Abstract: Dry yield for baled forage crop materials may be obtained for specific cut locations in the field by allocating the overall average baled dry yield for the entire field to the specific cut locations in accordance with the cut yield at such locations. Information obtained from a position sensor and one or more crop volume sensors on the windrower or mower is later combined with information obtained from a weight sensor on the baler to arrive at a specific location dry yield report for the baled product.
Abstract: An automated system and method are provided for application of inoculant products onto forage material. Real time data measurements are taken for relative humidity and moisture content of the forage material in order to timely adjust the dispense rate of the inoculant applied to the forage material. Data gathering capabilities are provided with this system controller to enable an operator to view, adjust, and record various production records, as well as detailed information as to the amounts of inoculant applied. The components associated with the system of the present invention includes an inoculant bin or container including a dispense auger which dispenses a controlled amount of inoculant which is then conveyed to the intake opening of the baling machine the forage material enters the machine. The control system includes various sensors positioned at the intake opening of the baling machine which measures moisture content, and optionally the mass or volume of the incoming forage material.
Type:
Application
Filed:
January 31, 2011
Publication date:
May 26, 2011
Applicant:
LEXTRON, INC.
Inventors:
Steve Freeman, Wes Byers, Mike Van Lith, Dean Nordhues, Chad Greiman
Abstract: A self-propelled harvesting vehicle includes a crop material pick-up device, a fragmentation step for fragmentizing the crop material, and a mechanical dehydration device which is used to remove an aqueous portion of the crop material, and which is divided into a first dehydration step that takes place upstream of the fragmentation step, and a second dehydration step that takes place downstream of the fragmentation step.
Abstract: A system and method for tagging individual bales of hay as they are baled and recording information regarding the moisture, weight, preservative applied, field position, quality and other information available at the time of baling, all sequenced to the formation of the bale by a timing and positioning device.
Abstract: A system and method for tagging individual bales of hay as they are baled and recording information regarding the moisture, weight, preservative applied, field position, quality and other information available at the time of baling, all sequenced to the formation of the bale by a timing and positioning device.
Abstract: In a device for adjusting the crop material passage at the post-accelerator in an agricultural harvesting machine, in particular in a self-propelled forage harvester that includes at least one front attachment for picking up the crop material, and that is assigned to at least one processing device, the crop material handed off by the processing device passes through at least one post-accelerator, which is at least partially enclosed by a machine housing and is movable relative to the machine housing via a displacing mechanism, while the post-accelerator is fixed on the machine housing is position such that it is decoupled from the displacing mechanism.
Abstract: A system and method is provided for remotely and automatically calibrating a mass-flow sensor in a yield monitor of a combine. The invention uses a wireless communication device installed on a combine and a remote wireless communication device installed on a grain carrier or truck carrier. Once an actual weight is obtained, calibration information is sent to the combine to calibrate the mass-flow sensor.
Abstract: A kernel processor includes a pair of rollers which are controlled such that the spacing between them varies inversely, or such that the contact pressure between them varies directly, in response to varying moisture content of the crop material being processed.
Abstract: An agricultural combine having a supporting structure that is driven by ground engaging wheels at a harvesting speed by a propulsion assembly. The combine is also provided with a threshing assembly that is supplied harvested crop material by a feederhouse. The feederhouse is provided with a moisture sensor for sensing the moisture of harvested crop material as it passes through the feederhouse. The moisture sensor produces a moisture signal that is directed to an electronic combine controller. The electronic combine controller regulates the harvesting speed of the combine in response to the moisture signal.
Type:
Grant
Filed:
March 20, 2001
Date of Patent:
December 3, 2002
Assignee:
Deere & Company
Inventors:
Bruce Alan Coers, Daniel James Burke, Jerry Dean Litke, William F. Cooper, Karl-Heinz Otto Mertins