With Reactant Which Is Devoid Of A Heterocyclic Ring Containing Oxygen, Selenium Or Tellurium Atoms As Ring Members Patents (Class 528/405)
  • Publication number: 20130008593
    Abstract: An adhesive agent comprising a condensation resin having a structural unit obtained by polycondensing a polymerizable monomer containing a monomer (A) having 2 or more carboxyl groups and a monomer (B) having 2 or more amino groups, and meeting at least one of the following (1) and (2): (1) at least one selected from the group consisting of the monomer (A), an anhydride of the monomer (A), and the monomer (B) is liquid at 25° C.; and (2) the condensation resin has a polyoxyalkanediyl group.
    Type: Application
    Filed: April 12, 2012
    Publication date: January 10, 2013
    Inventors: Katsuyuki MASUDA, Takehiro Fukuyama, Eiichi Shinada, Masashi Okoshi, Kazunori Yamamoto, Masatoshi Yamaguchi, Yasushi Ooyama, Yuuki Yanagita, Mitsuo Katayose
  • Publication number: 20120288471
    Abstract: Disclosed is a polymer or physiologically acceptable salt thereof. The polymer comprises a polymerized multifunctional amine monomer. The amine monomer comprises at least two amine groups and at least two acyclic nitrogen atoms that are connected through a —CH2CH2— group, provided that the amine monomer is not ethylenediamine or diethylenetriamine. The disclosed polymers can be used to bind anions in subject in need of such treatment.
    Type: Application
    Filed: November 1, 2011
    Publication date: November 15, 2012
    Applicant: Genzyme Corporation
    Inventors: Chad C. Huval, Stephen Randall Holmes-Farley, Pradeep K. Dhal
  • Patent number: 8309186
    Abstract: An object of the present invention is to provide an optical film exhibiting a preferable wavelength dispersion and capable of being formed comparatively thinly. The present invention is an optical film containing the repeating unit represented by the following general formula (II). In the formula (II), A, A?, B, and B? each denote a substituent, a, a?, b, and b? denote the number of substituents of the corresponding A, A?, B, and B?. A, A?, B and B? each independently denote a halogen or an alkyl group having 1 to 4 carbon atoms. R1 and R2 denote a halogen, an alkyl group having 1 to 10 carbon atoms, and the like. X denotes —CO—, —SO2—, and the like.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: November 13, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Toshiyuki Iida, Yutaka Ohmori, Miyuki Kurogi
  • Patent number: 8309672
    Abstract: Methods, compositions and articles of manufacture involving soluble conjugated polymers are provided. The conjugated polymers have a sufficient density of polar substituents to render them soluble in a polar medium, for example water and/or methanol. The conjugated polymer may desirably comprise monomers which alter its conductivity properties. In some embodiments, the inventors have provided cationic conjugated polymers (CCPs) comprising both solubilizing groups and conductive groups, resulting in conductive conjugated polymers soluble in polar media. The different solubility properties of these polymers allow their deposition in solution in multilayer formats with other conjugated polymers. Also provided are articles of manufacture comprising multiple layers of conjugated polymers having differing solubility characteristics. Embodiments of the invention are described further herein.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: November 13, 2012
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Bin Liu, Xiong Gong, Alan J. Heeger, Wanli Ma, Parameswar K. Iyer
  • Patent number: 8309680
    Abstract: The present invention provides, among other things, segmented, degradable polymeric reagents suitable for reaction with biologically active agents to form conjugates, the polymeric reagents comprising one or more polymer chains divided or separated by one or more degradable linkages into polymer segments having a molecular weight suitable for renal clearance. The polymeric reagents can have a substantially linear structure, a branched structure, or a multiarm structure. Each structure includes one or more linkages capable of degradation in vivo.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: November 13, 2012
    Assignee: Nektar Therapeutics
    Inventors: Samuel P. McManus, Antoni Kozlowski
  • Patent number: 8299154
    Abstract: The present invention relates to a non-thermosetting composition made by reacting epichlorohydrin and a primary amine, to the use of that composition for making thermosetting (curable) adhesives suitable for bonding composites, to a method of preparing composites using the thermosetting (curable) adhesives, and to the related composites bonded with the thermosetting (curable) adhesives.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 30, 2012
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Bobby L. Williamson, Richard M. Rammon
  • Publication number: 20120264910
    Abstract: The present invention relates to a process for preparing carbonates by reacting propylene oxide, ethylene oxide, styrene oxide and/or cyclohexene oxide with carbon dioxide in the presence of one or more catalysts of the formula I where R1 is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, NR?4—(CH2)2-6—where R? is C1-C6-alkyl; R2 is hydrogen, C1-C4-alkyl, C1-C4-haloalkyl, halogen, amino, nitro, C1-C6-alkoxy or cyano; R3, R4 are each hydrogen or together are a butadienylene moiety which bears the R5 substituent; R5 is C1-C4-alkyl, C1-C4-haloalkyl, halogen, amino, nitro, C1-C6-alkoxy or cyano; M is Zn(II), Mg(II), Cr(II), Cr(III), Co(II), Co(III), Fe(II) or Fe(III); and X1, X2 are each OCOCH3, OCOCF3, OSO2C7H7 or halogen. More particularly, the invention relates to a process for preparing cyclic carbonates, and to a process for preparing aliphatic polycarbonates using these catalysts I, and to particularly preferred catalysts of the formulae Ia and Ib.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 18, 2012
    Applicant: BASF SE
    Inventors: Peter Deglmann, Anna Katharina Brym, Joachim Dengler, Petra Lutz-Kahler, Volker Warzelhan, Bernhard Rieger, Stephan Klaus, Maximilian Lehenmeier
  • Patent number: 8287767
    Abstract: Amorphous polymers with chromogenic pendant groups are provided. The amorphous polymers can be used to make elastomeric films and coatings that can be incorporated into laminates and used to make articles such as architectural and vehicular glazing, and in applications such as eyewear, displays and signage.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 16, 2012
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Simona Percec, Susan H. Tilford
  • Patent number: 8283438
    Abstract: A process for the preparation of functional molecules using the thiol-ene coupling reaction and a process for the preparation of protected functional thiols, specifically thioesters is provided. The methods may be used to make functional polymers and other molecules. The method of making a functionalized polymer using a thiol-ene reaction comprises: providing a functionalized thioester having the following formula: wherein R is a functional group and COR? is a protecting group; cleaving the functionalized thioester, forming a functional thiol and an acyl group; providing a polymer having a pendant vinyl group; and reacting the polymer with the functional thiol whereby a functionalized polymer is formed, wherein the functional thiol is not isolated prior to reacting with the polymer.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: October 9, 2012
    Assignee: California Institute of Technology
    Inventors: Ralph L. David, Julia A. Kornfield
  • Publication number: 20120253005
    Abstract: The invention relates to a method for conditioning double metal catalysts which are used in the production of polyether polyols. The conditioning enhances the performance of the catalyst, so that lower concentrations of the DMC catalyst can be used in polyether polyol production.
    Type: Application
    Filed: October 1, 2010
    Publication date: October 4, 2012
    Applicant: BASF SE
    Inventors: Igor Shishkov, Sirus Zarbakhsh, Ronald Adelmann, Wolfgang Rohde, Achim Loeffler
  • Publication number: 20120245291
    Abstract: Disclosed are self-extinguishing halogen-free polymer compositions comprising oligomers of a 1,3,5-triazine derivative, and processes for their production and for their use as additives to thermoplastic polymers in order to impart a self-extinguishing benefit thereto. The processes for the production of the disclosed oligomers of a 1,3,5-triazine derivative are solvent free processes which result in a halogen free polymer composition which includes the oligomers of the disclosed 1,3,5-triazine derivatives.
    Type: Application
    Filed: May 18, 2012
    Publication date: September 27, 2012
    Applicant: MCA Technologies GmbH
    Inventor: Bansi Lal Kaul
  • Publication number: 20120232245
    Abstract: Provided is a method for preparing poly(alkylene carbonate) containing ether linkages, by the copolymerization of an epoxy compound and carbon dioxide, with a trivalent metal complex prepared from a salen type ligand containing a quaternary ammonium salt, and a double metal cyanide (DMC) catalyst together. The amount of ether linkages can be controlled by regulating the weight ratio of two catalysts and the carbon dioxide pressure.
    Type: Application
    Filed: February 27, 2012
    Publication date: September 13, 2012
    Applicants: SK GLOBAL CHEMICAL CO., LTD., SK INNOVATION CO., LTD.
    Inventors: JISU JEONG, SUNGJAE NA, SUJITH SUDEVAN, MYUNGAHN OK, YONGGYU HAN, KWANGJIN CHUNG, BUNYEOUL LEE, KODIYAN VARGHESE JOBI
  • Publication number: 20120226017
    Abstract: The present invention provides a composition which comprises at least one epoxy resin and a mixture comprising the 7 stereoisomers of diaminomethylcyclohexane in very specific ratios relative to one another, a process for preparing the composition, the use of the composition for producing hardened epoxides, adhesives, composite materials and moldings, a mixture comprising the 7 stereoisomers of diaminomethylcyclohexane in the specific ratios, and the use of this mixture for producing the composition.
    Type: Application
    Filed: September 20, 2010
    Publication date: September 6, 2012
    Applicant: BASF SE
    Inventors: Joachim Pfeffinger, Daniela Malkowsky, Stephan Goettke
  • Publication number: 20120226016
    Abstract: The complex of the present invention containing an onium salt and a central Lewis acidic metal has a high catalytic activity at a high temperature for the copolymerization of an epoxide and carbon dioxide to produce a high molecular weight polycarbonate.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 6, 2012
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Bun Yeoul LEE, S. Sujith, Eun Kyung Noh, Jae Ki Min
  • Patent number: 8252197
    Abstract: A processing agent for processing urethane elastomer fibers contains a disperse medium of a specified kind having mineral oil as its principal component and a dispersoid of a specified kind including aliphatic ester compound. The disperse medium is 80-99.99% by mass and the dispersoid is 0.01-20% by mass for a total of 100% by mass. The average particle size of the dispersoid is prepared to be in the range of 0.01-500 ?m as measured by a specified measuring method.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: August 28, 2012
    Assignee: Takemoto Yushi Kabushiki Kaisha
    Inventors: Yasunobu Arakawa, Jun Ito
  • Patent number: 8252891
    Abstract: The present disclosure provides, in part, a method for removing a catalyst from a product of catalyzed aliphatic polycarbonate polymerization reaction.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 28, 2012
    Assignee: Novomer, Inc.
    Inventors: Anna E. Cherian, Jeffrey R. Conuel, David E. Decker, Scott D. Allen
  • Patent number: 8241545
    Abstract: The present disclosure provides a method for preparing polylactic acid and its products using a twin-screw extruder, comprising the step of mixing carbon dioxide adducts of carbene and lactide, and obtaining polylactic acid and its products via reactive extrusion using a twin-screw extruder.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 14, 2012
    Assignee: Nanjing Universty of Technology
    Inventors: Zhenjiang Li, Pingkai Ouyang, He Huang
  • Patent number: 8236923
    Abstract: A method of producing a fluorine-containing polymer, containing conducting an addition polymerization of a fluorine-containing compound having 2 or more terminal fluorine-containing vinyl groups each directly bonded to an oxygen atom per molecule, and a compound having 2 or more groups represented by —XH, where X represents an oxygen atom or a sulfur atom; and a fluorine-containing polymer comprising a repeating unit represented by formula (i): wherein Rf1 represents a perfluoroalkylene group; each of Rf2 and Rf3 independently represents a fluorine atom, a perfluoroalkyl group or a perfluoroalkoxy group; at least two among Rf1, Rf2 and Rf3 may bond to each other to form a ring structure; X represents an oxygen atom or a sulfur atom; and L represents a divalent organic group.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: August 7, 2012
    Assignee: Fujifilm Corporation
    Inventors: Takayuki Ito, Toshimitsu Sakuma, Masayuki Harada
  • Publication number: 20120184709
    Abstract: The complex of the present invention containing an onium salt and a central Lewis acidic metal has a high catalytic activity at a high temperature for the copolymerization of an epoxide and carbon dioxide to produce a high molecular weight polycarbonate.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 19, 2012
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Bun Yeoul LEE, S. SUJITH, Eun Kyung NOH, Jae Ki MIN
  • Publication number: 20120172566
    Abstract: A metal cyanide complex catalyst and its preparation and application are disclosed. The formula of this catalyst is M1a[M2(CN)bL1c]d(X)m(L2)n·xSu·yL3·zH2O and its preparation method comprises: (A) adjusting pH of a mixed solution I? of L3, M3e[M2(CN)bL1c]f, de-ionized water I, alcohol and/or ether solvent to less than 7.0, and adding it into a mixed solution II? of M1(X)g salt, Su or Su precursor, de-ionized water II, stirring for reaction under 20° C.-120° C. for 0.5-200 hours, separating and drying to obtain a solid product; and (B) repeatedly dispersing the solid into an anhydrous organic solvent containing L2 to form a slurry, distilling, separating and drying to obtain the metal cyanide complex catalyst. The catalyst is useful in preparing polyethers, polycarbonates and polyesters by homopolymerization of epoxides, or copolymerization of epoxides with carbon dioxide or anhydrides.
    Type: Application
    Filed: December 13, 2010
    Publication date: July 5, 2012
    Applicant: ZHEJIANG University
    Inventors: Xinghong Zhang, Guorong Qi, Binyang Du, Renjian Wei, Xueke Sun
  • Publication number: 20120156410
    Abstract: The present invention provides articles made from structurally precise poly(propylene carbonate) and blends thereof. Provided articles include articles manufactured from poly(propylene carbonate) wherein the PPC has a high head-to-tail ratio, low ether linkage content, narrow polydispersity and low cyclic carbonate content. Also provided are articles made from, incorporating or coated with structurally precise PPC.
    Type: Application
    Filed: July 1, 2010
    Publication date: June 21, 2012
    Applicant: NOVOMER, INC.
    Inventor: Scott D. Allen
  • Patent number: 8163867
    Abstract: The complex of the present invention containing an onium salt and a central Lewis acidic metal has a high catalytic activity at a high temperature for the copolymerization of an epoxide and carbon dioxide to produce a high molecular weight poly-carbonate.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 24, 2012
    Assignee: SK Innovation Co., Ltd.
    Inventors: Bun Yeoul Lee, Sujith S., Eun Kyung Noh, Jae Ki Min
  • Patent number: 8158748
    Abstract: The invention provides hetero-functional compound compounds useful in a variety of adhesive applications. More particularly, the invention provides compounds bearing at least one electron rich olefinic bond and at least one electron poor olefinic bond, wherein the two olefinic bonds are separated by a C3 to about C500 aliphatic, cycloaliphatic, or aromatic spacer.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: April 17, 2012
    Assignee: Designer Molecules, Inc.
    Inventors: Stephen M. Dershem, Farhad G Mizori
  • Patent number: 8153733
    Abstract: A coating layer prepared from an aqueous electrodeposition coating composition comprising an electrodepositable binder, the binder comprising a tridentate amine ligand-containing resin, and optionally further comprising a metal oxide selected from the group consisting of bismuth oxide, vanadium oxide, manganese oxide, cobalt oxide, zinc oxide, strontium oxide, yttrium oxide, molybdenum oxide, zirconium oxide, lanthanum oxide, and oxides of the lanthanide series of elements provides corrosion protection to a metallic substrate.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: April 10, 2012
    Assignee: BASF Coatings GmbH
    Inventors: Abdellatif Chouai, Timothy S. December
  • Patent number: 8147985
    Abstract: A method for coating a diamond where an initiation site is provided on the diamond surface or initiation of a living polymerization on the site and the initiation site is reacted with a monomer having a site the reacts with and bonds to the initiation site to form an chemically attached chain with a new initiation site on the chain for further reaction with a monomer. An article with a coating upon a diamond surface, the coating the reaction product of a living polymerization reaction with initiation site on the diamond surface.
    Type: Grant
    Filed: May 10, 2009
    Date of Patent: April 3, 2012
    Inventors: Matthew R. Linford, Li Yang, Landon Wiest
  • Patent number: 8148490
    Abstract: The present invention is directed to a method for preparing a cyclic guanidine comprising reacting (i) a guanidinium, (ii) a polyamine, and (iii) a weak acid. The present invention is also directed to a coating composition comprising the cyclic guanidine.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: April 3, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Gregory J. McCollum, Charles R. Hickenboth, Richard F. Karabin, Thomas C. Moriarity, Steven R. Zawacky
  • Patent number: 8138283
    Abstract: The present invention provides a process for changing the given mean molecular weight Mn in the continuous preparation of polytetrahydrofuran or tetrahydrofuran copolymers, the mono- or diesters of polytetrahydrofuran or of tetrahydrofuran copolymers by polymerizing tetrahydrofuran in the presence of a telogen and/or of a comonomer over an acidic catalyst, wherein a) the molar ratio of telogen to tetrahydrofuran or to tetrahydrofuran and comonomer is changed, b) then the mean molecular weight of at least one sample is determined, c) until the mean molecular weight thus determined differs from the molecular weight to be achieved by the change, the already formed polytetrahydrofuran or the tetrahydrofuran copolymers, the mono- or diesters of polytetrahydrofuran or tetrahydrofuran copolymer is at least partly depolymerized over an acidic catalyst and d) the tetrahydrofuran recovered by depolymerization is recycled at least partly into the polymerization.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 20, 2012
    Assignee: BASF SE
    Inventors: Rolf Pinkos, Jochen Steiner, Stefan Käshammer, Tobias Wabnitz
  • Patent number: 8106245
    Abstract: Process for preparing a chlorohydrin, wherein a polyhydroxylated aliphatic hydrocarbon whose total metal content, expressed in elemental form, is greater than or equal to 0.1 ?g/kg and less than or equal to 1000 mg/kg is reacted with a chlorinating agent.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: January 31, 2012
    Assignee: Solvay (Société Anonyme)
    Inventors: Philippe Krafft, Patrick Gilbeau
  • Patent number: 8093351
    Abstract: Copolymers of propylene oxide and carbon dioxide and homopolymers of propylene oxide are made using two dimensional double metal cyanide complexes having the formula Co[M(CN)4] or hydrated or partially dehydrated form thereof. There is no propylene carbonate by product in the copolymerization.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: January 10, 2012
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Geoffrey W. Coates, Stephen Lee, Zengquan Qin, Nicolas J. Robertson
  • Publication number: 20110313128
    Abstract: (Salph or methoxy salph) Co (initiating ligand) catalyze homopolymerizing rac-PO to produce pure highly isotactic PPO and rac-1-butylene oxide to produce pure isotactic poly(butylene oxide). A product is unfractionated isotactic PPO of m-dyad content>81%, normally at least 99%.
    Type: Application
    Filed: August 30, 2011
    Publication date: December 22, 2011
    Inventors: Geoffrey W. Coates, Scott D. Allen, Claire Cohen, Kathryn Peretti, Hiroharu Ajiro
  • Publication number: 20110305837
    Abstract: A method for ionic polymerization of ethylene oxide. In the first step of the method, a gaseous monomer composition comprising ethylene oxide at a first flow rate is mixed with a gaseous ionic polymerization initiator at a second flow rate, thereby forming a mixture. The formed mixture is then heated with at least one heated filament to thereby form at least one polymer. The method may also be employed to coat a variety of different substrates in situ during the polymerization reaction.
    Type: Application
    Filed: March 17, 2010
    Publication date: December 15, 2011
    Applicant: DREXEL UNIVERSITY
    Inventors: Kenneth K.S. Lau, Ranjita K. Bose
  • Publication number: 20110291053
    Abstract: Provided are a shrinkage-reducing agent for a hydraulic material and a shrinkage-reducing agent composition for a hydraulic material including a compound represented by the general formula (1): R1—[O-(A1O)m—R2]n (1), where: R1 represents R1 derived from a polyhydric alcohol represented by R1—[OH]n; A1O represents an oxyalkylene group having 2 to 18 carbon atoms; R2 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms; m represents an average added mole number of oxyalkylene groups A1O's; n represents 3 or 4; and when n equals 3, m represents 30 to 150, and when n equals 4, m represents 5 to 150.
    Type: Application
    Filed: July 29, 2009
    Publication date: December 1, 2011
    Applicant: NIPPON SHOKUBAI CO., LTD.
    Inventor: Mari Masanaga
  • Publication number: 20110282027
    Abstract: The present invention relates to processes for producing polyetherols, in particular to polyetherol block structures, to novel catalysts for use in said processes, and to the polyetherols that can be produced via the process of the invention. The present invention further relates to the use, for producing polyurethanes, of the polyetherols that can be produced in the invention.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 17, 2011
    Applicant: BASF SE
    Inventors: Peter DEGLMANN, Sirus Zarbakhsh, Achim Löffler, Kerstin Wiss
  • Publication number: 20110281048
    Abstract: Disclosed is a resin composition for disposable resin molded product, and a disposable resin molded product that enables preparation of a disposable resin molded product not only maintaining excellent mechanical properties but also having biodegradability entailing an environment-friendly feature. The resin composition for disposable resin molded product comprises a polyalkylene carbonate resin.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 17, 2011
    Inventors: Sung-Cheol Yoon, Ho-Yeul Choi, Seung-Young Park, Byoung-Yun Kim, Jung-Eun Kim, In-Su Lee
  • Patent number: 8053607
    Abstract: A method for producing a polyether-polyol having a narrow molecular weight distribution, which comprises carrying out selective fractional extraction of the low-molecular weight component from a polyether-polyol (A) having an average molecular weight of from 500 to 4500 represented by formula (1): HO—[(CH2)4O]n—[(CR1R2)pO]q—H??(1) wherein R1 and R2, which may be the same or different, each represents a hydrogen atom or a linear or branched alkyl group having from 1 to 5 carbon atoms; n indicates a positive integer; p indicates an integer of from 1 to 8; and q indicates 0 or a positive integer, by the use of an aqueous solution (C) containing from 15 to 70 wt % sulfuric acid at a room temperature to 100° C., to thereby suitably determine the amount of the aqueous sulfuric acid solution to the overall organic layer and the sulfuric acid concentration in accordance with the molecular weight and molecular weight distribution of the intended polyether-polyol to be fractionally extracted.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 8, 2011
    Assignee: Hodogaya Chemical Co., Ltd.
    Inventors: Kazuaki Okabe, Hiroshi Nakaoka, Ikuhiko Kanehira
  • Patent number: 8053546
    Abstract: The use of 1,3-substituted imidazolium salts of the formula I in which R1 and R3 independently of one another are an organic radical having 1 to 20 C atoms, R2, R4, and R5 independently of one another are an H atom or an organic radical having 1 to 20 C atoms, it also being possible for R4 and R5 together to form an aliphatic or aromatic ring, X is an anion having a pKb of less than 13 (measured at 25° C., 1 bar in water or dimethyl sulfoxide), and n is 1, 2 or 3, with the exception as imidazolium salts of 1-ethyl-2,3-dimethylimidazolium acetate and 1-ethyl-2,3-dimethylimidazolium acetate-acetic acid complex, as latent catalysts for curing compositions comprising epoxy compounds.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: November 8, 2011
    Assignee: BASF SE
    Inventors: Georg Degen, Matthias Maase, Lars Wittenbecher, Manfred Döring, Ulrich Arnold
  • Patent number: 8039559
    Abstract: The present invention relates to a two-component composition comprising a first component and a second component, wherein the first component being a non-aqueous resin composition comprising an unsaturated polyester resin or vinyl ester resin, a transition metal compound selected from a copper, iron, manganese or titanium compound, a potassium compound, and the resin composition contains less than 0.01 mmol cobalt per kg primary resin system and less than 0.01 mmol vanadium per kg primary resin system; and the second component comprises a peroxide compound.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 18, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Johan Franz Gradus Antonius Jansen, Ronald Ivo Kraeger
  • Patent number: 8034894
    Abstract: A terminal modified polycarbonate having a high content of biogenic matter, excellent heat resistance, heat stability, moldability and moist absorption resistance and high surface energy and a manufacturing process thereof are provided. The terminal modified polycarbonate has a main chain essentially composed of a recurring unit represented by the following formula (1): has a specific viscosity at 20° C. of a solution obtained by dissolving 0.7 g of the polycarbonate in 100 ml of methylene chloride of 0.2 to 0.5, and contains a terminal group represented by the following formula (2) or (3) in an amount of 0.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: October 11, 2011
    Assignee: Teijin Limited
    Inventors: Toshiyuki Miyake, Masami Kinoshita, Mizuho Saito, Katsuhiko Hironaka
  • Patent number: 8034891
    Abstract: A novel polyether-modified organopolysiloxane and a novel diorganopolysiloxane-polyether block copolymer are more resistant to oxidation than the heretofore existing polyoxyalkylene-modified organopolysiloxanes and are thus more resistant to producing allergenically antigenic oxidation products during elapsed time in storage. Methods of producing this novel polyether-modified organopolysiloxane and novel diorganopolysiloxane-polyether block copolymer are also provided, as well as cosmetic that the modified organopolysiloxane or diorganopolysiloxane-polyether block copolymer.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: October 11, 2011
    Assignee: Dow Corning Toray Company, Ltd.
    Inventor: Tadashi Okawa
  • Publication number: 20110245424
    Abstract: This invention relates to a method of preparing poly(alkylene carbonate) that has a molecular weight and polymer chain structure precisely controlled by adding a chain transfer agent composed of a compound having an alcohol or carboxylic acid functional group upon alternating copolymerization of an epoxide compound and carbon dioxide using a catalyst composed of a trivalent metal complex compound synthesized from a quaternary ammonium salt-containing Salen type ligand, and to a polymer compound prepared thereby. According to this invention, the polymer compound having a star-shaped chain as well as the polymer having a linear chain can be prepared. The low-molecular-weight poly(alkylene carbonate) has an —OH terminal group and can be used alone as a coating agent, etc., and also in mixtures with an isocyanate compound and thus can be easily utilized to prepare polyurethane.
    Type: Application
    Filed: November 23, 2010
    Publication date: October 6, 2011
    Applicant: SK ENERGY CO., LTD.
    Inventors: Jisu Jeong, SungJae Na, Sujith Sudevan, Myungahn Ok, YoungGyu Han, KwangJin Chung, Bun Yeoul Lee, Anish Cyriac
  • Publication number: 20110230580
    Abstract: In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having two or more sites that can initiate polymerization. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups and a high percentage of carbonate linkages. The compositions are further characterized in that they contain polymer chains having an embedded polyfunctional moiety linked to a plurality of individual polycarbonate chains.
    Type: Application
    Filed: September 8, 2009
    Publication date: September 22, 2011
    Applicant: Novomer, Inc
    Inventors: Scott D. Allen, Geoffrey W. Coates, Anna E. Cherian, Chris A. Simoneau, Alexei A. Gridnev, Jay J. Farmer
  • Publication number: 20110224403
    Abstract: The present invention is directed to a method for preparing a cyclic guanidine comprising reacting (i) a cyanamide, (ii) a polyamine, and (iii) a weak acid. The present invention is also directed to a coating composition comprising the cyclic guanidine.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Inventors: Steven R. Zawacky, Charles R. Hickenboth, Richard F. Karabin, Gregory J. McCollum, Thomas C. Moriarity
  • Publication number: 20110224328
    Abstract: The present invention is directed to a method for preparing a cyclic guanidine comprising reacting (i) a guanidinium, (ii) a polyamine, and (iii) a weak acid. The present invention is also directed to a coating composition comprising the cyclic guanidine.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Inventors: Gregory J. McCollum, Charles R. Hickenboth, Richard F. Karabin, Thomas C. Moriarity, Steven R. Zawacky
  • Publication number: 20110218320
    Abstract: Zinc salts of C4-8-alkanedicarboxylic acids, obtainable by reacting C4-8-alkanedicarboxylic acids with surface-modified zinc oxide particles, said surface-modified zinc oxide particles being obtainable by treatment of zinc oxide particles with organosilanes, silazanes and/or polysiloxanes and subsequent heat treatment and/or UV irradiation of treated zinc oxide particles, and the use thereof as polymerization catalysts for the preparation of polyalkylene carbonates.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 8, 2011
    Applicant: BASF SE
    Inventors: Tobias Heinz Steinke, Anna Katharina Ott, Hans-Helmut Görtz
  • Patent number: 8012603
    Abstract: High-molecular compounds comprising repeating units represented by the general formula (1) or (2) and having number-average molecular weights of 103 to 108 in terms of polystyrene: (1) [wherein Ar1 and Ar2 are each independently a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group; and X1 and X2 are each independently O, S, C(?O), S(?O), SO2, C(R1)(R2), Si(R3)(R4), N(R5), B(R6), P(R7), or P(?O)(R8), with the provisos that X1 and X2 must not be the same and that X1 and Ar2 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar1, and X2 and Ar1 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar2] (2) [wherein Ar3 and Ar4 are each independently a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group; and X3 and X4 are each independently N, B, P, C(R9), or Si(R10), with the provisos that X3 and X4 must not be the same and that X3 and Ar4 are bonded respectively to the adjacent carbon atoms constituting t
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 6, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shuji Doi, Satoshi Kobayashi, Takanobu Noguchi
  • Patent number: 8007579
    Abstract: The invention relates to preparations based on polymerizable polyether materials and a fluidity improver and to the use thereof in producing dental materials, especially impression materials.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: August 30, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas Klettke, Bernd Kuppermann, Hendrik M. Grupp
  • Publication number: 20110207899
    Abstract: The present disclosure is directed to, in part, an aliphatic polycarbonate polymerization reaction initiated by combining an epoxide with carbon dioxide in the presence of a catalytic transition metal-ligand complex to form a reaction mixture, and further quenching that polymerization reaction by contacting the reaction mixture with an acid containing a non-nucleophilic anion produces a crude polymer solution with improved stability and processability.
    Type: Application
    Filed: September 17, 2009
    Publication date: August 25, 2011
    Applicant: NOVOMER, INC.
    Inventors: Scott D. Allen, Jeffrey R. Conuel, David E. Decker, Anna E. Cherian
  • Publication number: 20110207909
    Abstract: This invention relates to a Salen type ligand including three or more quaternary ammonium salts of nitrate anions, to a trivalent metal complex compound prepared from this ligand and a method of preparing the same, to a method of preparing polycarbonate by copolymerizing an epoxide compound and carbon dioxide using the complex compound as a catalyst, and to a method of separating and collecting the catalyst from the copolymer after copolymerization. This catalyst used to copolymerize an epoxide compound and carbon dioxide can be more simply prepared, and has lower catalyst preparation and recovery costs, and higher activity, compared to conventional catalysts.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Ji Su Jeong, Sujith Sudevan, Myung Ahn Ok, Sung Jae Na, Yong Gyu Han, Kwang Jin Chung, Bun Yeoul Lee, Kodiyan Varghese Jobi
  • Publication number: 20110201779
    Abstract: The present disclosure provides, in part, a method for removing a catalyst from a product of catalyzed aliphatic polycarbonate polymerization reaction.
    Type: Application
    Filed: September 17, 2009
    Publication date: August 18, 2011
    Applicant: NOVOMER, INC.
    Inventors: Anna E. Cherian, Jeffrey R. Conuel, David E. Decker, Scott D. Allen
  • Patent number: 7988953
    Abstract: The invention provides a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum ?max?270 nm. The conjugate is an effective and safe sunscreen which can advantageously be used in cosmetic compositions.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: August 2, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Alexander Poschalko, Ulrich Huber, Volker Schehlmann