Material Contains A Group Iib Metal Atom (zn, Cd, Hg) Patents (Class 528/414)
  • Patent number: 10047196
    Abstract: The present disclosure relates to an organic zinc catalyst suppressing agglomeration among catalyst particles during a manufacturing method to have more uniform and finer particle size, thereby showing a more improved activity in a polymerization process for manufacturing a polyalkylene carbonate resin, a manufacturing method thereof, and a manufacturing method of a polyalkylene carbonate resin using the same, wherein the organic zinc catalyst is a zinc dicarboxylate-based organic zinc catalyst used for a reaction in which a polyalkylene carbonate resin is manufactured from carbon dioxide and epoxide and includes a monocarboxylic acid-derived moiety having a C3-C15 aliphatic hydrocarbon group (provided that at least one oxygen or carbonyl group is included or not included in the aliphatic hydrocarbon group) that is bonded to an end of at least one side of the zinc dicarboxylate-based organic zinc catalyst.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: August 14, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Kyoung Kim, Seung Young Park, Hyun Ju Cho
  • Patent number: 9751981
    Abstract: The present invention relates to a manufacturing method of an organic zinc catalyst having more uniform and finer particle size and showing a more improved activity in a polymerization process for manufacturing a polyalkylene carbonate resin, and a manufacturing method of the polyalkylene carbonate resin using the organic zinc catalyst obtained by the manufacturing method of the organic zinc catalyst, the manufacturing method of an organic zinc catalyst including: forming a zinc dicarboxylate-based catalyst by reacting a zinc precursor with C3-C20 dicarboxylic acid, wherein the reaction step is performed under a condition in which the number of moles of the dicarboxylic acid is more than that of the zinc precursor in a reaction system, throughout the entire reaction step.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: September 5, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Kyoung Kim, Seung Young Park, Hyun Ju Cho
  • Patent number: 9458285
    Abstract: This disclosure relates to a method for preparing polyalkylenecarbonate. More specifically, in the method for preparing polyalkylenecarbonate, by using a solution polymerization with a specific heterogeneous catalyst and a solvent in the polymerization process of an epoxide compound and carbon dioxide, the products of side-reaction are reduced, removal of metal residues and by-products from the products is facilitated, danger due to overheating of the reactants is minimized, and heat removal and process stability are improved, and thus, high molecular weight copolymer may be easily provided, and mass production and scale-up are easy.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: October 4, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Yoon-Jung Kim, Seung Young Park, Taek-Jun Jung, Yun-ki Cho
  • Patent number: 9447237
    Abstract: The present invention relates to a production method of polyalkylene oxide particles including a step of forming the polyalkylene oxide particles by polymerization of an alkylene oxide in a polymerization solution containing a polymerization solvent and a catalyst dispersed in the polymerization solvent. The average particle diameter of the catalyst is 25 ?m or less.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: September 20, 2016
    Assignee: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Makoto Kato, Toru Ido, Shizuka Hachiken
  • Patent number: 9150674
    Abstract: A novel amphiphilic graft copolymer is described. A process to make amphiphilic graft copolymers via grafting either poly(ethylene oxide) or polylactide side chains onto an EVA platform using oxo-anion ring-opening polymerization chemistry is also described. Polyethylene or polypropylene based graft copolymers are prepared starting from poly(ethylene-co-vinyl acetate) or maleic anhydride grafted isotactic polypropylene respectively. The amphiphilic character will result from the incorporation of hydrophilic poly(ethylene oxide) (PEO) side-chains. Various applications of the novel amphiphilic graft copolymer are also described including, but not limited to, thermoplastic elastomer, films, fibers, fabrics, gels, breathable packaging materials, additive for biodegradable system, surfactant, antistatic additives, polymer compatibilizers, phase transfer catalysts, solid polymer electrolytes, biocompatible polymers, or incorporation into the materials listed above.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: October 6, 2015
    Assignees: Becton, Dickinson and Company, The University of Massachusetts
    Inventors: Theresa Hermel-Davidock, Edward Bryan Coughlin
  • Publication number: 20150051370
    Abstract: The present invention provides a novel catalyst of formula (I): wherein M is selected from Zn(H), Co(II), Mn(II), Mg(II), Fe(II), Cr(III)-X or Fe(III)-X, and the use thereof in polymerising carbon dioxide and an epoxide.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 19, 2015
    Applicant: Imperial Innovations Limited
    Inventors: Charlotte K. Williams, Michael Kember, Paul Knight
  • Patent number: 8916669
    Abstract: Embodiments of the invention provide for a method of producing a silylated polyoxyalkylene polymer having at least one crosslinkable silyl group and at least one hydroxyl group in each molecule. The method comprises providing a polyoxyalkylene polymer having at least one unsaturated group and at least one alcoholic hydroxyl group in each molecule, wherein the polyoxyalkylene polymer includes an impurity double metal cyanide complex mixed therein, and wherein the polyoxyalkylene polymer has not been treated with a metal-coordinating compound; and adding to the polyoxyalkylene polymer a compound having a hydrogen-silicon bond and a crosslinkable silyl group in each molecule and a hydrosilylation catalyst to thereby carry out a hydrosilylation reaction, wherein the hydrosilyation reaction is performed in an absence of a metal-coordinating compound.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 23, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Ling Zhang, Daniel A. Aguilar, Debkumar Bhattacharjee, William A. Koonce, Basudeb Saha
  • Patent number: 8883936
    Abstract: Provided is a curable composition having excellent water vapor permeability, which enables to protect a building from rainwater or moisture in the air and release the water accumulated on the side of the base of the building, to the outside. Also provided is a curable composition which has easy workability and is less likely to allow migration or exudation of a plasticizer to the surface of the cured product. Also provided is a liquid waterproof coating material having moisture permeability which contains the curable composition. The curable composition includes an organic polymer (I) that has less than one hydrolyzable silyl group per molecule on average and contains 5 to 80 wt % of oxyethylene units.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: November 11, 2014
    Assignees: Kaneka Corporation, Kaneka North America LLC
    Inventors: Hidetoshi Odaka, Katsuhiro Ando
  • Patent number: 8779087
    Abstract: The present invention provides an aliphatic polycarbonate production method which, using carbon dioxide and an epoxide, easily produces aliphatic polycarbonates having a low metal catalyst content. The invention relates to an aliphatic polycarbonate production method which includes a step of polymerization by reacting carbon dioxide with an epoxide in the presence of a metal catalyst; and a step of treating a polymer obtainable in the polymerization step with a surfactant. High-purity aliphatic polycarbonate having a low metal catalyst content can be easily provided by the aliphatic polycarbonate production method of the invention.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: July 15, 2014
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Nobutaka Fujimoto, Masafumi Okamoto
  • Publication number: 20140120349
    Abstract: The present invention relates to a production method of polyalkylene oxide particles including a step of forming the polyalkylene oxide particles by polymerization of an alkylene oxide in a polymerization solution containing a polymerization solvent and a catalyst dispersed in the polymerization solvent. The average particle diameter of the catalyst is more than 25 ?m.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 1, 2014
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Makoto Kato, Toru Ido, Shizuka Hachiken
  • Publication number: 20140106171
    Abstract: The present invention relates to a production method of polyalkylene oxide particles including a step of forming the polyalkylene oxide particles by polymerization of an alkylene oxide in a polymerization solution containing a polymerization solvent and a catalyst dispersed in the polymerization solvent. The average particle diameter of the catalyst is 25 ?m or less.
    Type: Application
    Filed: May 21, 2012
    Publication date: April 17, 2014
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Makoto Kato, Toru Ido, Shizuka Hachiken
  • Patent number: 8609805
    Abstract: The present invention provides a highly efficient process for manufacturing copolyether glycol having a mean molecular weight of from about 650 to about 5000 dalton by polymerization of tetrahydrofuran and at least one alkylene oxide in the presence of an acid catalyst and at least one compound containing reactive hydrogen atoms. More particularly, the invention relates to a process for manufacturing copolyether glycol which comprises recycle to the polymerization reaction step of at least a portion of the oligomeric cyclic ether which is co-produced with the copolyether glycol, said process exhibiting an Space Time Yield value of greater than about 0.9.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: December 17, 2013
    Assignee: Invista North America S.A R.L.
    Inventors: Qun Sun, Gary L. Kiser, Robert D. Orlandi
  • Patent number: 8586704
    Abstract: Compositions and methods for forming surfactants, aqueous dispersions, and curing agents are provided. In one aspect, the invention relates to improved epoxy functional surfactants prepared by reaction of an epoxy composition and an amidoamine composition formed from a blend of acid-terminated polyoxyalkylene polyols. The improved epoxy functional surfactants may be reacted with an excess of epoxy composition and water to result in an aqueous dispersion. The amidoamone composition may be a reaction mixture of a diamine compound and an acid terminated polyoxyalkylene composition formed from two or more polyoxyalkylene polyol compounds. The epoxy functional surfactant may be reacted with amine compounds to form a compound suitable as a curing agent.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 19, 2013
    Assignee: Momentive Specialty Chemicals Inc.
    Inventors: Jim D. Elmore, Larry Steven Corley, Jerry R. Hite
  • Patent number: 8134022
    Abstract: The present invention relates to a polyether carbonate polyol made by copolymerizing a starter molecule with carbon dioxide, at a pressure ranging from about 10 psia to about 2,000 psia, and an alkylene oxide, at a temperature ranging from about 50° C. to about 190° C. and in the presence of from about 0.001 wt. % to about 0.2 wt. % of a substantially non-crystalline double metal cyanide (DMC) catalyst, wherein the polyol has an incorporated carbon dioxide content of from about 1 wt. % to about 40 wt. %, wherein the ratio of cyclic carbonate by-product to total carbonate is less than about 0.3 and wherein the weight percentages are based on the weight of the polyol. The inventive polyether carbonate polyols may find use in producing polyurethane foams, elastomers, coatings, sealants and adhesives with improved properties.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: March 13, 2012
    Assignee: Bayer MaterialScience LLC
    Inventors: Karl W. Haider, Kenneth G. McDaniel, Sr., John E. Hayes, Jianzhong Shen
  • Publication number: 20110218321
    Abstract: Production of polyalkylene carbonates via polymerization of carbon dioxide with at least one epoxide of the general formula (I): where R re mutually independently H, halogen, NO2, CN, COOR? or C1-20-hydrocarbon moiety, which can have substitution, where one of the moieties R can also be OH, and where two moieties R can together form a C3-5-alkylene moiety, R? is H or C1-20-hydrocarbon moiety, which can have substitution; n a zinc salt of C4-8-alkanedicarboxylic acids as catalysts, where a carboxylic acid or an acidic ion exchanger and a non-water-miscible organic solvent which dissolves the polyalkylene carbonate are admixed with the reaction mixture obtained after the reaction, and the organic phase is washed with water, and the polyalkylene carbonate is optionally obtained from the organic phase.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 8, 2011
    Applicant: BASF SE
    Inventors: Tobias Heinz Steinke, Anna Katharina Ott, Hans-Helmut Görtz
  • Patent number: 7977501
    Abstract: The present invention relates to a polyether carbonate polyol made by copolymerizing a starter molecule with carbon dioxide, at a pressure ranging from about 10 psia to about 2,000 psia, and an alkylene oxide, at a temperature ranging from about 50° C. to about 190° C. and in the presence of from about 0.001 wt. % to about 0.2 wt. % of a substantially non-crystalline double metal cyanide (DMC) catalyst, wherein the polyol has an incorporated carbon dioxide content of from about 1 wt. % to about 40 wt. %, wherein the ratio of cyclic carbonate by-product to total carbonate is less than about 0.3 and wherein the weight percentages are based on the weight of the polyol. The inventive polyether carbonate polyols may find use in producing polyurethane foams, elastomers, coatings, sealants and adhesives with improved properties.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 12, 2011
    Assignee: Bayer MaterialScience LLC
    Inventors: Karl W. Haider, Kenneth G. McDaniel, John E. Hayes, Jianzhong Shen
  • Patent number: 7772330
    Abstract: The present invention provides a process for conditioning double metal cyanide (DMC) catalysts, which are employed in the preparation of polyether polyols based on starter compounds having active hydrogen atoms, the preparation of polyether polyols using the conditioned catalysts and the use of the polyether polyols prepared in this way for the preparation of polyurethane materials.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 10, 2010
    Assignee: Bayer MaterialScience AG
    Inventors: Klaus Lorenz, Jorg Hofmann
  • Publication number: 20090306336
    Abstract: The present invention relates to a process for preparation of polycarbonates with weight-average molar mass MW?230 000 g/mol and with ?2% by weight content of cyclic compounds, including the following steps: (a) reaction of at least one oxirane with carbon dioxide in the presence of a metal-polycarboxylic acid compound in an aprotic, non-water-miscible solvent at a temperature of from 40 to 120° C. and at a pressure of from 1 to 100 bar, where the molar ratio of monomer to metal-polycarboxylic acid compound is ?75, (b) addition of an aqueous solution of an inorganic acid to the reaction mixture once the reaction has ended, (c) removal of the aqueous phase, (d) if appropriate, washing of the remaining organic phase with water, and (e) devolatilization and drying of the resultant slurry of the polycarbonate in the aprotic, non-water-miscible solvent, and to the polycarbonate prepared via the process, and also to the use of the polycarbonate.
    Type: Application
    Filed: December 9, 2005
    Publication date: December 10, 2009
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventor: Gerrit Luinstra
  • Publication number: 20090299032
    Abstract: A catalyst, co-catalyst, and/or chain transfer agent is added at a time after initiation of an addition polymerization reaction to produce a polymer product with a widened molecular weight distribution relative to having all of the components in the original reaction mixture. The catalyst, co-catalyst, or chain transfer agent may be added discretely or continuously to the reaction to produce a product with a bimodal, trimodal, or other broadened molecular weight distribution.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicant: NOVOMER INC.
    Inventor: Scott D. Allen
  • Patent number: 7405265
    Abstract: Disclosed is a method of preparing a catalyst for polymerization of aliphatic polycarbonates and a method of polymerizing an aliphatic polycarbonate. This method includes reacting a zinc precursor and organic dicarboxylic acid in a non-ionic surfactant-included solution.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: July 29, 2008
    Assignees: Posco, Postech Foundation
    Inventors: Seung-Jae Moon, Moon-Hor Ree, Jong-Sung Kim, Kie-Soo Kim
  • Publication number: 20080177025
    Abstract: The present invention relates to double metal cyanide DMC catalysts containing one or more double metal cyanide compounds of the formula M[M?(CN)4] and one or more organic complexing ligands. The inventive catalysts, when used for the preparation of polyether polyols by polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, have little or no induction period and produce polyols with very low double bond contents.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 24, 2008
    Inventor: Jorg Hofmann
  • Patent number: 7160962
    Abstract: Elastomer-modified Epoxy-polysiloxane compositions of this invention are prepared by combining a silicone intermediate, with an epoxy resin, an elastomeric resinous intermediate, a polyfunctional amine, an optional organometallic catalyst, and optional fillers, pigments, and processing agents. The composition is prepared using a sufficient amount of water to promote hydrolysis of the polysiloxane and the polycondensation of the silanols produced by such hydrolysis. In its cured form, the epoxy-polysiloxane composition exists as a uniformly dispersed arrangement of linear epoxy chain fragments that are cross-linked with a continuous polysiloxane polymer chain, wherein either or both of the epoxy and/or polysiloxane polymers are elastomer modified to provide coatings and floorings having significantly improved properties of impact resistance, flexibility, crack resistance, and abrasion resistance with compared to conventional epoxy systems.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: January 9, 2007
    Assignee: Ameron International Corporation
    Inventor: Haruji Sakugawa
  • Patent number: 7053250
    Abstract: An improved method for synthesizing a double metal cyanide (DMC) catalyst combines and sonicates aqueous and non-aqueous solutions of a first metal salt, such as Zn(OAc)2, of a second metal salt, such as CoCl2, and of an alkali metal cyanide, such as NaCN, to synthesize the DMC catalyst, Zn3[Co(CN)6]2. An improved method of producing a polyether polyol uses the DMC catalyst to produce the polyol.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: May 30, 2006
    Assignee: BASF Corporation
    Inventors: Edward M. Dexheimer, Jacob Wildeson, Werner Hinz
  • Patent number: 7034103
    Abstract: The present invention provides process for producing polyols using a crystalline, hydroxide containing double metal cyanide (DMC) catalyst of the formulae (I) or (II), M1x[M2(CN)6]yOH.L??(I) M1x[M2(CN)6]y.zM1(OH)q.L??(II) wherein M1 represents a metal selected from Zn+2, Fe+2, Ni+2, Mn+2, Co+2, Sn+2, Pb+2, Fe+3, Mo+4, Mo+6, Al+3, V+4, V+5, Sr+2, W+4, W+6, Cu+2 and Cr+3, M2 represents a metal selected from Fe+2, Fe+3, Co+2, Co+3, Cr+2, Cr+3, Mn+2, Mn+3, Ir+3, Ni+2, Rh+3, Ru+2, V+4 and V+5, L represents an organic ligand and x, y and q are chosen to maintain electroneutrality. The polyols of the present invention may find use in the preparation of polyurethanes.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: April 25, 2006
    Assignee: Bayer Antwerpen N.V.
    Inventor: George G. Combs
  • Patent number: 6979722
    Abstract: According to a process for production of alkylene oxide polymers offered by the present invention, an alkylene oxide is subjected to a polymerization reaction under presence of a catalyst in a solvent containing an aliphatic hydrocarbon having from five to seven carbon atoms and a branched structure. The aliphatic hydrocarbon is provided preferably by 2-methyl pentane, 3-methyl pentane, 2,3-dimethyl pentane, 2,4-dimethyl pentane, etc. The alkylene oxide is provided preferably by ethylene oxides and/or propylene oxides.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: December 27, 2005
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Shigeki Hamamoto, Nobutaka Fujimoto, Makoto Katou, Kazuyuki Miura
  • Patent number: 6977236
    Abstract: The present invention relates to a process for the preparation of a double metal cyanide (DMC) catalyst, which process involves: (a) combining an aqueous solution of metal salt with an aqueous solution of a metal cyanide salt and reacting these solutions; and (b) recovering the DMC catalyst from the reaction mixture, in which process the DMC catalyst is prepared in the presence of from 0.03 to 0.4 mole of alkaline metal compound, based on amount of metal salt. Further, the present invention relates to DMC catalyst obtainable by such process, to DMC catalyst prepared from a metal salt and a metal cyanide salt in which the molar ratio of metal derived from the metal salt to metal derived from the metal cyanide salt is at least 2.25 and to a process for polymerization of alkylene oxides which process involves reacting initiator with alkylene oxide in the presence of at most 15 ppm of DMC catalyst.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: December 20, 2005
    Assignee: Shell Oil Company
    Inventors: Michiel Barend Eleveld, Robert Adrianus Wilhelmus Grotenbreg, Ronald van Kempen
  • Patent number: 6835801
    Abstract: The present invention is directed to an activated starter mixture which can be used to prepare polyoxyalkylene polyols. The present invention is also directed to a process for preparing an activated starter mixture, particularly, to a process for preparing an activated starter mixture which is composed of a low molecular weight starter compound. The present invention is also directed to a batch or semi-batch process for the polyaddition of an alkylene oxide on to an activated starter mixture, particularly, on to an activated starter mixture which is composed of a low molecular weight starter compound. The present invention provides an activated starter mixture, particularly, an activated starter mixture which is composed of a low molecular weight starter compound, which rapidly initiates polymerization. The present invention can eliminate the need to synthesize costly high molecular weight starter compounds by KOH catalysis in a separate, dedicated reactor.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: December 28, 2004
    Assignee: Bayer Antwerp, N.V.
    Inventor: John E. Hayes
  • Patent number: 6833431
    Abstract: The invention is directed to a double-metal cyanide catalyst for the preparation of a polyether polyol by the polyaddition of an alkylene oxide on to a starter compound containing active hydrogen atoms, wherein the DMC catalyst comprises a) at least one double-metal cyanide compound; b) at least one organic complexing ligand which is not a polyether, a bile acid, a bile acid salt, a bile acid ester or a bile acid amide; c) at least one polyether; and d) at least one bile acid, bile acid salt, bile acid ester or bile acid amide. The catalyst of the present invention has increased activity in the preparation of a polyether polyol.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: December 21, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventors: Jörg Hofmann, Pieter Ooms, Walter Schäfer
  • Patent number: 6830704
    Abstract: A 2-cyanoacrylate composition useful as an adhesive contains a Lewis acid metal salt comprising a metal such as aluminum, gallium, indium or thalium, and the conjugate base of an acid such as a monohalo-, dihalo- or trihalo-acetate (e.g. aluminum trifluoroacetate salt). A clathrate such as a crown ether is also present.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: December 14, 2004
    Assignee: Toagosei Co., Ltd.
    Inventors: Seitaro Tajima, Mitsuyoshi Sato
  • Publication number: 20040249104
    Abstract: The present invention provides a process for preparing a polyoxyalkylene polyol by polyoxyalkylating a starter compound with a mixture of two different alkylene oxide monomers in which the first alkylene oxide monomer content of the mixture decreases as the content of the second alkylene oxide monomer increases over the course of the polyoxyalkylation, digesting unreacted monomers of the alkylene oxides and capping the polyol.
    Type: Application
    Filed: June 9, 2003
    Publication date: December 9, 2004
    Inventors: Bi Le-Khac, Todd D. Gentile
  • Patent number: 6815529
    Abstract: This invention relates to a catalyst for producing aliphatic polycarbonate, which is composed of a rare-earth coordination compound; an alkyl metal compound; a polyol; and a carbonate. The catalytic efficiency of the catalyst of the present invention is more than 8×104 g polymer/mol RE(RE is rare earth metal). The number average molecular weight of the polymer is higher than 30,000. The degree of carbon dioxide fixation is more than 42 wt % and the content of alternative sequence structure exceeds 97%.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: November 9, 2004
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Xiaojiang Zhao, Xianhong Wang, Fosong Wang
  • Publication number: 20040092389
    Abstract: The present invention relates to novel double metal cyanide (DMC) catalysts for the preparation of polyether polyols by a polyaddition reaction between alkylene oxides and starter compounds having active hydrogen atoms, wherein the catalyst contains a) at least one double metal cyanide compound, b) at least one organic complexing ligand and c) at least one fluorine-containing complexing ligand.
    Type: Application
    Filed: July 23, 2003
    Publication date: May 13, 2004
    Inventors: Pieter Ooms, Jorg Hofmann, Martin Dobler
  • Patent number: 6716788
    Abstract: The present invention relates to a process for the preparation of a double metal cyanide (DMC) catalyst, which process involves: (a) combining an aqueous solution of a metal salt with an aqueous solution of a metal cyanide salt and reacting these solutions; and (b) recovering the DMC catalyst from the reaction mixture, in which process the DMC catalyst is prepared in the presence of from 0.03 to 0.4 mole of alkaline metal compound, based on amount of metal salt. Further, the present invention relates to DMC catalyst obtainable by such process, to DMC catalyst prepared from a metal salt and a metal cyanide salt in which the molar ratio of metal derived from the metal salt to metal derived from the metal cyanide salt is at least 2.25 and to a process for polymerization of alkylene oxides which process involves reacting initiator with alkylene oxide in the presence of at most 15 ppm of DMC catalyst.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: April 6, 2004
    Assignee: Shell Oil Company
    Inventors: Michiel Barend Eleveld, Robert Adrianus Wilhelmus Grotenbreg, Ronald Van Kempen
  • Patent number: 6713599
    Abstract: A method of forming a polyol includes the steps of reacting an initiator with an alkylene oxide, and optionally carbon dioxide, in the presence of a double metal cyanide catalyst and a sterically hindered chain transfer agent capable of protonating the growing polyol polymer. The presence of the chain transfer agent reduces the polydispersity of the resultant polyol.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 30, 2004
    Assignee: BASF Corporation
    Inventors: Werner Hinz, Jacob Wildeson, Edward Michael Dexheimer, Raymond Neff
  • Patent number: 6699961
    Abstract: A process for the preparation of a DMC catalyst useful in the polymerization of alkylene oxides into polyether polyols, which process having the steps of (a combining an aqueous solution of a metal salt with an aqueous solution of a metal salt with an aqueous solution of a metal cyanide salt and reacting these solutions, wherein at least part of this reaction takes place in the presence of an organic complexing agent, thereby forming a dispersion of a solid DMC complex in an aqueous medium; (b) combining the dispersion obtained in step (a) with a liquid, which is essentially insoluble in water and which is capable of extracting the solid DMC complex formed in step (a) from the aqueous medium, and allowing a two-phase system to be formed consisting of a first aqueous layer and a layer containing the DMC complex and the liquid added; (c) removing the first aqueous layer; and (d) recovering the DMC catalyst from the layer containing the DMC catalyst.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: March 2, 2004
    Assignee: Shell Oil Company
    Inventors: Michiel Barend Eleveld, Riemer Alberts De Groot, Ronald Van Kempen, Johan Paul Smit
  • Patent number: 6639025
    Abstract: Elastomer-modified Epoxy-polysiloxane compositions of this invention are prepared by combining a silicone intermediate, with an epoxy resin, an elastomeric resinous intermediate, a polyfunctional amine, an optional organometallic catalyst, and optional fillers, pigments, and processing agents. The composition is prepared using a sufficient amount of water to promote hydrolysis of the polysiloxane and the polycondensation of the silanols produced by such hydrolysis. In its cured form, the epoxy-polysiloxane composition exists as a uniformly dispersed arrangement of linear epoxy chain fragments that are cross-linked with a continuous polysiloxane polymer chain, wherein either or both of the epoxy and/or polysiloxane polymers are elastomer modified to provide coatings and floorings having significantly improved properties of impact resistance, flexibility, crack resistance, and abrasion resistance with compared to conventional epoxy systems.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: October 28, 2003
    Assignee: Ameron International Corporation
    Inventor: Haruji Sakugawa
  • Patent number: 6632897
    Abstract: Described is the use of nanoscale metal oxide particles as catalysts for the thermal and/or photochemical polymerization of species having at least one polymerizable carbon-carbon multiple bond and/or at least one carbon containing ring capable of undergoing a ring opening polymerization.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: October 14, 2003
    Assignee: Institut Für Neue Materialien gemeinnützige
    Inventors: Elisabeth Geiter, Helmut Schmidt
  • Patent number: 6624286
    Abstract: The invention relates to new improved double-metal cyanide (DMC) catalysts for the preparation of polyether-polyols by polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, the catalyst comprising a double-metal cyanide compound, an organic complexing ligand and 5-80 wt. %, based on the amount of catalyst, of a polyester. For the preparation of polyether-polyols, the new improved catalysts have significantly shortened induction times and at the same time a greatly increased activity.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: September 23, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Jörg Hofmann, Pramod Gupta, Robert-Joseph Kumpf, Pieter Ooms, Walter Schäfer
  • Patent number: 6586564
    Abstract: The invention relates to double-metal cyanide (DMC) catalysts for preparing polyether polyols by the polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, wherein the DMC catalysts are composed of: a) at least one DMC compound; b) at least one organic complexing ligand which is not a coronand; and c) at least one coronand. The DMC catalysts of the present invention have increased activity compared to known catalysts.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: July 1, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Walter Schäfer, Jörg Hofmann, Pieter Ooms
  • Patent number: 6569981
    Abstract: This invention relates to crystallizing polyether polyols which can be produced firstly by the reaction of propylene oxide and polyhydroxy compounds in the presence of an alkoxy compound which contains zinc and/or aluminium atoms to form a crystallizing polyether polyol with an average molecular weight Mn from 500 to 5000, followed by the further reaction of the crystallizing polyether polyol which is thus obtained with 10 to 90% by weight, with respect to the amount of crystallizing polyol, of an epoxide in the presence of a catalyst which does not polymerize propylene oxide stereospecifically, to form a crystallizing polyether polyol with an average molecular weight Mn from 1000 to 20,000. The invention further relates to a method for the production thereof and to the use thereof for the production of polyurethane materials, particularly polyurethane foams, polyurethane elastomers and polyurethane coatings.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: May 27, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Walter Schäfer, Jörg Hofmann, Pramod Gupta, Pieter Ooms
  • Patent number: 6552163
    Abstract: A poly(ethylene oxide) polymer having low and high molecular weight fractions is fractionated by dissolving the polymer in a solvent for the low molecular weight fraction. A good separation of the low and high molecular weight fractions can be obtained. When the poly(ethylene oxide) polymer contains a metal cyanide catalyst, this process also provides a good separation of the catalyst from the low molecular weight fraction. In this instance, the catalyst remains active and the high molecular weight fraction containing the catalyst can be recycled into subsequent polymerization processes.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: April 22, 2003
    Assignee: The Dow Chemical Company
    Inventors: Katherine S. Clement, Louis L. Walker
  • Patent number: 6547985
    Abstract: A 2-cyanoacrylate composition useful as an adhesive contains a Lewis acid metal salt which comprises a specific metal such as aluminum, gallium, indium or thallium, and the conjugate base of an acid having oxygen such as a monohalo-, dihalo or trihaloacetate, wherein the metal is bonded to the conjugate base through an oxygen atom, and a compound having clathrating ability such as a crown ether.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: April 15, 2003
    Assignee: Togosei Co., Ltd.
    Inventors: Seitaro Tajima, Mitsuyoshi Sato
  • Patent number: 6541593
    Abstract: A process for producing a reactive silicon group-containing polyether oligomer, which comprises reacting (a) a polyether oligomer the backbone chain of which comprises a polyether and which contains in a side chain or at a terminus of its molecule at least one unsaturated group of the following general formula (1): H2C═C(R1)—R2—O—  (1) (wherein R1 represents a hydrocarbon group of not more than 10 carbon atoms; R2 represents a divalent organic group of 1 to 20 carbon atoms which contains in a side chain or at a terminus of its molecule at least one atomic species selected from the group consisting of hydrogen, oxygen and nitrogen as its constituent atom or atoms) or the general formula (2): HC(R1)═CH—R2—O—  (2) (wherein R1 represents a hydrocarbon group of not more than 10 carbon atoms; R2 represents a divalent organic group of 1 to 20 carbon atoms which contains at least one atomic species selected from the group consisting of hydrogen, ox
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: April 1, 2003
    Assignee: Kaneka Corporation
    Inventors: Hideharu Jyono, Hidetoshi Odaka, Hiroshi Ando, Hiroshi Iwakiri, Hiroshi Ito, Fumio Kawakubo
  • Patent number: 6528616
    Abstract: The invention relates to new double metal cyanide (DMC) catalysts for the production of polyether polyols by polyaddition of alkylene oxides to starter compounds containing active hydrogen atoms, wherein the catalyst contains a) double metal cyanide compounds, b) organic complex ligands different from c), and c) &agr;,&bgr;-unsaturated carboxylic acid esters. The catalysts according to the invention have a significantly improved activity in the production of polyether polyols.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: March 4, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Pieter Ooms, Jörg Hofmann, Pramod Gupta
  • Patent number: 6503995
    Abstract: A method of producing a polyoxyalkylene polymer having at least one crosslinkable silyl group and at least one hydroxyl group in each molecule which comprises treating a polyoxyalkylene polymer having at least one unsaturated group and at least one alcoholic hydroxyl group in each molecule and an impurity double metal cyanide complex as mixed therein with a metal-coordinating compound and adding a compound having a hydrogen-silicon bond and a crosslinkable silyl group in each molecule and a hydrosilylation catalyst to thereby carry out the hydrosilylation reaction.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: January 7, 2003
    Assignee: Kaneka Corporation
    Inventors: Ryotaro Tsuji, Yousuke Asai, Masayuki Fujita, Hajime Harada, Susumu Kyotani, Takeshi Kawamura, Kenji Kuroda, Hiroshi Iwakiri
  • Patent number: 6458918
    Abstract: The present invention relates to a process for the preparation of novel, partially crystalline polyether polyols with a functionality of ≧2, an average molecular weight Mn of 500 to 100,000 and a molar proportion of isotactic triads determining the crystallinity of >28%. The new polyether polyols are prepared by polymerizing alkylene oxides in the presence of a bimetallic :-oxoalkoxide modified with hydroxyl compounds.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: October 1, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Walter Schäfer, Jörg Hofmann, Pramod Gupta, Hanns-Peter Müller, Harald Pielartzik
  • Patent number: 6429166
    Abstract: Metal cyanide catalyst dispersions in initiator compounds are prepared by precipitating the catalyst in an inert organic compound, mixing the resulting slurry with the initiator and stripping off the inert organic compound. Using this method, an active alkylene oxide polymerization catalyst is prepared. It is not necessary to use a separate organic complexing agent in the preparation.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: August 6, 2002
    Assignee: Dow Global Technologies Inc.
    Inventor: Richard M. Wehmeyer
  • Patent number: 6388048
    Abstract: Metal [hexacyanocobaltate, cobalthexanitrite nitroferricyanide] complexes are useful alkylene oxide polymerization catalysts. The metal is any that forms a precipitate with the hexacyanocobaltate, cobalthexanitrite and nitroferricyanide groups. These catalysts are made from less expensive raw materials than the common zinc hexacyanocobaltate catalysts, and provide short induction periods and many cases more controlled exotherms. In addition, the metal [hexacyanocobaltate, cobalthexanitrite nitroferricyanide] catalysts often provide poly(propylene oxide) polymers having very low unsaturations, even when the catalyst is complexed with a complexing agent such as glyme.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: May 14, 2002
    Assignee: The Dow Chemical Company
    Inventors: David E. Laycock, Kendra L. Flagler, Robert J. Gulotty, Jr.
  • Patent number: 6376645
    Abstract: Metal [hexacyanometallate hexanitrometallate] complexes are useful alkylene oxide polymerization catalysts. The metal is any that forms a precipitate with hexacyanometallate and hexanitrometallate groups. These catalysts are made from less expensive raw materials than the common zinc hexacyanocobaltate catalysts, and provide short induction periods and in many cases more controlled exotherms.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: April 23, 2002
    Assignee: The Dow Chemical Company
    Inventors: David E. Laycock, Kendra L. Flagler, Robert J. Gulotty, Jr.
  • Patent number: 6348565
    Abstract: Complexes of a metal cyanide polymerization catalyst and certain silane-functional complexing agents provide a method whereby supported, active metal cyanide catalysts can be prepared. The catalysts are useful alkylene oxide polymerization catalysts that are easily separated from the polymerization product and recycled.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: February 19, 2002
    Assignee: The Dow Chemical Company
    Inventor: Richard M. Wehmeyer