Vanadium, Niobium, Or Tantalum Containing (v, Nb, Or Ta) Patents (Class 556/42)
  • Patent number: 7371878
    Abstract: Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and/or ferroelectric thin films.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: May 13, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum
  • Patent number: 7358209
    Abstract: A transition metal complex having the following Formula (A): wherein the monovalent groups R1 and R2 are —Ra, —ORb, —NRcRd, and —NHRe: the monovalent groups Ra, Rb, Rc, Rd and Re, and the divalent group R3 are (i) aliphatic hydrocarbon, (ii) alicyclic hydrocarbon, (iii) aromatic hydrocarbon, (iv) alkyl substituted aromatic hydrocarbon (v) heterocyclic groups and (vi) heterosubstituted derivatives of said groups (i) to (v); M is a Group (3) to (11) or lanthanide metal; E is phosphorus or arsenic; X is an anionic group, L is a neutral donor group; n is (1) or (2), y and z are independently zero or integers, such that the number of X and L groups satisfy the valency and oxidation state of the metal M. n is preferably (2) and the two resulting R1 groups are preferably linked.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 15, 2008
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, Grant Berent Jacobsen, David John Jones, Richard James Long
  • Publication number: 20080071102
    Abstract: Processes for preparing high-purity niobium alkoxides, especially niobium ethoxide, are described which include: (a) providing a crude niobium alkoxide starting material comprising at least one compound of the general formula (I) Nb(OR)5 ??(I) wherein each R independently represents a linear or branched C1-12 alkyl group; and (b) contacting the crude niobium alkoxide starting material with a treatment medium comprising a component selected from the group consisting of (i) one or more alcohols of the general formula (II) in an amount of 0.01 to 5% by weight, (ii) air or an oxygen-containing gas, and (iii) combinations thereof; R1OH ??(II) wherein each R1 independently represents a linear or branched C1-12 alkyl group.
    Type: Application
    Filed: September 14, 2007
    Publication date: March 20, 2008
    Applicant: H. C. Starck GmbH
    Inventor: Knud Reuter
  • Patent number: 7332618
    Abstract: This invention relates to organometallic precursor compounds represented by the formula (H)mM(R)n wherein M is a metal or metalloid, R is the same or different and is a substituted or unsubstituted, saturated or unsaturated, heterocyclic radical containing at least one nitrogen atom, m is from 0 to a value less than the oxidation state of M, n is from 1 to a value equal to the oxidation state of M, and m+n is a value equal to the oxidation state of M, a process for producing the organometallic precursor compounds, and a method for producing a film or coating from the organometallic precursor compounds.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: February 19, 2008
    Assignee: Praxair Technology, Inc.
    Inventor: Scott Houston Meiere
  • Patent number: 7314844
    Abstract: A process for cyanating an aldehyde is provided. The process comprises reacting the aldehyde with: i) a cyanide source which does not comprise a Si—CN bond or a C—(C?O)—CN moiety; and ii) a substrate susceptible to nucleophilic attack not comprising a halogen leaving group; in the presence of a chiral catalyst. Preferably, the chiral catalyst is a chiral vanadium or titanium catalyst. The cyanide source is preferably an alkali metal cyanide and the substrate susceptible to nucleophilic attack not comprising a halogen leaving group is a carboxylic anhydride.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: January 1, 2008
    Assignees: King's College London, Nesmeyanov Institute of Organoelement Compounds
    Inventors: Michael North, Yuri Belokon
  • Patent number: 7301040
    Abstract: Bidentate catalyst systems and the methods or forming such are described herein. The catalyst systems generally are compounds having the general formula: where R, R1, R2 and R3 are optional and independently selected from hydrogen, C1 to C20 alkyl groups or C6 to C20 aryl groups, A? and A? are independently selected from coordination groups, M is a Group 4 or 5 transition metal, X is selected from halogens, alkyl groups, aromatic groups or combinations thereof and n is less than 4.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: November 27, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Patent number: 7273943
    Abstract: A novel process for the preparation of high-purity zirconium, hafnium, tantalum and niobium alkoxides (alcoholates), novel tantalum and niobium compounds and a process for their preparation are provided. The process comprises the steps of mixing crude metal alkoxides M(OR)x having a halogen impurity of at least 0.05 wt. %, with an alcohol ROH, in which R is a C1-C12-alkyl radical, and subsequently or simultaneously metering in an excess of ammonia, based on the amount of mononuclear or polynuclear halogen-containing metal alkoxides.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: September 25, 2007
    Assignee: H. C. Starck GmbH
    Inventors: Knud Reuter, Friedrich Zell, Martina Ebner
  • Patent number: 7268253
    Abstract: The invention relates to a novel process for hydroxymethylating noncyclic ?,?-dialkylcarboxylic acid derivatives with formaldehyde using amide bases at temperatures of from ?40° C. up to the boiling point of the solvent or solvent mixture used.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: September 11, 2007
    Assignee: Consortium fuer Elektrochemische Industrie GmbH
    Inventors: Andreas Boehm, Hermann Petersen, Juergen Stohrer
  • Patent number: 7241911
    Abstract: The present invention relates to novel, water-soluble niobium compounds, a process for their preparation and their formulations.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: July 10, 2007
    Assignee: H. C. Starck GmbH & Co. KG
    Inventors: Karsten Beck, Hady Seyeda, Udo Sulkowski, Axel Rosenkranz
  • Patent number: 7238821
    Abstract: This invention relates to a one pot method for large scale production of an organometallic compound comprising (i) reacting a hydrocarbon or heteroatom-containing material with a base material in the presence of a solvent and under reaction conditions sufficient to produce a first reaction mixture comprising a hydrocarbon or heteroatom-containing compound, (ii) adding a metal source compound to said first reaction mixture, (iii) reacting said hydrocarbon or heteroatom-containing compound with said metal source compound under reaction conditions sufficient to produce a second reaction mixture comprising said organometallic compound, and (iv) separating said organometallic compound from said second reaction mixture.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: July 3, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Scott Houston Meiere, David Walter Peters
  • Patent number: 7179765
    Abstract: The present invention relates to a process for the preparation of hydrogen peroxide from oxygen or oxygen-delivering substances and hydrogen or hydrogen-delivering substances in the presence of at least one catalyst containing a metal-organic framework material, wherein said framework material comprises pores and a metal ion and an at least bidentate organic compound, said bidentate organic compound being coordinately bound to the metal ion. The invention further relates to a novel material consisting of said metal organic framework material wherein the material is brought in contact with at least one additional metal.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: February 20, 2007
    Assignees: BASF Aktiengesellschaft, The Reagents of the University of Michigan
    Inventors: Ulrich Mueller, Olga Metelkina, Henrik Junicke, Thomas Butz, Omar M. Yaghi
  • Patent number: 7151070
    Abstract: The compound of this invention is a useful catalyst for the oxidative coupling of naphthol. Its originality lies in that it is a novel vanadium complex of Schiff's base formed by a chiral amino acid and a formyl biphenol or its derivative. Its axis chirality is induced to form by the chiral amino acid. It has the general formula: where R represents a benzyl, an isopropyl, an isobutyl or a tertiary butyl and the configuration of the amino acid is R or S. The compound can catalyze oxidative coupling of naphthol or its derivative to form binaphthol or its derivatives with a high optical purity.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: December 19, 2006
    Assignee: Chengdu Institute of Organic Chemistry Chinese Academy of Sciences
    Inventors: Liuzhu Gong, Zhibin Luo, Quanzhong Liu, Aiqiao Mi, Yaozhong Jiang
  • Patent number: 7148367
    Abstract: The organometallic compound of the present invention is a compound that has bonds between metal atoms and nitrogen atoms or bonds between semimetal atoms and nitrogen atoms, and the content of chlorine in the compound is 200 ppm or less and the content of water is 30 ppm or less. In addition, the general formula of this compound is represented by the following formula (1): M[(R1)2N](n?s)(R2)s??(1) wherein, M represents a metal atom or semimetal atom, with the metal atom being Hf, Zr, Ta, Ti, Ce, Al, V, La, Nb or Ni, and the semimetal atom being Si, R1 represents a methyl group or ethyl group, R2 represents an ethyl group, n represents the valence of M, and s represents an integer of 0 to n?1.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 12, 2006
    Assignee: Mitsubishi Materials Corporation
    Inventor: Atsushi Itsuki
  • Patent number: 7105672
    Abstract: A catalyst compound of formula I or II: (wherein R1–R11, M, E, T, X, Y, m and n are defined herein). The compound, when combined with a suitable activator, is active for the polymerization of olefins. In an embodiment of combinations of the R1–R7 and T groups, these catalysts can engage in weak attractive non-covalent interactions with the polymer chain. In another embodiment, the R1–R11 groups in formula II exhibit weak attractive non-covalent interactions with the polymer chain.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: September 12, 2006
    Assignee: The University of Hong Kong
    Inventors: Michael Chi-Wang Chan, Chi-Fai Kui
  • Patent number: 7084306
    Abstract: Disclosed is a process for preparing 2,2,6,6-tetramethyl-3,5-heptanedione, comprising reacting a pivalic acid alkyl ester with pinacolone in the presence of an alkali metal alkoxide catalyst using a pivalic acid alkyl ester as a solvent but using no other solvent or reacting them in an amide type or urea type solvent in the presence of an alkali metal alkoxide catalyst. Also disclosed is a process for preparing a 2,2,6,6-tetramethyl-3,5-heptanesione metal complex using the 2,2,6,6-tetramethyl-3,5-heptanedione obtained by the above process. The process for preparing 2,2,6,6-tetramethyl-3,5-heptanedione is an industrially advantageous process in which an alkali metal alkoxide that is easy to handle can be used as a catalyst for preparing 2,2,6,6-tetramethyl-3,5-heptanedione from a pivalic acid alkyl ester and pinacolone.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: August 1, 2006
    Assignee: Showa Denko K.K.
    Inventors: Makoto Saito, Takashi Ueda, Takashi Tani
  • Patent number: 6998497
    Abstract: A metal bis-triflimide compound having the formula: [Mx]n+[(N(SO2CF3)2)(nx?yz)](nx?yz)?[Ly]z? where M is a metal selected from the metals in groups 5 to 10, 12 and 14 to 16 and Cu, Au, Ca, Sr, Ba, Ra, Y, La, Ac, Hf, Rf, Ga, In, Tl, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and the actinides; L is a negative or neutral ligand; n is 2,3,4,5,6,7 or 8; x is greater than or equal to 1 y is 0,1,2,3,4,5,6,7 or 8; and z is 0,1,2,3 or 4.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: February 14, 2006
    Assignee: The Queen's University of Belfast
    Inventors: Martyn J. Earle, Barry Joseph Mcauley, Alwar Ramani, Kenneth Richard Seddon, Jillian M. Thomson
  • Patent number: 6974878
    Abstract: A new ligands that include a benzene ring in the backbone can be combined with a metal or metal precursor compound or formed into a metal-ligand complex catalyze a number of different chemical transformations, including olefin polymerization reactions. The ligands, complexes formed with the ligands and compositions including the ligands are useful catalysts, depending on the reaction.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: December 13, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Anil Guram, Cheryl Lund, Howard W. Turner, Tetsuo Uno
  • Patent number: 6960675
    Abstract: Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and/or ferroelectric thin films.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: November 1, 2005
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum
  • Patent number: 6946568
    Abstract: Complexes of the formulae Ia and Ib where M=Ti, Zr, Hf, V, Nb or Ta, can be used for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes and bulk polymerization processes.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: September 20, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, Benno Bildstein, Alexander Krajete
  • Patent number: 6924147
    Abstract: A polymeric food spoilage sensor comprises a polymer containing a polyazamacrocyclic transition metal complex. The complex selectively binds biogenic amines, such as cadaverine, putrescine and histamine, which are released by food spoilage microorganisms. The polymer undergoes a detectable color change upon exposure to biogenic amine, thus indicating that food spoilage has probably occurred. In one embodiment, the polymer is molecularly imprinted with the biogenic amine to impart selective binding affinity. The polymer is easily incorporated in common food containers and can be employed in fiber optic detection devices.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: August 2, 2005
    Assignee: The Johns Hopkins University
    Inventors: Craig A. Kelly, George M. Murray, O. Manuel Uy
  • Patent number: 6919467
    Abstract: The present invention provides a catalyst precursor and catalyst system comprising the precursor, an embodiment of the precursor is selected from the following structures: wherein T is a bridging group; M is selected from Groups 3 to 7 atoms, and the Lanthanide series of atoms the Periodic Table of the Elements; Z is a coordination ligand; each L is a monovalent, bivalent, or trivalent anionic ligand; X and Y are each independently selected from nitrogen, oxygen, sulfur, and phosphorus; R is a non-bulky substituent that has relatively low steric hindrance with respect to X; and R? is a bulky substituent that is sterically hindering with respect to Y.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 19, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Rex Eugene Murray
  • Patent number: 6869638
    Abstract: A CVD Method of forming gate dielectric thin films on a substrate using metalloamide compounds of the formula M(NR1R2)x, or wherein M is Zr, Hf, Y, La, Lanthanide series elements, Ta, Ti, or Al; N is nitrogen; each of R1 and R2 is same or different and is independently selected from H, aryl, perfluoroaryl, C1-C8 alkyl, C1-C8 perfluoroalkyl, alkylsilyl; and x is the oxidation state on metal M; and an aminosilane compound of the formula HxSiAy(NR1R2)4-x-y or wherein H is hydrogen; x is from 0 to 3; Si is silicon; A is a halogen; Y is from 0 to 3; N is nitrogen; each of R1 and R2 is same or different and is independently selected from the group consisting of H, aryl, perfluoroaryl, C1-C8 alkyl, and C1-C8 perfluoroalkyl; and n is from 1-6. By comparison with the standard SiO2 gate dielectric materials, these gate dielectric materials provide low levels of carbon and halide impurity.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: March 22, 2005
    Assignee: Advanced Tehnology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder
  • Patent number: 6855657
    Abstract: 3,3?-Substituted chiral biaryl phosphine and phosphinite ligands and metal complexes based on such chiral ligands useful in asymmetric catalysis are disclosed. The metal complexes are useful as catalysts in asymmetric reactions, such as, hydrogenation, hydride transfer, allylic alkylation, hydrosilylation, hydroboration, hydrovinylation, hydroformylation, olefin metathesis, hydrocarboxylation, isomerization, cyclopropanation, Diels-Alder reaction, Heck reaction, isomerization, Aldol reaction, Michael addition, epoxidation, kinetic resolution and [m+n] cycloaddition. The metal complexes are particularly effective in Ru-catalyzed asymmetric hydrogenation of beta-ketoesters to beta-hydroxyesters and Ru-catalyzed asymmetric hydrogenation of enamides to beta amino acids.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: February 15, 2005
    Assignee: The Penn State Research Foundation
    Inventor: Xumu Zhang
  • Patent number: 6855839
    Abstract: This invention relates to a composition of matter represented by the formula below, and to a polymerization process comprising combining an olefin in the gas or slurry phase with an activator, a support and a compound represented by the following formula: wherein M is a group 3 to 14 metal, each X is independently an anionic leaving group, n is the oxidation state of M, m is the formal charge of the YZL ligand, Y is a group 15 element, Z is a group 15 element, L is a group 15 or 16 element, R1 and R2 are independently a C, to C20 hydrocarbon group, a heteroatom containing group, silicon, germanium, tin, lead, phosphorus, a halogen, R1 and R2 may also be interconnected to each other, R3 is absent, or is hydrogen, a group 14 atom containing group, a halogen, a heteroatom containing group, R4 and R5 are independently an aryl group, a substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, or multiple ring system, R6 and R7 are independently absent or hydrogen, halogen, a heteroatom o
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: February 15, 2005
    Inventors: David H. McConville, Richard R. Schrock
  • Patent number: 6831187
    Abstract: The present invention relates to novel hetero-multimetallic catalyst precursors and catalysts for the polymerization of olefins.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: December 14, 2004
    Assignee: Univation Technologies, LLC
    Inventor: Rex Eugene Murray
  • Publication number: 20040229845
    Abstract: The instant invention provides reagents and methods for diagnosis, detection and treatment of cancers (for example, prostate cancers). In particular, the invention provides methods to generate various functionalized PSMA ligands, and their uses in diagnosis, detection, imaging, and treatment of prostate cancers, especially those overexpressing PSMA.
    Type: Application
    Filed: June 16, 2004
    Publication date: November 18, 2004
    Applicant: Beth Israel Deaconess Medical Center
    Inventor: John V. Frangioni
  • Publication number: 20040210071
    Abstract: The organometallic compound of the present invention is a compound that has bonds between metal atoms and nitrogen atoms or bonds between semimetal atoms and nitrogen atoms, and the content of chlorine in the compound is 200 ppm or less and the content of water is 30 ppm or less.
    Type: Application
    Filed: January 23, 2004
    Publication date: October 21, 2004
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventor: Atsushi Itsuki
  • Publication number: 20040176623
    Abstract: The object of this invention is to provide an organometallic precursor for forming a metal film or pattern and a method of forming the metal film or pattern using the same. More particularly, the present invention provides an organometallic precursor containing a hydrazine-based compound coordinated with a central metal thereof, and a method of forming a metal film or pattern using the same. Further, the present invention provides a composition containing an organometallic compound and a hydrazine-based compound, and a method of forming a metal film or pattern using the same. Additionally, the present invention is advantageous in that a pure metal film or pattern is formed using the organometallic precursor or composition through a simple procedure without limiting atmospheric conditions at a low temperature, and the film or pattern thus formed has excellent conductivity and morphology. Therefore, the film is useful in an electronic device field including flexible displays and large-sized TFT-LCD.
    Type: Application
    Filed: October 2, 2003
    Publication date: September 9, 2004
    Inventors: Hae Jung Son, Euk Che Hwang, Sang Yoon Lee, Soon Taik Hwang, Byong Ki Yun
  • Publication number: 20040171857
    Abstract: A catalyst composition for the polymerization of olefins is provided, comprising a cyclopentadienyl transition metal catalyst and an activating co-catalyst.
    Type: Application
    Filed: March 1, 2004
    Publication date: September 2, 2004
    Inventor: Chunming Wang
  • Patent number: 6706249
    Abstract: A composite metal polybasic salt containing a trivalent metal and magnesium as metal components and having a novel crystal structure, and a method of preparing the same. The invention further deals with a composite metal polybasic salt which has anion-exchanging property, which by itself is useful as an anion-exchanger, capable of introducing anions suited for the use upon anion-exchange, and finds a wide range of applications, and a method of preparing the same. The composite metal polybasic salt has a particular chemical composition and X-ray diffraction peaks, and further has a degree of orientation (Io) of not smaller than 1.5.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: March 16, 2004
    Assignee: Mizusawa Industrial Chemicals Ltd.
    Inventors: Yoshinobu Komatsu, Hitoshi Ishida, Hiroshi Igarashi, Masami Kondo, Madoka Minagawa, Tetsu Sato, Teiji Sato
  • Patent number: 6695977
    Abstract: Improved liquid crystalline materials may be prepared by doping liquid crystalline materials with chiral, uncharged metal compounds of formula [(P1—Y1—A1—Y2—M1—Y3—)nL]2Me or [(P1—Y1—A1—Y2—M1—Y3—)nL]Me(L′(—Y6—M2—Y5—A2—Y4—P2)n′)m. Groups P1 and P2 may be, independently, hydrogen, C1-C12-alkyl groups, polymerizable groups, or radicals containing a polymerizable group. Y1 to Y6 may be, independently, single chemical bonds, ether groups, thio groups, carbonyl groups, acid groups, etc. Groups A1 and A2 are spacers having from 1 to 30 carbon atoms, and M1 and M2 are mesogenic groups. Me may be a transition metal from the fourth, fifth or sixth period of the periodic table, except for technetium, silver, cadmium, gold, mercury, or any of the lanthanoids, or Me may be a main group element from group 14 (IUPAC system), except for carbon and lead.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: February 24, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Frank Prechtl, Sylke Haremza, Robert Parker, Kathrin Kürschner, Manfred Braun, Antje Hahn, Ralf Fleischer
  • Publication number: 20040033892
    Abstract: The ionic liquids according to the invention result from the reaction of a halogenated or oxyhalogenated Lewis acid based on titanium, niobium, tantalum, tin or antimony with an organic salt of formula X+A− in which A− is a halide anion and X+ a quaternary ammonium, quaternary phosphonium or ternary sulphonium cation.
    Type: Application
    Filed: May 13, 2003
    Publication date: February 19, 2004
    Inventors: Philippe Bonnet, Eric Lacroix, Jean-Pierre Schirmann
  • Patent number: 6686489
    Abstract: A liquid precursor for forming a transparent metal oxide thin film comprises a first organic precursor compound. In one embodiment, the liquid precursor is for making a conductive thin film. In this embodiment, the liquid precursor contains a first metal from the group including tin, antimony, and indium dissolved in an organic solvent. The liquid precursor preferably comprises a second organic precursor compound containing a second metal from the same group. Also, the liquid precursor preferably comprises an organic dopant precursor compound containing a metal selected from the group including niobium, tantalum, bismuth, cerium, yttrium, titanium, zirconium, hafnium, silicon, aluminum, zinc and magnesium. Liquid precursors containing a plurality of metals have a longer shelf life. The addition of an organic dopant precursor compound containing a metal, such as niobium, tantalum or bismuth, to the liquid precursor enhances control of the conductivity of the resulting transparent conductor.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 3, 2004
    Assignee: Symetrix Corporation
    Inventors: Jolanta Celinska, Carlos A. Paz de Araujo, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan
  • Patent number: 6682602
    Abstract: A method of forming a film on a substrate using one or more complexes containing one or more chelating O- and/or N-donor ligands. The complexes and methods are particularly suitable for the preparation of semiconductor structures using chemical vapor deposition techniques and systems.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: January 27, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 6680385
    Abstract: A method for the preparation of aryl methyl ketones converts a variety of ethyl arenas to the corresponding aryl methyl ketones using a dioxygen-containing gas as the oxidant. The catalyst used for the reaction is a metal complex bearing general formulas as disclosed.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: January 20, 2004
    Assignees: The Hong Kong Polytechnic University, Sichuan University
    Inventors: Albert Sun-Chi Chan, Jian-Ying Qi, Cheng-Chao Pai, Xian-Jun Li, Li-Sheng Deng, Wen-Zao Li, Bin Sun, Jia-Yuan Hu
  • Patent number: 6677490
    Abstract: The invention relates to a method for producing a mixture of alcohols/ketones by decomposing an alkyl hydroperoxide, particularly to a method for producing a cyclohexanol/cyclohexanone by decomposing cyclohexyl hydroperoxide in the presence of a heterogeneous catalyst. According to the invention, the reaction is carried out in the presence of a heterogeneous catalyst containing an organometallic segment fixed on the surface of a porous solid compound such as silicon. The organometallic segment can be formula (I).
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: January 13, 2004
    Assignee: Rhodia Polyamide Intermediates
    Inventors: James Clark, Eric Fache, Ducan Macquarrie, Peter Price, John Rafelt
  • Patent number: 6673257
    Abstract: A thermal cutoff member and compositions used to manufacture such members are described herein as including at least two organic compounds which, when sufficiently combined, give rise to a component which has a lower melt transition temperature than the initial organic compounds prior to combining the same. The thermal cutoff member is generally utilized in a thermal cutoff construction having an electrical switching unit that changes its operating condition when the member therein melts by being heated to a certain temperature for the particular material that forms the member being utilized.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: January 6, 2004
    Assignee: Therm-O-Disc, Incorporated
    Inventor: Christine M. Hudson
  • Patent number: 6664408
    Abstract: The present invention is generally directed to a process for preparing polyoxometalates having amine-derived substituents attached thereto. In a first embodiment, the process comprises contacting a polyoxometalate and an amine in the presence of a diimide. The present invention is further directed to novel functionalized polyoxometalates prepared by the present process.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: December 16, 2003
    Assignee: The Curators of The University of Missouri
    Inventors: Zhonghua Peng, Yongge Wei, Bubin Xu
  • Publication number: 20030181746
    Abstract: Disclosed are methods of preparing monoalkyl Group VA metal dihalide compounds in high yield and high purity by the reaction of a Group VA metal trihalide with an organo lithium reagent or a compound of the formula RnM1X3−n , where R is an alkyl, M1 is a Group IIIA metal, X is a halogen and n is an integer fro 1 to 3. Such monoalkyl Group VA metal dihalide compounds are substantially free of oxygenated impurities, ethereal solvents and metallic impurities. Monoalkyl Group VA metal dihydride compounds can be easily produced in high yield and high purity by reducing such monoalkyl Group VA metal dihalide compounds.
    Type: Application
    Filed: January 17, 2003
    Publication date: September 25, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Deodatta Vinayak Shenai-Khatkhate, Michael Brendan Power, Artashes Amamchyan, Ronald L. DiCarlo
  • Patent number: 6610629
    Abstract: Disclosed is a process for producing an oxide catalyst comprising, as component elements, molybdenum (Mo), vanadium (V), at least one element selected from the group consisting of the two elements of antimony (Sb) and tellurium (Te), and niobium (Nb), wherein the process comprises providing an aqueous raw material mixture containing compounds of the component elements of the oxide catalyst, and drying the aqueous raw material mixture, followed by calcination, and wherein, in the aqueous raw material mixture, at least a part of the niobium compound as one of the compounds of the component elements is present in the form of a complex thereof with a complexing agent comprising a compound having a hydroxyl group bonded to an oxygen atom or a carbon atom. Also disclosed is a process for producing (meth)acrylonitrile or (meth)acrylic acid, which comprises performing the ammoxidation or oxidation of propane or isobutane in the gaseous phase in the presence of the oxide catalyst.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hidenori Hinago, Hiroyuki Yano
  • Publication number: 20030144434
    Abstract: The invention relates to chemical products which are suited for use as co-catalysts and which can be obtained by reacting a compound of formula (I), M1R1R2(R3)m with a compound of formula (II), (R4X)q-(G)*(M2R5R6)g. In formula (I), R1, R2 and R3 are the same or different and represent a hydrogen atom, C1-C20 alkyl, C1-C20 alkyl halide, C6-C20 aryl, C6-C20 aryl halide, C7-C40 arylalkyl, C7-C40 arylalkyl halide, C7-C40 alkylaryl or C7-C40 alkylaryl halide; M1 represents an element of the second or third main group of the periodic table of elements, and; m equals 0 or 1, whereby m is equal to 1 when M1 represents an element of the third main group, and m is equal to 0 when M1 represents an element of the second main group.
    Type: Application
    Filed: November 20, 2002
    Publication date: July 31, 2003
    Inventor: J?ouml;rg Schottek
  • Patent number: 6593484
    Abstract: A stable compound having a vapor pressure higher by 1 order than that of Ta(NtBu)(NEt2)3 is provided as a starting material for forming a TaN film as a barrier film by the CVD method. There are further provided a process for producing the same and a method of forming a TaN film by using the same. The novel compound, tantalum tertiary amylimido tris(dimethylamide) [Ta(NtAm)(NMe2)3] has a vapor pressure of 1 Torr at 80° C., and its melting point is 36° C. This compound is obtained by allowing 1 mole of TaCl5, 4 moles of LiNMe2 and 1 mole of LiNHtAm to react with one another in an organic solvent in the vicinity of room temperature, then separating byproducts by filtration, distilling the solvent away, and distilling the product in vacuo. This compound can be used as a starting material in CVD to form a cubic TaN film on a SiO2/Si substrate at 550° C. at 0.05 Torr.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 15, 2003
    Assignee: Kabushikikaisha Kojundokagaku Kenkyusho
    Inventors: Sakiko Yasuhara, Hidekimi Kadokura
  • Publication number: 20030130451
    Abstract: The present invention relates to vanadium-imidoaryl compounds having electron-withdrawing substituents at the aryl group, to compositions containing vanadium-imidoaryl compounds having electron-withdrawing substituents at the aryl group, which compositions are suitable especially as catalysts for the polymerization of olefins, such as for ethene/propene or ethene/&agr;-olefin copolymerization and the terpolymerization of those monomers with dienes.
    Type: Application
    Filed: August 9, 2002
    Publication date: July 10, 2003
    Inventors: Michael Arndt-Rosenau, Martin Hoch, Jorg Sundermeyer, Jennifer Kipke, Xiaoyan Li
  • Patent number: 6552209
    Abstract: This invention relates to an improved process to produce metal imino/amino complexes having the formula R1N=M(NR2R3)3 where M is a pentavalent metal or (R1N=)2M′(NR2R3)2 where M′ is a hexavalent metal. In the process MX5 and two-equivalents of primary amine R1NH2 or metal hexahalide, M′X6 with seven-equivalents of primary amine H2NR1 are reacted in the presence of excess pyridine. The resulting reaction product R1N═MX3(py)2 or [(R1N)2M′X2(py)]2 then is followed by the addition of LiNR2R3. The process provides the final product in high yield and in high purity as well as representing a simplified procedure for synthesizing R1N═M(NR2 R3)3 or (R1N═)2M′(NR2R3)2type complexes.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 22, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xinjian Lei, John Anthony Thomas Norman
  • Patent number: 6548685
    Abstract: The invention relates to a process for preparing niobium(V) alkoxides and tantalum(V) alkoxides, in particular niobium(V) ethoxide and tantalum(V) ethoxide, by reacting NbCl5 or TaCl5 with an appropriate alcohol in the presence of ammonia, wherein NbCl5 or TaCl5 is dissolved at a temperature of from about 0° C. to −50° C. in the alcohol containing from about 5 to about 7 mol of ammonia per mol of NbCl5 or TaCl5 to be reacted.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 15, 2003
    Assignee: H.C. Starck GmbH
    Inventor: Friedrich Zell
  • Publication number: 20030065203
    Abstract: Metal complexes having constrained geometry and a process for preparation thereof, addition polymerization catalysts formed therefrom, processes for preparation of such addition polymerization catalysts, methods of use, and novel polymers formed thereby, including ElPE resins and pseudo-random copolymers, are disclosed and claimed.
    Type: Application
    Filed: November 6, 2001
    Publication date: April 3, 2003
    Inventors: David R. Wilson, Robert K. Rosen
  • Patent number: 6534664
    Abstract: New ligands having a backbone comprised of NCCX can be combined with a metal or metal precursor compound or formed into a metal-ligand complex to catalyze a number of different chemical transformations, including polymerization.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: March 18, 2003
    Assignee: Symyx Technologies, Inc.
    Inventors: Anil S. Guram, Anne Marie LaPointe, Howard W. Turner, Tetsuo Uno
  • Patent number: 6518444
    Abstract: A method to synthesize a Group 15 containing metal polymerization catalyst is disclosed. The method includes an efficient high temperature synthesis of Group 15 containing ligands, especially arylamine ligands, for use in preparing polymerization catalysts and catalyst systems.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: February 11, 2003
    Assignee: Univation Technologies, LLC
    Inventors: David H. McConville, Jaimes Sher
  • Patent number: 6511936
    Abstract: The present invention relates to catalyst systems, processes for making such catalysts, intermediates for such catalysts, and olefin polymerization processes using such catalysts wherein such catalyst includes a component represented by the following formula 1A: wherein R and R′ independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl or organosilyl radical; R1, R2, and R3 independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl radical; M is a group IIIB, IVB, VB, VIB, VIIB or VIII transition metal; T independently represents a univalent anionic ligand such as a hydrogen atom, or a substituted or unsubstituted hydrocarbyl halogeno, aryloxido, arylorganosilyl, alkyloriganosilyl, amido, arylamido, phosphido, or arylphosphido group, or two T groups taken together represent an alkylidene or a cyclometallated hydrocarbyl bidentate ligand; L independently represents a sigma donor
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: January 28, 2003
    Assignees: University of Delaware, Chevron Chemical Co.
    Inventors: Klaus H. Theopold, Woo-Kyu Kim, Leonard A. MacAdams, John M. Power, Javier M. Mora, Albert P. Masino
  • Publication number: 20030017940
    Abstract: The present invention relates to a transition metal compound represented by the general formula (I), and a olefin polymerization catalyst comprising above transition metal compound and activating co-catalyst as the main components.
    Type: Application
    Filed: May 10, 2002
    Publication date: January 23, 2003
    Inventors: Takashi Kashiwamura, Takuji Okamoto, Yutaka Minami