocarbyl; and when any two or more of R 1 to R 7 are hydrocarbyl, substituted hydrocarbyl, heterohydroc
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: January 13, 2004
    Assignee: BP Chemicals Limited
    Inventors: Alain Berardi, John Gabriel Speakman
  • Publication number: 20030236364
    Abstract: Provided is a process for polymerizing olefins in the presence of a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group. More particularly, the present invention is directed to a process and catalyst composition having improved reactor performance, reducing or eliminating the need for anti-fouling additives to the catalyst composition and/or the reactor. In one embodiment, the invention is a process of polymerizing olefins comprising contacting ethylene and at least one comonomer with a supported catalyst system comprising a metallocene catalyst compound, the metallocene catalyst compound comprising at least one fluoride ion or fluorine containing leaving group; and wherein the supported catalyst system comprises an inorganic oxide support having an average particle size of from 35 &mgr;m or less and a pore volume of from 1 to 2 cm3/g. The polymer product resulting therefrom is, in one embodiment, a copolymer having a density in the range of from 0.910 g/cm3 to 0.
    Type: Application
    Filed: June 18, 2003
    Publication date: December 25, 2003
    Inventors: Laughlin G. McCullough, Agapios K. Agapiou
  • Publication number: 20030228975
    Abstract: The olefinic polymer characterised in that the n-decane-soluble content thereof is 10% by weight or less and the content of a ligand having a cyclopentadienyl structure is 5 ppb by weight or less. The process for producing an olefinic polymer is a process of producing an olefinic polymer by (co)polymerizing olefins in a gas phase using a fluidized-bed reactor, the process comprising: a polymerization step of (co)polymerizing the olefins with allowing a saturated aliphatic hydrocarbon to exist in a concentration of 2 to 30 mol % in the fluidized-bed reactor and a ligand removing step involving a step of bringing the resulting (co)polymer into contact with a ligand-remover and a step of heating said (co)polymer which has been brought into contact with the ligand-remover.
    Type: Application
    Filed: March 28, 2003
    Publication date: December 11, 2003
    Inventors: Satoru Ohtani, Shinji Abe, Hiroto Nishida
  • Patent number: 6660817
    Abstract: A novel continuous gas phase polymerization process for producing polyethylene and interpolymers of ethylene and at least one other olefin is provided wherein a non-aromatic halogenated hydrocarbon is used in a specified amount such that the activity of the titanium, zirconium and/or hafnium containing Ziegler-Natta catalyst is increased.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: December 9, 2003
    Assignee: Eastman Chemical Company
    Inventors: Don Kent Farrer, Kenneth Alan Dooley, Glenn Edward Moore, Larry Allen Noble
  • Publication number: 20030225224
    Abstract: A polymer includes at least propylene as a first monomeric component, 1-pentene as a second monomeric component, and, as a third monomeric component, a third olefin. The third olefin has fewer than 5 carbon atoms, is linear and is not propylene, or has 5 carbon atoms and is branched, or has more than 5 carbon atoms and is linear or branched.
    Type: Application
    Filed: May 28, 2002
    Publication date: December 4, 2003
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Ioan Tincul, Dawid Johannes Joubert, Udo Maximilian Wahner, Sarel Petrus Jacobus Smith, Pieter Willem Van Zyl
  • Publication number: 20030224927
    Abstract: A process for forming a coordination catalyst system comprising substantially simultaneously contacting: (I) pre-catalyst reactants comprising (a) at least one first ligand; and (b) at least one first transition metal suitable to form at least one metallocene or constrained geometry pre-catalyst compound (e.g., rac-ethylene bis(indenyl)zirconium dichloride); and optionally (c) at least one second ligand and (d) at least one second transition metal suitable to form at least one non-metallocene, non-constrained geometry, bidentate or tridentate transition metal compound (e.g., tridentate 2,6-diacetylpyridine-bis(2,4,6-trimethylanaline)FeCl2); and (II) further contacting, jointly or individually, the pre-catalyst compound(s) and optional bidentate or tridentate compound(s) with at least one support-activator agglomerate (e.g., spray dried silica/clay agglomerate). When individually contacted, the supported catalyst components can be mixed or blended.
    Type: Application
    Filed: April 10, 2002
    Publication date: December 4, 2003
    Inventor: Keng-Yu Shih
  • Patent number: 6657021
    Abstract: The present invention relates to a nozzle for the injection of a liquid under pressure (3), comprising a vertical feed pipe (1) surmounted by a hollow head (3), the liquid under pressure being conducted between the outer wall (4) of the vertical feed pipe (1) and an inner tube (5), the upper part of the nozzle comprising at least one lateral orifice (6) for expelling the liquid under pressure (3).
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 2, 2003
    Assignee: BP Chemicals Limited
    Inventors: Jean-Louis Chamayou, Jean-Claude Chinh
  • Publication number: 20030220461
    Abstract: The process for producing an olefinic polymer comprises introducing a saturated aliphatic hydrocarbon in a liquid phase state and in a vapor phase state into the aforementioned fluidized-bed and (co)polymerizing in the condition that when the inside radius of the cylinder section of the fluidized-bed reactor is defined as a distance of 1, the relationship between the concentration (C1) of the saturated aliphatic hydrocarbon put in a liquid state in the peripheral portion of the cylinder section at a relative distance of 0.7 to 1.0 from the center of the cylinder section as a start point and the concentration (C2) of the saturated aliphatic hydrocarbon put in a liquid state in the center portion of the cylinder section at a relative distance less than 0.7 from the center fulfills the following equation: C1>C2 at a place close to the upstream section of said gas distributing plate.
    Type: Application
    Filed: March 28, 2003
    Publication date: November 27, 2003
    Inventors: Satoru Ohtani, Shinji Abe, Hiroto Nishida
  • Patent number: 6649558
    Abstract: Organometallic complexes having two phosphinimine ligands and at least one activatable ligand are catalyst components for olefin polymerization. Preferred polymerization systems are prepared by combining the organometallic complexes with an ionic activator and/or an alumoxane. Preferred catalyst components contain titanium, zirconium, or hafnium and are activated with an ionic activator to form catalysts for ethylene polymerization.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: November 18, 2003
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Stephen John Brown, Xiaoliang Gao, Daryll G. Harrison, Ian McKay, Linda Koch, Qinyan Wang, Wei Xu, Rupert Edward von Haken Spence, Douglas W. Stephan
  • Patent number: 6649710
    Abstract: A process for preventing polymeragglomeration and for controlling the density of copolymer produced by an alpha-olefin copolymerization process in a polymerization reactor, wherein the ratio of the flow rates of introduction of the comonomer(s) to the monomer is kept constant.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 18, 2003
    Assignee: BP Chemicals Limited
    Inventor: Frederic Robert Marie Michel Morterol
  • Publication number: 20030212219
    Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
    Type: Application
    Filed: June 19, 2003
    Publication date: November 13, 2003
    Inventors: Randal Ray Ford, Richard Kingsley Stuart
  • Patent number: 6646073
    Abstract: A novel continuous gas phase polymerization process for producing polyethylene and interpolymers of ethylene and at least one other olefin is provided wherein a saturated halogenated hydrocarbon is used in a specified amount such that the activity of the titanium containing Ziegler-Natta catalyst is increased.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: November 11, 2003
    Assignee: Eastman Chemical Company
    Inventors: Don Kent Farrer, Kenneth Alan Dooley, Glenn Edward Moore, Larry Allen Noble
  • Patent number: 6646074
    Abstract: A process for the continuous gas-phase (co-)polymerisation of olefins in a fluidised bed reactor using a Ziegler-Nata type catalyst wherein the polymerisation is performed in the presence of a process aid additive selected from at least one of (1) a polysulphone copolymer; (2) a polymeric polyamine or (3) an oil-soluble sulphonic acid.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: November 11, 2003
    Assignee: BP Chemicals Limited
    Inventors: Marc Herzog, Jean-Pierre Isnard, Claudine Viviane Lalanne-Magne, Myung Je Shin
  • Patent number: 6645901
    Abstract: A prepolymerization catalyst for use in a gas phase polymerization of an olefin or combinations of olefins which comprises (A) a solid catalyst component comprising magnesium, halogen, titanium and an electron donor and having a weight-average particle diameter of 15 to 45 &mgr;m, (B) at least one organoaluminum compound and (C) a prepolymer of an ethylene and/or at least one &agr;-olefin, wherein the molar ratio of aluminum to titanium in the prepolymerization catalyst (Al/Ti ratio) is 3 to 11 (mol/mol), the weight ratio of the prepolymerization catalyst to the solid catalyst component (prepolymerization catalyst/solid catalyst component) is 2 to 35 (g/g), the content of volatile materials (VM) in the prepolymerization catalyst is 2.0% by weight or less, and the intrinsic viscosity [&eegr;] measured in tetralin at 135° C. is 2.0 dl/g or less, and a process for a production thereof.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: November 11, 2003
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tomoaki Goto, Kazuki Wakamatsu, Shinichi Kumamoto
  • Patent number: 6642325
    Abstract: The present invention relates to a silica gel-supported catalyst component suitable for ethylene (co)polymerization, a catalyst therefrom and use of the same. The catalyst component according to the present invention is obtained by supporting the reaction product of a titanium compound, a halide promoter, a magnesium compound and an electron donor on silica gel having a larger specific surface area. When the resultant catalyst is used for ethylene polymerization, especially gas phase fluidized bed polymerization, not only the activity is substantially enhanced, but also the hydrogen response and the copolymerizability of ethylene with other alpha-olefins are improved. The catalyst is especially suitable for the fluidized bed polymerization operated in a condensed state, with high quality LLDPE resins being obtained.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: November 4, 2003
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Hekuan Luo, Ruiguo Tang, Kejing Gao, Qinfang Zhao, Jingyan An, Hua Yang, Jinsheng Huo
  • Patent number: 6642323
    Abstract: The present invention concerns a process for producing homogeneous polyethylene compositions and processes for making high density, medium density and low density films therefrom. The process comprises carrying out the polymerization in the presence of an ethylene-polymerizing catalyst system in a multistage reaction sequence of successive polymerization stages, at least one of which is a loop polymerization stage, and at least one of which is a gas phase polymerization stage. According to the invention, said loop polymerization stage is operated using a diluent selected from the group of linear and branched C4-C6 hydrocarbons and/or mixtures thereof. The reactor sequence is operated with different amounts of hydrogen and comonomers to produce a high molecular weight portion in one of the polymerization stages and a low molecular weight portion in another, so as to provide bimodal polyethylene composition with a low molecular weight part having an MFR2 of 250 g/10 min or more.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: November 4, 2003
    Assignee: Borealis Technology Oy
    Inventors: Ole Jan Myhre, Bjarne Jansen, Auli Nummila-Pakarinen, Jari Äärilä
  • Publication number: 20030204017
    Abstract: Unique copolymers comprising propylene, ethylene and/or one or more unsaturated comonomers are characterized as having: at least one, preferably more than one, of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about −1.20, (iv) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer in the copolymer is increased, and (v) an X-ray diffraction pattern that reports more gamma-form crystals than a comparable copolymer prepared with a Ziegler-Natta catalyst These polypropylene polymers are made using a nonmetallocene, metal-centered, heteroaryl ligand catalyst. These polymers can be blended with other polymers, and are useful in the manufacture of films, sheets, foams, fibers and molded articles.
    Type: Application
    Filed: May 5, 2002
    Publication date: October 30, 2003
    Inventors: James C. Stevens, Daniel D. Vanderlende
  • Publication number: 20030199390
    Abstract: This invention is generally directed toward a supported catalyst system useful for polymerizing olefins. The method for supporting the catalyst of the invention provides for a supported metallocene catalyst formed by vacuum or pressurized impregnation.
    Type: Application
    Filed: May 6, 2003
    Publication date: October 23, 2003
    Inventor: Main Chang
  • Publication number: 20030199650
    Abstract: A gas phase olefin polymerization wherein the catalyst comprises a novel Group 4 transition metal complex containing a boron or aluminum bridging group containing a nitrogen containing group, especially an amido group.
    Type: Application
    Filed: December 20, 2002
    Publication date: October 23, 2003
    Applicant: BP Chemicals Limited
    Inventors: David D. Devore, David R. Neithamer
  • Publication number: 20030199646
    Abstract: The object of the present invention is to provide a polyolefin polymerization method which prevents fine particles of polymer from scattering from a fluidized bed in a gas phase polymerization reactor.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 23, 2003
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Katsutoshi Kougo
  • Patent number: 6635726
    Abstract: A novel continuous gas phase polymerization process for producing polyethylene and interpolymers of ethylene and at least one other olefin is provided wherein chloroform is used in a specified amount such that the activity of the titanium containing Ziegler-Natta catalyst is increased.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: October 21, 2003
    Assignee: Eastman Chemical Company
    Inventors: Don Kent Farrer, Kenneth Alan Dooley, Glenn Edward Moore, Larry Allen Noble
  • Patent number: 6632769
    Abstract: The present invention relates to the use of at least one solid compound that when used with a polymerization catalyst in a polymerization process results in a phase change of the solid compound to a liquid that renders the polymerization catalyst substantially or completely inactive.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: October 14, 2003
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, David James Schreck, Thomas H. Peterson
  • Patent number: 6630548
    Abstract: A gas-phase process for polymerizing an olefin is disclosed. The process involves feeding the catalyst into the reactor in a stream of gas that comprises at least 75 volume % of a noble gas in order to reduce static.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: October 7, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Kiran M. Gupte, Kevin Tolley, Joel A. Mutchler, Charles S. Holland
  • Patent number: 6630549
    Abstract: A method for producing an olefin homopolymer or an olefin copolymer from an olefin or an olefin and at least one comonomer copolymerizable therewith by continuous slurry polymerization or continuous gaseous phase polymerization in the presence of a metallocene catalyst, the method comprising transferring the catalyst to a polymerizer and introducing the catalyst into the polymerizer while continuously feeding the olefin or the olefin and the comonomer into the polymerizer, to thereby effect a homopolymerization of the olefin or a copolymerization of the olefin and the comonomer, wherein, said catalyst is subjected to hydrogen gas-treatment in which said catalyst is contacted with hydrogen gas.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: October 7, 2003
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventor: Tatsuya Koike
  • Publication number: 20030187161
    Abstract: Metal compounds of the formula I, 1
    Type: Application
    Filed: January 2, 2003
    Publication date: October 2, 2003
    Inventors: Marc Oliver Kristen, Peter Hofmann, Frank Eisentrager
  • Patent number: 6627706
    Abstract: This invention relates to a process for the preparation of olefin polymers, preferably a multi-stage process, in which hydrogen is used to control the molecular weight of the olefin polymer produced in a continuous reactor, in particular a process wherein a metallocene or other single site catalyst is present in the polymerization reaction mixture, as well as to olefin polymers produced thereby.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: September 30, 2003
    Assignee: Borealis Technology Oy
    Inventors: Arild Follestad, Hannu Salminen
  • Patent number: 6627713
    Abstract: A process for producing polymer in a gas phase reactor by introducing a stream of monomer and gas into a polymerization zone while providing at least one liquid component in the polymerization zone.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: September 30, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Robert Joseph Noel Bernier, Robert Lorenz Boysen, Robert Cecil Brown, Mark Gregory Goode, John Henry Moorhouse, Robert Darrell Olson, Leonard Sebastian Scarola, Thomas Edward Spriggs, Duan-Fan Wang, Gary Harry Williams, Kevin Joseph Cann, Maria Angelica Apecetche, Natarajan Muruganandam, Gregory George Smith
  • Publication number: 20030181605
    Abstract: A process for producing a polyolefin according to the present invention comprises (co) polymerizing one or two or more &agr;-olefins in a vapor phase in a fluidized-bed reactor, wherein the concentration of (A) a saturated aliphatic hydrocarbon in the fluidized bed reactor is 1 mol % or more and at least one compound selected from (B) an aliphatic amide and (C) a nonionic surfactant constituted only of carbon, oxygen and hydrogen atoms is made to exist in the reactor. The present invention can provide a process for producing a polyolefin, the process ensuring that the prevention of clogging caused by the generation of sheet or block polymers and a high efficiency of the production of a polyolefin due to good catalytic activity can be accomplished at the same time and also having superb continuous productivity.
    Type: Application
    Filed: March 25, 2003
    Publication date: September 25, 2003
    Inventors: Shinji Abe, Shotaro Matsuda, Satoru Ohtani, Hiroto Nishida, Michiharu Sakata, Tomohiro Arase
  • Patent number: 6624266
    Abstract: Preactivated unsupported catalyst compositions methods of using them are disclosed whereby the compositions have a concentration of preactivated catalyst of at least about 0.04 mmol of preactivated catalyst per liter of solution when using aliphatic or alicyclic hydrocarbon solvents, and a concentration of less than about 0.80 mmol/liter when using aromatic or halogen-substituted solvents. In the method, an unsupported catalyst precursor first is contacted with an activator, or co-catalyst, in a suitable reaction medium, and then the resulting mixture is contacted with additional solvent to form a preactivated unsupported olefin polymerization catalyst composition that can be fed to a gas phase polymerization reactor without plugging the catalyst injection nozzle.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: September 23, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Kersten Anne Terry, Jody Michael Moffett, William George Sheard