Plural Silicons Bonded Directly To Each Other Patents (Class 556/430)
  • Patent number: 10450419
    Abstract: There is provided a highly conductive and good silicon thin film which is obtained by applying a coating-type polysilane composition prepared by use of a polysilane having a large weight average molecular weight to a substrate, followed by baking. A polysilane having a weight average molecular weight of 5,000 to 8,000. The polysilane may be a polymer of cyclopentasilane. A silicon film obtained by applying a polysilane composition in which the polysilane is dissolved in a solvent to a substrate, and baking the substrate at 100° C. to 425° C. The cyclopentasilane may be polymerized in the presence of a palladium catalyst supported on a polymer. The palladium catalyst supported on a polymer may be a catalyst in which palladium as a catalyst component is immobilized on a functional polystyrene. The palladium may be a palladium compound or a palladium complex.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 22, 2019
    Assignee: Thin Film Electronics ASA
    Inventors: Masahisa Endo, Gun Son, Yuichi Goto, Kentaro Nagai
  • Patent number: 9290525
    Abstract: An object of the present invention is to provide a production method that can efficiently produce a cyclic silane compound or a salt thereof with a high yield and to provide a novel salt having a cyclic silane dianion that is easy to handle and a cyclic silane dianion salt-containing composition. The method for producing a cyclic silane compound or a salt thereof of the present invention includes the step of allowing a halosilane compound to react in the presence of at least one of a phosphonium salt and an ammonium salt, and a compound represented by a specific formula.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 22, 2016
    Assignee: NIPPON SHOKUBAI CO., LTD.
    Inventors: Takashi Abe, Shin-ya Imoto, Morihiro Kitamura, Hikaru Takahashi
  • Patent number: 9290521
    Abstract: A novel method of simultaneously protecting two functions which are same or different, namely hydroxyl, amine, or thiol ones, particularly in sugars, polyalcohols, nucleosides, nucleotides, peptides, and nucleic acids during an organic synthesis, and to novel compounds for implementing this method, as well as to the method of obtaining these compounds. Method of simultaneously protecting two hydroxyl, amine, or thiol functions according to the invention by carrying out a protecting reaction between a compound having at least two free hydroxyl, amine, or thiol groups, and the disilane of formula 1, where R stands for Cl or Br, or I, or a substituent of formula 2, where X1, X2, X3, X4 are the same or different.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: March 22, 2016
    Assignees: INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK, FUNDACJA UNIWERSYTETU IM. ADAMA MICKIEWICZA W POZNANIU
    Inventors: Wojciech Tadeusz Markiewicz, Marcin Krzysztof Chmielewski, Sylwia Maria Musial, Hieronim Franciszek Maciejewski, Grzegorz Hreczycho
  • Patent number: 9029585
    Abstract: A process for producing a cyclic silane compound, in which a chained polysilane is subjected to pyrolysis in the presence of an oxide of a transition metal belonging to Group 8 or Group 11 of the periodic table; and a process for producing a cyclic carbosilane compound, that includes subjecting a chained polysilane to pyrolysis in the presence of a simple substance of a metal selected from the group consisting of transition metal elements and elements belonging to Groups 12 to 15 of the periodic table, or a compound thereof.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 12, 2015
    Assignee: Nippon Soda Co., Ltd.
    Inventors: Satoru Yamazaki, Hideki Maekawa, Minoru Okada, Hiroyuki Yamanaka
  • Publication number: 20150094462
    Abstract: A novel method of simultaneously protecting two functions which are same or different, namely hydroxyl, amine, or thiol ones, particularly in sugars, polyalcohols, nucleosides, nucleotides, peptides, and nucleic acids during an organic synthesis, and to novel compounds for implementing this method, as well as to the method of obtaining these compounds. Method of simultaneously protecting two hydroxyl, amine, or thiol functions according to the invention by carrying out a protecting reaction between a compound having at least two free hydroxyl, amine, or thiol groups, and the disilane of formula 1, where R stands for Cl or Br, or I, or a substituent of formula 2, where X1, X2, X3, X4 are the same or different.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 2, 2015
    Inventors: Wojciech Tadeusz Markiewicz, Marcin Krzysztof Chmielewski, Sylwia Maria Musial, Hieronim Franciszek Maciejewski, Grzegorz Hreczycho
  • Publication number: 20140219903
    Abstract: The present invention relates to a film composed of a carbon-containing silicon oxide formed by CVD using, as the raw material, an organosilicon compound having a secondary hydrocarbon group directly bonded to at least one silicon atom and having an atomic ratio of 0.5 or less oxygen atom with respect to 1 silicon atom, which is used as a sealing film for a gas barrier equipment and materials, an FPD device, a semiconductor device and the like.
    Type: Application
    Filed: August 24, 2012
    Publication date: August 7, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Daiji Hara, Masato Shimizu
  • Patent number: 8748647
    Abstract: A polycondensate wherein R is alkylene, arylene, or alkylene-aryiene with 1-10 C, optionally containing O, S, carboxyl or amino; R1 is Z?-substituted alkylene, arylene, or alkylene-aryiene with 1-10 C, optionally containing O, S, carboxyl or amino; R? is alkyl. alkenyl, aryl, alkylaryl, or arylalkyl with 1-20 C; R3 is a bond to another Si or metal atom or is H or alkyl with 1-10 C; B and B? is an organically polymerizable group with at least one C?C bond and at least 2 C or —R2aSiX4-a or —R2aR1bSiX4-a-b, where R2 is alkylene with 1-10 C; Z? is —NH—C(O)O—, —NH—C(O)—, bonded via NH to B?, or —CO(O)—, wherein when C is bonded to B?, B?—Z?— is not acrylate if B contains acrytate, and B?—Z?— is not methacrylate if B contains methacrylate, wherein a is 1 or 2, b is 0 or 1. X may undergo hydrolytic condensation to Si—O—Si.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer—Gesellschaft zur Föderung der angewandten Forschung e.V.
    Inventor: Herbert Wolter
  • Publication number: 20140134499
    Abstract: Disclosed are functionalized Group IVA particles, methods of preparing the Group IVA particles, and methods of using the Group IVA particles. The Group IVA particles may be passivated with at least one layer of material covering at least a portion of the particle. The layer of material may be a covalently bonded non-dielectric layer of material. The Group IVA particles may be used in various technologies, including lithium ion batteries and photovoltaic cells.
    Type: Application
    Filed: August 21, 2013
    Publication date: May 15, 2014
    Inventors: Timothy D. Newbound, Leslie Matthews, Jeff A. Norris
  • Patent number: 8722913
    Abstract: The invention relates to a method for producing dimeric and/or trimeric silicon compounds, in particular silicon halogen compounds. The claimed method is also suitable for producing corresponding germanium compounds. The invention also relates to a device for carrying out said method to the use of the produced silicon compounds.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 13, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Juergen Erwin Lang, Hartwig Rauleder, Ekkehard Mueh
  • Patent number: 8680312
    Abstract: Highly alkyl-substituted disilanes generally considered as uncleavable, obtained as part of the residue of alkylchlorosilane synthesis, are converted into cleavable disilanes having fewer alkyl groups by reaction with hydrogen halide in the presence of an alumina catalyst. The resulting disilanes can be cleaved into commercially valuable monosilanes by conventional processes.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 25, 2014
    Assignee: Wacker Chemie AG
    Inventors: Gudrun Tamme, Werner Geissler, Konrad Mautner
  • Patent number: 8669390
    Abstract: The present invention relates to: a process for producing a cyclic silane compound, which comprises subjecting a chained polysilane to pyrolysis in the presence of an oxide of a transition metal belonging to Group 8 or Group 11 of the periodic table; and a process for producing a cyclic carbosilane compound, which comprises subjecting a chained polysilane to pyrolysis in the presence of a simple substance of a metal selected from the group consisting of transition metal elements and elements belonging to Groups 12 to 15 of the periodic table or a compound thereof.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: March 11, 2014
    Assignee: Nippon Soda Co., Ltd.
    Inventors: Satoru Yamazaki, Kimihiko Oohata, Minoru Okada, Masamichi Yasuhara
  • Publication number: 20140012030
    Abstract: An object of the present invention is to provide a production method that can efficiently produce a cyclic silane compound or a salt thereof with a high yield and to provide a novel salt having a cyclic silane dianion that is easy to handle and a cyclic silane dianion salt-containing composition. The method for producing a cyclic silane compound or a salt thereof of the present invention includes the step of allowing a halosilane compound to react in the presence of at least one of a phosphonium salt and an ammonium salt, and a compound represented by a specific formula.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 9, 2014
    Inventors: Takashi ABE, Shin-ya IMOTO, Morihiro KITAMURA, Hikaru TAKAHASHI
  • Publication number: 20140012029
    Abstract: Provided is a method for efficiently obtaining cyclohexasilane using a cyclic silane dianion salt as a raw material without a by-product such as silane gas by a simple device. The method for producing cyclohexasilane has a feature that a cyclic silane dianion salt represented by the following general formula (i) or general formula (ii) is reacted with an aluminum-based reducing agent or a boron-based reducing agent: wherein X represents a halogen element, a represents an integer of 0 to 6, and R1 to R4 each independently represent a hydrogen atom, an alkyl group, or an aryl group; wherein X represents a halogen element, a represents an integer of 0 to 6, and R5 to R8 each independently represent a hydrogen atom, an alkyl group, or an aryl group.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 9, 2014
    Inventors: Takashi ABE, Shin-ya IMOTO, Morihiro KITAMURA, Hikaru TAKAHASHI
  • Publication number: 20140004357
    Abstract: Inorganic polysilanesiloxane (PSSX) copolymers and method of making and applying the same to the surface of a substrate is provided. These PSSX copolymers are beneficial in forming a dense silicon dioxide layer on a substrate under mild oxidative conditions. The PSSX copolymers comprise SixOy(OH)z units, wherein y and z are defined by the relationship (2y+z)?(2x+2) and x is either 4 or 5. More specifically, the PSSX copolymers do not contain Si—C covalent bonds.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 2, 2014
    Applicant: DOW CORNING CORPORATION
    Inventor: Xiaobing Zhou
  • Publication number: 20140005427
    Abstract: The present invention relates to new (triorganosilyl)alkynes and their derivatives having general formula 1 R1—C?C—Z (I) In its second aspect, this invention relates to a new selective method for the preparation of new and conventional (triorganosilyl)alkynes and their derivatives having the general formula 1, by the silylative coupling of terminal alkynes with halogenotriorganosilanes in the presence of an iridium catalyst and a tertiary amine.
    Type: Application
    Filed: December 29, 2011
    Publication date: January 2, 2014
    Applicant: ADAM MICKIEWICZ UNIVERSITY
    Inventors: Ireneusz Kownacki, Bogdan Marciniec, Beata Dudziec, Agnieszka Kownacka, Mariusz Majchrzak, Mateusz Szulc, Bartosz Orwat
  • Publication number: 20130334459
    Abstract: A reaction product is formed utilizing a method that includes the step of combining a metal silicide and an aliphatic hydrocarbyl halide at a temperature of from 200° C. to 600° C. The aliphatic hydrocarbyl halide has the formula HaCbXc, wherein a is 0 or more, b is 1 or more, c is one or more, and X is halo. The method allows the reaction product to be formed in a predictable and controlled manner. Moreover, the components used in this method can be easily recycled and/or re-used in other processes.
    Type: Application
    Filed: November 29, 2012
    Publication date: December 19, 2013
    Applicant: Dow Corning Corporation
    Inventors: Dimitris Katsoulis, Robert Morgan, Wendy Sparschu
  • Patent number: 8575381
    Abstract: Novel trihydridosilyl-terminated polysilanes and methods for their synthesis, which are applicable to other polysilanes, are provided. The synthetic methods provide for facile preparation of products with minimal handling of pyrophoric intermediates and byproducts. The novel compounds contain at least three silicon-silicon bonds and at least one terminal silicon atom having three hydrogen substituents.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 5, 2013
    Assignee: Gelest Technologies, Inc.
    Inventors: Barry C. Arkles, Youlin Pan, Gerald L. Larson
  • Patent number: 8564656
    Abstract: The invention relates to a method for recognizing surface characteristics of metallurgical products, especially continuously cast products and rolled products. According to said method, a defined section of the product surface (12, 12?) is irradiated by at least two radiation sources of different wavelengths, from different directions, and the irradiated surface section is optoelectronically detected. Three light sources (21, 22, 23) are oriented towards the product surface (12, 12?), as radiation sources, under the same angle (a), the positions thereof being in three planes (E1, E2, E3) forming a 120 DEG angle and being perpendicular to the product surface (12, 12?). In this way, instructive information about metallurgical products can be determined and stored in a very short space of time such that the products can be determined in a perfectly identified manner for the reprocessing, in terms of the surface quality or surface structure thereof.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 22, 2013
    Assignee: SMS Concast AG
    Inventor: Tobias Rauber
  • Patent number: 8455604
    Abstract: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane may have the formula H-[(AHR)n(c-AmHpm-2)q]—H, where A is independently Si or Ge; R is H, -AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)?10 if q=0, q?3 if n=0, and (n+q)?6 if both n and q?0; p is 1 or 2; and m is from 3 to 12. The method may include combining a silane compound of the formula AHaR14-a, AkHgR1?h and/or c-AmHpmR1rm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. Alternatively, the method may include halogenating a polyarylsilane and reducing the halopolysilane with a metal hydride to form the polysilane.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: June 4, 2013
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Joerg Rockenberger, Brent Ridley
  • Patent number: 8404881
    Abstract: White particles for display including at least one of a chain or cyclic polysilane compound having a polysilane structure represented by the following Formula (I) or a halogen-substituted compound thereof: wherein in Formula (I), A represents a phenyl group, B represents an alkyl group or a phenyl group, and n represents an integer of from 5 to 1000.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 26, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yasuo Yamamoto, Hiroaki Moriyama
  • Publication number: 20120330045
    Abstract: Highly alkyl-substituted disilanes generally considered as uncleavable, obtained as part of the residue of alkylchlorosilane synthesis, are converted into cleavable disilanes having fewer alkyl groups by reaction with hydrogen halide in the presence of an alumina catalyst. The resulting disilanes can be cleaved into commercially valuable monosilanes by conventional processes.
    Type: Application
    Filed: February 18, 2011
    Publication date: December 27, 2012
    Applicant: WACKER CHEMIE AG
    Inventors: Gudrun Tamme, Werner Geissler, Konrad Mautner
  • Patent number: 8318967
    Abstract: The present invention provides a polysilane-supported transition metal catalysts or a polysilane/inorganic compound-supported transition metal catalysts, wherein various types of transition metals are supported by polysilane compounds, or combination of polysilanes and inorganic compounds. The catalysts of the present invention are hardly soluble in hydrocarbons and alcohols and are useful as catalysts in heterogeneous system for various organic synthetic reactions using the above solvents. Polysilanes supporting transition metals are easily crosslinkable by thermal treatment, microwave irradiation, UV irradiation or chemical methods such as hydrosilylation reaction and are changed to be insoluble in various solvents keeping high catalytic activity. Moreover, the stability and operability of polysilane-supported transition metal catalysts will be improved by the support thereof on inorganic compounds.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: November 27, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Shu Kobayashi, Hidekazu Oyamada, Ryo Akiyama, Takeshi Naito
  • Patent number: 8236916
    Abstract: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane generally has the formula H-[(AHR)n(c-AmHpm-2)q]—H, where each instance of A is independently Si or Ge; R is H, -AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)?10 if q=0, q?3 if n=0, and (n+q)?6 if both n and q?0; p is 1 or 2; and m is from 3 to 12. In one aspect, the method generally includes the steps of combining a silane compound of the formula AHaR14-a, the formula AkHgR1?h and/or the formula c-AmHpmR1rm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. In another aspect, the method includes the steps of halogenating a polyarylsilane to form a halopolysilane; and reducing the halopolysilane with a metal hydride to form the polysilane.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: August 7, 2012
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Joerg Rockenberger, Brent Ridley
  • Publication number: 20120071678
    Abstract: Novel trihydridosilyl-terminated polysilanes and methods for their synthesis, which are applicable to other polysilanes, are provided. The synthetic methods provide for facile preparation of products with minimal handling of pyrophoric intermediates and byproducts. The novel compounds contain at least three silicon-silicon bonds and at least one terminal silicon atom having three hydrogen substituents.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: GELEST TECHNOLOGIES, INC.
    Inventors: Barry C. ARKLES, Youlin PAN, Gerald L. LARSON
  • Publication number: 20120016149
    Abstract: The present invention relates to: a process for producing a cyclic silane compound, which comprises subjecting a chained polysilane to pyrolysis in the presence of an oxide of a transition metal belonging to Group 8 or Group 11 of the periodic table; and a process for producing a cyclic carbosilane compound, which comprises subjecting a chained polysilane to pyrolysis in the presence of a simple substance of a metal selected from the group consisting of transition metal elements and elements belonging to Groups 12 to 15 of the periodic table or a compound thereof.
    Type: Application
    Filed: April 9, 2010
    Publication date: January 19, 2012
    Applicant: NIPPON SODA CO., LTD.
    Inventors: Satoru Yamazaki, Kimihiko Oohata, Minoru Okada, Masamichi Yasuhara, Hideki Maekawa, Hiroyuki Yamanaka
  • Patent number: 8092867
    Abstract: Compositions and methods for controlled polymerization and/or oligomerization of hydrosilanes compounds including those of the general formulae SinH2n and SinH2n+2 as well as alkyl- and arylsilanes, to produce soluble silicon polymers as a precursor to silicon films having low carbon content.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 10, 2012
    Assignee: Kovio, Inc.
    Inventors: Dmitry Karshtedt, Joerg Rockenberger, Fabio Zürcher, Brent Ridley, Erik Scher
  • Publication number: 20110158883
    Abstract: The invention relates to a method for the catalytic hydrogenation of halogenated silanes or halogenated germanes, according to which halogenated monosilanes, oligosilanes or polysilanes, or monogermanes, oligogermanes or polygermanes, are hydrogenated or partially hydrogenated with hydrogenated Lewis acid-base pairs, and the partially halogenated Lewis acid base pairs can be rehydrogenated, especially with further addition of H2 and the heterolysis thereof on the Lewis acid-base pairs, releasing hydrogen halide.
    Type: Application
    Filed: March 28, 2008
    Publication date: June 30, 2011
    Applicant: REV RENEWABLE ENERGY VENTURES INC.
    Inventors: Sven Holl, Sayed-Javad Mohsseni-Ala, Christian Bauch
  • Patent number: 7932414
    Abstract: The invention relates to silane of formula (Ia), wherein the radicals and indices have the following meaning: R is an alkylene, arylene or alkylenearylene group that can be interrupted by one or more oxygen or sulfur atoms or carboxyl or amino groups or can carry said atoms/groups on their ends opposite the silicon atom; R1 is a Z?-substituted alkylene, arylene or alkylenearylene group, which can be interrupted by one or more oxygen or sulfur atoms or carboxyl or amino groups or can carry said atoms/groups on one of their ends; R? is an alkyl, alkenyl, aryl, alkylaryl or arylalkyl group; B and B? can be identical or different, both radicals can have the meaning of a straight-chained or branched organic group with at least one C?C double bond and at least 2 carbon atoms; B? can mean instead thereof but also —R2aSi(OR3)4-a or —R2aR?bSi(OR3)4-a-b, wherein R2 is an alkylene group and R? has the meaning defined above; X represents a group that can enter into a hydrolytic while forming Si—O—Si bridges; Z? means —NH
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: April 26, 2011
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventor: Herbert Wolter
  • Patent number: 7871987
    Abstract: Novel ester derivatives of ascorbic acid and 2-keto-acid saccharides are provided wherein the ester is introduced by ester bond formation between at least one hydroxy-functionality on the ascorbic acid or 2-keto-acid saccharide and a carboxy-functional organosiloxane, or between a 2-keto-gulonic acid and a hydroxy-functional organosiloxane, as well as methods for their synthesis. Treatment, cosmetic, and personal care formulations comprising the novel esters are also provided, including controlled release forms thereof.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: January 18, 2011
    Assignee: Dow Corning Corporation
    Inventors: Joseph C. McAuliffe, Wyatt Charles Smith, Michael S. Starch
  • Patent number: 7855301
    Abstract: The invention relates to silane of formula (Ia), wherein the radicals and indices have the following meaning: R is an alkylene, arylene or alkylenearylene group that can be interrupted by one or more oxygen or sulfur atoms or carboxyl or amino groups or can carry said atoms/groups on their ends opposite the silicon atom; R1 is a Z?-substituted alkylene, arylene or alkylenearylene group, which can be interrupted by one or more oxygen or sulfur atoms or carboxyl or amino groups or can carry said atoms/groups on one of their ends; R? is an alkyl, alkenyl, aryl, alkylaryl or arylalkyl group; B and B? can be identical or different, both radicals can have the meaning of a straight-chained or branched organic group with at least one C?C double bond and at least 2 carbon atoms; B? can mean instead thereof but also —R2aSi(OR3)4-a or —R2aR?bSi(OR3)4-a-b, wherein R2 is an alkylene group and R? has the meaning defined above; X represents a group that can enter into a hydrolytic while forming Si—O—Si bridges; Z? means —NH
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: December 21, 2010
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventor: Herbert Wolter
  • Publication number: 20100291299
    Abstract: Cyclopentadienyl and Indenyl barium/strontium metal precursors and Lewis base adducts thereof are described. Such precursors have utility for forming Ba- and/or Sr-containing films on substrates, in the manufacture of microelectronic devices or structures.
    Type: Application
    Filed: August 3, 2008
    Publication date: November 18, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Thomas M. Cameron, Chongying Xu
  • Patent number: 7781605
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si3N4), and a method of depositing the silicon precursors on substrates using low temperature (e.g., <550° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 24, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder, Tianniu Chen, Thomas H. Baum
  • Publication number: 20100210445
    Abstract: The present patent application relates to a reactive ceramic binder in liquid form which is suitable for producing ceramic products from ceramic powder, characterized in that the reactive, liquid ceramic binder comprises liquid organomodified siloxane compounds having organoalkoxysiloxane units of the general formula (I) where the radicals R1 are, independently of one another, identical or different alkyl, alkaryl or aryl radicals which may be interrupted by ether functions, the radicals R2 are, independently of one another, identical or different radicals selected from the group consisting of H and/or alkyl radicals having from 1 to 6 carbon atoms, the radicals R3 are, independently of one another, identical or different divalent, saturated or unsaturated hydrocarbon radicals which have from 1 to 30 carbon atoms and may be interrupted by ether functions and a is greater than or equal to 0 and less than or equal to 2.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Inventors: Tadeusz von Rymon Lipinski, Sascha Herrwerth, Thomas Ebbrecht, Frank Koenig, Michael Ferenz
  • Publication number: 20100139526
    Abstract: A passivating coupling material for, on the one hand, passivating a dielectric layer in a semiconductor device, and on the other hand, for permitting or at least promoting liquid phase metal deposition thereon in a subsequent process step. In a particular example, the dielectric layer may be a porous material having a desirably decreased dielectric constant k, and the passivating coupling material provides steric shielding groups that substantially block the adsorption and uptake of ambient moisture into the porous dielectric layer. The passivating coupling materials also provides metal nucleation sides for promoting the deposition of a metal thereon in liquid phase, in comparison with metal deposition without the presence of the passivating coupling material. The use of a liquid phase metal deposition process facilitates the subsequent manufacture of the semiconductor device.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 10, 2010
    Applicant: NXP B.V.
    Inventors: Janos FARKAS, Srdjan KORDIC, Cindy GOLBERG
  • Patent number: 7723457
    Abstract: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane generally has the formula H-[(AHR)n(c-AmHpm-2)q]—H, where each instance of A is independently Si or Ge; R is H, -AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)?10 if q=0, q?3 if n=0, and (n+q)?6 if both n and q?0; p is 1 or 2; and m is from 3 to 12. In one aspect, the method generally includes the steps of combining a silane compound of the formula AHaR14-a, the formula AkHgR1?h and/or the formula c-AmHpmR1fm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. In another aspect, the method includes the steps of halogenating a polyarylsilane to form a halopolysilane; and reducing the halopolysilane with a metal hydride to form the polysilane.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 25, 2010
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Joerg Rockenberger, Brent Ridley
  • Patent number: 7662478
    Abstract: Provided is a polymer comprising a repeating unit represented by formula (1), wherein, A1 represents a divalent group in which the bond distance ratio (bond distance of C(?)-A1/bond distance of C(?)-C(?)) is 1.10 or more; R1, R2, R3, R4, R5, and R6, each independently represent a hydrogen atom, alkyl group, alkyloxy group, aryloxy group, arylalkyloxy group, etc. The polymer is useful as a light-emitting material, a charge transporting material, etc.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: February 16, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Satoshi Kobayashi, Takanobu Noguchi, Yoshiaki Tsubata, Makoto Kitano, Shuji Doi, Takahiro Ueoka, Akiko Nakazono
  • Patent number: 7662984
    Abstract: Si—Si bond-bearing compounds are effectively prepared by irradiating with radiation or heating Si—H group-bearing silicon compounds in organic solvents in the presence of iron complex catalysts. The Si—Si bond-bearing compounds are useful as a base material in photoresist compositions, ceramic precursor compositions, and conductive compositions.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 16, 2010
    Assignees: Public University Corporation Osaka City University, Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroshi Nakazawa, Masumi Itazaki
  • Patent number: 7579496
    Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <550° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least a silane or disilane derivative that is substituted with at least one alkylhydrazine functional groups and is free of halogen substitutes.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: August 25, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum
  • Patent number: 7557231
    Abstract: The present invention relates to polymeric compositions useful in the manufacture of biocompatible medical devices. More particularly, the present invention relates to certain carboxylic monomers capable of polymerization to form polymeric compositions having desirable physical characteristics useful in the manufacture of ophthalmic devices. The polymeric compositions comprise polymerized carboxylic hydrophilic siloxanyl monomers.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: July 7, 2009
    Assignee: Bausch & Lomb Incorporated
    Inventors: Derek Schorzman, Jay Kunzler, Joseph C. Salamone
  • Publication number: 20090169457
    Abstract: The invention relates to a method for the final product-related manufacture of low-molecular, medium-molecular, and high-molecular halogenated polysilanes, the distillation thereof into selected fractions, the direct deposition of silicon from the gas phase or a liquid phase of polysilane mixtures or polysilanes, the hydrogenation or derivation of halogenated polysilanes, and the processing into final products in an adequate system.
    Type: Application
    Filed: July 20, 2007
    Publication date: July 2, 2009
    Inventors: Gudrun Annette Auner, Christian Bauch, Gerd Lippold, Rumen Deltschew
  • Publication number: 20090112013
    Abstract: Si—Si bond-bearing compounds are effectively prepared by irradiating with radiation or heating Si—H group-bearing silicon compounds in organic solvents in the presence of iron complex catalysts. The Si—Si bond-bearing compounds are useful as a base material in photoresist compositions, ceramic precursor compositions, and conductive compositions.
    Type: Application
    Filed: October 30, 2008
    Publication date: April 30, 2009
    Inventors: Hiroshi Nakazawa, Masumi Itazaki
  • Patent number: 7485691
    Abstract: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane generally has the formula H—[(AHR)n(c-AmHpm?2)q]—H, where each instance of A is independently Si or Ge; R is H, —AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)?10 if q=0, q?3 if n=0, and (n+q)?6 if both n and q?0; p is 1 or 2; and m is from 3 to 12. In one aspect, the method generally includes the steps of combining a silane compound of the formula AHaR14?a, the formula AkHgR1?h and/or the formula c-AmHpmR1rm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. In another aspect, the method includes the steps of halogenating a polyarylsilane to form a halopolysilane; and reducing the halopolysilane with a metal hydride to form the polysilane.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: February 3, 2009
    Assignee: Kovio, Inc
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Joerg Rockenberger, Brent Ridley
  • Patent number: 7253243
    Abstract: There is provided a method of synthesizing an organosilicon compound. This method comprises polymerizing, as a starting material, allyl-(4-alkynyl-phenyl) silane represented by the following general formula (3) in a solvent selected from methylene chloride, chloroform, carbon tetrachloride and 1,2-dichloroethane and under the presence of hafnium tetrachloride to obtain an organosilicon compound represented by the following general formula (1). (wherein R is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group, R's may be the same or different and are individually an alkyl group having 1 or 2 carbon atoms or a phenyl group, and n is an integer of 4 to 2500).
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: August 7, 2007
    Assignee: Japan Science and Technology Agency
    Inventors: Yoshinori Yamamoto, Naoki Asao, Hisamitsu Tomeba
  • Patent number: 7220813
    Abstract: A process for synthesizing photocurable poly(ethynyl) carbosilane includes the steps of mixing dichlorosilane and trichlorosilane reagents, adding sub-stoichiometric amounts of alkali metal and adding excess sodium acetylide.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: May 22, 2007
    Assignee: Global Strategic Materials LLC
    Inventors: Edward J. A. Pope, Kenneth M. Kratsch
  • Patent number: 7135242
    Abstract: An electroluminescent polymer which has repeating units represented by formula (1) is obtained by polymerizing a bisfluorenylsilane compound which has specified substituent groups. In spite of the fact that this electroluminescent polymer is a ?-? conjugated type fluorene polymer, the deterioration in the color purity of EL caused by excimer formation is suppressed, so that the color purity of blue emitted light in particular is extremely high. This electroluminescent polymer is extremely useful as a light-emitting material in organic electroluminescent elements.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: November 14, 2006
    Assignees: Sony Corporation, Sony Chemical & Information Device Corporation
    Inventors: Tomoyasu Sunaga, Junichi Ishll, Susumu Yanagibori, Miyuki Tsukioka
  • Patent number: 7022867
    Abstract: A silicon compound having a repeating unit represented by the following general formula (1): wherein R is a hydrogen atom, a straight or branched alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group, Ar is a substituted or unsubstituted aryl group or an unsubstituted heterocyclic group, m is an integer of 2 or more, and n is an integer of 5,000 or less.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: April 4, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazunori Ueno, Yomishi Toshida, Yuichi Hashimoto, Akihiro Senoo, Seiji Mashimo
  • Patent number: 7005281
    Abstract: The invention relates to a process for preparing organosilicon group containing photoinitiators of the formula (I), wherein m is a number from 1 to 200; q is 0 or 1; A is IN-C(O)—O—CHR3—Y— or IN-C(O)—NH—CHR3—Y—; A? is A or R1?; R1 and R1?, R2 and R2? are C1–C18alkyl or phenyl, or —(O)q—SiR1R1?R2; R3 is hydrogen or C1–C6alkyl, Y is a divalent group selected from C1–C10alkeylene, C2–C10alkenylene or —(CH2)b—O—(CH2)a—; and b are each independently of the other a number of 1 to 6; IN is a photolabile functional moiety of the formula (II) or (III), wherein R4 is hydrogen or —C(O)—C(O)—OH or —C(O)—C(O)—OC1–C6alkyl and n is 1–3; R5 and R6 are C1–C12alkyl or together are cycloC5–C7alkyl; R7 is hydroxy, C1–C6alkoxy or morpholinyl; X is —(CH2)a—, —(CH2)b—O—(CH2)a— or —(CH2)b—O—CO—(CH2)a—; a and b are each independently of the other a number of 1 to 6; whereby the process is characterized in that a photolabile functional moiety containing a carboxy group (IN-COOH) or an alkoxycarbonyl group (IN-CO—OC1–C6alkyl) is reacte
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: February 28, 2006
    Assignee: Ciba Specialty Chemicals Corp.
    Inventors: Reinhold Öhrlein, Kai-Uwe Schöning, Gabriele Baisch, Jemima Schmidt, Gisèle Baudin, Tunja Jung
  • Patent number: 6989428
    Abstract: The invention involves new syntheses for poly(methyl- and ethyl-silyne). The invention also includes silicon carbide (SiC) ceramics that can be produced from poly(methylsilyne), as well as other ceramics, which can be produced from these precursors by modified processing conditions.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: January 24, 2006
    Assignee: University of Massachusetts
    Inventors: Patricia A. Bianconi, Michael W. Pitcher, Scott Joray
  • Patent number: 6841163
    Abstract: A high internal aqueous phase water-in-oil type emulsion cosmetic composition comprising a cross-linkable polyether-modified silicone in an amount of 0.1 to 10.0% by weight and a water-soluble polymer having a weight average molecular weight of 2000 to 300,000, an inorganic salt and an amino acid salt or a polyether-modified silicone, and having a content of an aqueous phase component of at least 50% by weight.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: January 11, 2005
    Assignee: Shiseido Company, Ltd.
    Inventors: Takayuki Omura, Tomiyuki Nanba
  • Patent number: 6812311
    Abstract: A method of producing a highly stable packaging substrate in which are provided a first precursor having a first backbone and a first ethynyl group, and a second precursor having a second backbone and a second ethynyl group. Furthermore provided is a crosslinker having a first and a second reactive group. The first precursor, the second precursor, the crosslinker, and a solvent are applied onto a surface to form an electrically insulating layer. The first ethynyl group is reacted with the first reactive group in a first carbon-carbon bond formation reaction and the second ethynyl group is reacted with the second reactive group in a second carbon-carbon bond formation reaction to crosslink the first backbone with the second backbone, thereby forming the packaging substrate. The solvent is removed in a further step.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: November 2, 2004
    Assignee: Honeywell International Inc.
    Inventors: Thomas McCarthy, Michael Wagaman, David Schwind