Benzene Ring Containing Patents (Class 568/607)
  • Patent number: 10669368
    Abstract: This invention relates to a semi-batch process for the production of polyoxyalkylene polyether polyols. These polyoxyalkylene polyether polyols have hydroxyl (OH) numbers of from 112 to 400. This process comprises establishing oxyalkylation condition in a reactor in the presence of a DMC catalyst, continuously introducing alkylene oxide and a suitable starter into the reactor, and recovering an oxyalkyated polyether polyol. The oxyalkylation initially occurs at a temperature that is sufficiently high enough to avoid or prevent deactivation of the DMC catalyst, or for from 2% to 50% of the total oxide feed amount, and the oxyalkylation is then continued at a lower temperature.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 2, 2020
    Assignee: Covestro LLC
    Inventors: Edward P. Browne, Jose Pazos
  • Patent number: 9464259
    Abstract: The invention relates to an aqueous alkaline cleaning composition for cleaning metal surfaces, containing at least one non-ionic surfactant having demulsifying action and based on ethoxylated alkyl alcohols having one or two alkyl groups, each comprising an average of 7.5 to 16.5 carbon atoms, and an average of 5.5 to 18.5 EO groups per alkyl group, and comprising an end group closure or two end group closures, of which at least one end group closure is an isopropyl, isobutyl, tertiary butyl and/or benzyl group, wherein the surfactant is not propoxylated.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 11, 2016
    Assignee: Chemetall GmbH
    Inventors: Carola Komp, Eckart Schonfelder
  • Patent number: 8987410
    Abstract: Process for preparing a macromonomer, in which a starting compound H2C?CR1—C6H4-s(R4)s—R3—OH or H2C?CR2—CO—NH—R3—OH, where R1 and R2 are each H or a linear or branched alkyl radical having from 1 to 4 carbon atoms, R3 is a linear or branched alkylene, aralkylene radical which has from 1 to 20 carbon atoms and can contain one or more hydroxy groups and the radicals R4 are each, independently of one another, a linear or branched alkyl, aralkyl, alkoxy or aralkoxy radical having from 1 to 20 carbon atoms and s=0-4, is, after partial deprotonation, reacted with at least one hydroxy-functional oxirane compound in the presence of an inhibitor of free-radical polymerization with opening of the oxirane ring, where the molar ratio of the molar amounts used n(starting compound):n(oxirane compound) is in the range from 1:100 to 1:1. Macromonomers which can be obtained by the process, polymers which can be obtained therefrom and their use as additives in coating compositions, plastics and cosmetics.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 24, 2015
    Assignee: BYK-Chemie GmbH
    Inventors: Wojciech Jaunky, Albert Frank, Alfred Bubat, Jürgen Omeis
  • Patent number: 8618337
    Abstract: The invention relates to a process for preparing polyether alcohols by reacting a) aromatic amines with b) alkylene oxides in the presence of c) a catalyst, wherein the alkylene oxide b) comprises at least 90% by weight, based on the weight of the component b), of propylene oxide and an amine is used as catalyst c).
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Sirus Zarbakhsh, Markus Schuette, Marc Fricke
  • Publication number: 20130264515
    Abstract: Provided is a polishing slurry composition, including a non-ionic surfactant represented by the following formula (1) R-(OCH2CH2)x—OH ??formula (1) wherein x is an integer from 1 to 50.
    Type: Application
    Filed: August 7, 2012
    Publication date: October 10, 2013
    Applicant: UWIZ TECHNOLOGY CO., LTD.
    Inventors: Wei-Jung Chen, Wen-Tsai Tsai, Ho-Ying Wu, Song-Yuan Chang, Ming-Hui Lu
  • Publication number: 20120165414
    Abstract: Process for preparing a macromonomer, in which a starting compound H2C?CR1—C6H4-s(R4)s—R3—OH or H2C?CR2—CO—NH—R3—OH, where R1 and R2 are each H or a linear or branched alkyl radical having from 1 to 4 carbon atoms, R3 is a linear or branched alkylene, aralkylene radical which has from 1 to 20 carbon atoms and can contain one or more hydroxy groups and the radicals R4 are each, independently of one another, a linear or branched alkyl, aralkyl, alkoxy or aralkoxy radical having from 1 to 20 carbon atoms and s=0-4, is, after partial deprotonation, reacted with at least one hydroxy-functional oxirane compound in the presence of an inhibitor of free-radical polymerization with opening of the oxirane ring, where the molar ratio of the molar amounts used n(starting compound):n(oxirane compound) is in the range from 1:100 to 1:1. Macromonomers which can be obtained by the process, polymers which can be obtained therefrom and their use as additives in coating compositions, plastics and cosmetics.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 28, 2012
    Applicant: BYK-Chemie GmbH
    Inventors: Wojciech Jaunky, Albert Frank, Alfred Bubat, Jürgen Omeis
  • Publication number: 20120077988
    Abstract: A branched hetero polyethylene glycol according to the present invention is represented by the formula [1]: wherein X and Y represent each an atomic group containing at least a functional group which reacts with a functional group present in a bio-functional molecule to form a covalent bond and the functional group contained in the atomic group X and the functional group contained in the atomic group Y are different from each other; s is an integer of 2 to 8, which represents the number of polyethylene glycol chains; n is the number of average added moles for the polyethylene glycol chain and 20?n?2000; and E is a branching linker moiety having s-valent bonding valency for the polyethylene glycol chains and having monovalent bonding valency for the functional group Y.
    Type: Application
    Filed: June 24, 2011
    Publication date: March 29, 2012
    Applicant: NOF CORPORATION
    Inventors: Yuji Yamamoto, Hiroki Yoshioka, Fumiaki Manabe
  • Publication number: 20120016049
    Abstract: An object of the present invention is to provide a polyoxyalkylene polyol and a polyoxyalkylene monool, capable of producing a urethane elastomer and a urethane foam which are sufficiently excellent in mechanical properties and moisture resistance. The present invention is directed to a polyoxyalkylene polyol or monool (S), which is an alkylene oxide adduct of an active hydrogen-containing compound (H), wherein 40% or more of hydroxyl groups located at the terminal are primary hydroxyl group-containing groups represented by the general formula (1) shown below, and a hydroxyl value x, the total degree of unsaturation y and the content of ethylene oxide z satisfy a relationship of the mathematical expression (1). [In the general formula (1), R1 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group or a phenyl group, each of which may be substituted with a halogen atom or an aryl group.] y?28.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 19, 2012
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiromichi Nakaminami, Shogo Sugahara, Shu Yasuhara, Kouichi Murata
  • Publication number: 20110124844
    Abstract: Aspects of the present invention are directed to novel methods for making discrete polyethylene compounds selectively and specifically to a predetermined number of ethylene oxide units. Methods which can be used to build up larger dPEG compounds (a) containing a wider range of utility to make useful homo- and heterofunctional and branched species, and (b) under reaction configurations and conditions that are milder, more efficient, more diverse in terms of incorporating useful functionality, more controllable, and more versatile then any conventional method reported in the art to date. In addition, the embodiments of the invention allow for processes that allow for significantly improving the ability to purify the intermediates or final product mixtures, making these methods useful for commerial manufacturing dPEGs. Protecting groups and functional groups can be designed to make purification at large scale a practical reality.
    Type: Application
    Filed: January 27, 2011
    Publication date: May 26, 2011
    Inventors: Paul D. Davis, Edward C. Crapps
  • Patent number: 7867952
    Abstract: Disclosed are a flexible polymer, particles made from same, and a process for preparing the particles. This flexible polymer is obtained from copolymerizing monomer (A) and monomer (B), wherein monomer (A) is one or more water-insoluble unsaturated diene monomers; monomer (B) is at least one compound with the general formula of wherein R is C1-C12alkyl, C1-C12 alkyl aryl, C1-C12 alkyl ether or C1-C12alkyl ester. Monomer (A) is in an amount of 60-90% by weight of the total combined weight of monomer (A) and monomer (B). Monomer (B) is in an amount of 10-40% by weight of the total combined weight of monomer (A) and monomer (B). The flexible polymer particles show excellent flexibility, deformability, elasticity as well as stability. They can be used in oilfields in nearby wellbore profile control and in-depth profile control or as in-depth flooding fluid diverting agents.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: January 11, 2011
    Assignee: Petrochina Company Limited
    Inventors: Pingmei Wang, Jianhui Luo, Yuzhang Liu, Huaijiang Zhu, Chunming Xiong, Qiang Liu, Ruyi Jiang, Yikun Li, Ying Zhang
  • Publication number: 20100324177
    Abstract: A synthetic polymer has a water-soluble or water-swellable polyethyleneglycol backbone and terminal groups and/or intermediate groups of blocks of hydrophobes of alkyl- or aryl compounds containing a polymerizable cyclic monomer or a polymerizable double bond (or alkene) group or derivatives thereof. The blocks of hydrophobes are composed of two or more units of the same or different hydrophobes. These synthetic polymers are used as rheology modifiers, especially in latex paints.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 23, 2010
    Inventors: Kirill N. BAKEEV, De-Kai Loo, Angie H. Ma, Tuyen T. Nguyen, Jeffrey K. Politis
  • Publication number: 20100292515
    Abstract: An impurity derived from a high-molecular-weight polyethylene glycol compound is removed from a high-molecular-weight polyethylene glycol compound whose total average number of moles of ethylene oxide units added in the molecule is 220 to 4500. In a state where the high-molecular-weight polyethylene glycol compound is dissolved in at least one of water and an organic solvent selected from aromatic hydrocarbon solvents having 8 or less carbon atoms in total and ester compound solvents having 5 or less carbon atoms in total, the water and the organic solvent are mixed. The resulting mixture was separated into an organic layer and an aqueous layer, and the organic layer is separated from the aqueous layer.
    Type: Application
    Filed: March 31, 2010
    Publication date: November 18, 2010
    Applicant: NOF CORPORATION
    Inventors: Yuji Yamamoto, Hiroki Yoshioka
  • Patent number: 7781563
    Abstract: The present invention relates to a preparing method of methoxypolyethyleneglycol (mPEG) with high purity and derivatives thereof. More precisely, the method of the present invention to prepare high purity mPEG with at least 99% of purity, up to 1.05 of molecular weight distribution and 350˜100,000 of molecular weight includes the process of reacting commercial mPEG having low purity to give highly purified intermediates, mPEG-acetic acid of formula 1 and mPEG-phthalate of formula 2.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: August 24, 2010
    Assignee: ID Biochem, Inc.
    Inventors: Pyeong-Uk Park, Seong-Neon Kim, Chong-Gu Lee, Ju-Sung Lee
  • Publication number: 20080132728
    Abstract: The present invention provides continuous processes for the production of an alkylphenol ethoxylate from an alkylphenol in the presence of a double metal cyanide (“DMC”) catalyst. The products made by the inventive continuous processes may offer advantages where the alkylphenol ethoxylate is used in or as a surfactant.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Kenneth G. McDaniel, Jack R. Reese
  • Patent number: 7169956
    Abstract: Provided is a double metal cyanide complex catalyst with a high activity which is readily produced on an industrial scale. The double metal cyanide complex catalyst is of a fine particle form and contains t-butyl alcohol or, t-butyl alcohol and another organic compound as an organic ligand. The catalyst of the fine particle form has a volume-average particle size in a range of from 3 to 20 ?m, based on measurement by a light scattering method for measuring fine particles having particle sizes of at least 0.15 ?m. A particle content of the catalyst in a particle size range of at least 0.15 ?m and at most 1 ?m is less than 5% by volume, and a particle content of the catalyst over a particles size of 1 ?m is in a range of more than 95% and at most 100% by volume.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: January 30, 2007
    Assignee: Asahi Glass Company, Limited
    Inventors: Chitoshi Suzuki, Hiroki Fukuda, Yoshinori Toyota, Shigeru Ikai, Hideo Sakurai
  • Patent number: 7125834
    Abstract: This invention provides the following: an amphiphilic functional substance with lipophilicity, affinity for supercritical CO2, and if necessary hydrophilicity comprising an oligoolefin chain and a perfluoroalkyl group(s) at a single end thereof or at both ends thereof with or without the intervention of a poly(oxyalkylene) chain, which enables the utilization of supercritical CO2 as a reaction medium; a photopolymerizable functional substance comprising an oligoolefin chain and a reversible photopolymerization/dissociation group(s) at a single end thereof or at both ends thereof and a functional substance comprising a photo- and/or thermodissociable polymer obtained by photopolymerization of the aforementioned photopolymerizable functional substance, which can be utilized as recycle polymers; a hydrolyzable functional substance comprising a polymer obtained by chain-elongating plural oligoolefin chains through ester linkages, which can be utilized as a recycle polymer; and a functional substance capable of fo
    Type: Grant
    Filed: November 22, 2001
    Date of Patent: October 24, 2006
    Assignee: San-Ei Kougyou Corporation
    Inventor: Takashi Sawaguchi
  • Patent number: 7019177
    Abstract: A process for preparing (per)fluorohalogenethers having general formula (II): R?CF2OCFA-CA?F2??(II) wherein:— A and A?, equal to or different from each other, are H, Cl or Br but they cannot be both H; R? has the following meanings: RO—, wherein R is a (per)fluorinated substituent, selected from the following groups: linear or branched C1–C20 alkyl; C3–C7 cycloalkyl; aromatic, C6–C10 arylalkyl or alkylaryl; C5–C10 heterocyclic or alkylheterocyclic; or a perfluoropolyether substituent T-Rf— wherein T=—OCF2OCFA-CA?F2, —OCF2XI, wherein XI=F, CF3, Cl; Rf is a perfluorooxyalkylene chain; by reaction of carbonyl compounds having formula R?COF (III) wherein R?=RO—, or R?=Q-Rf— wherein Q=—OCOF, —OCF2XI; in liquid phase with elemental fluorine and with olefinic compounds having formula CAF=CA?F (IV), at temperatures from ?120° C. to ?20° C.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: March 28, 2006
    Assignee: Solvay Solexis, S.p.A.
    Inventors: Vito Tortelli, Pierangelo Calini
  • Patent number: 6933063
    Abstract: Provided are spirobifluorene compounds which can provide excellent processibility with improved solubility in organic solvents, an electroluminescence (EL) polymer obtained therefrom and an EL element having the same. The EL polymer comprising repeating units of the following formula: wherein R1 and R2 are identical or different and are independently a straight-chain or branched alkyl group having from 1 to 22 carbon atoms or an aryl group substituted by C1-C22 alkyl, and at least one of the R1 and R2 contains one or more atoms selected from the group consisting of O, N, S, Si and Ge.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: August 23, 2005
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong Ik Lee, Hyoyoung Lee, Jiyoung Oh, Hye Yong Chu, Lee-Mi Do, Seong Hyun Kim, Taehyoung Zyung
  • Patent number: 6869543
    Abstract: Clear, amine-initiated polyether polyols are made by epoxidizing an amine in the presence of an alkali metal hydroxide catalyst. By reducing the amount of catalyst used during the polyol synthesis and by adding the catalyst after between 5 and 30% of the total amount of at least one alkylene oxide has been added, after lactic acid neutralization, gives a short chain polyol that has foam processing characteristics similar to the conventional sulfuric acid neutralized polyol. The polyols produced in this manner are particularly useful for the production of polyurethane and polyisocyanurate foams.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 22, 2005
    Assignee: Bayer Polymers LLC
    Inventors: Nathan L. Anderson, Karl W. Haider, Keith J. Headley, Kerry A. Ingold, Herman P. Doerge
  • Patent number: 6855844
    Abstract: Disclosed are polyester-ether polyols and their use in urethane prepolymers, urethane foams and non-foam urethane coatings, adhesives, sealants and/or elastomers. Methods for producing such polyester-ether polyols using double metal cyanide catalysts are disclosed, along with methods for producing urethane prepolymers. The polyester-ether polyols of the instant invention are preferably the reaction product of phthalic anhydride, diethylene glycol, and propylene oxide. These polyester-ether polyols are useful as either the primary polyol in urethane compositions or in combination with conventional auxiliary polyester- and/or polyether-based polyols. The polyester-ether polyols impart greatly improved solubility and compatibility to mixtures of either polyether and/or polyester polyols. The polyester-ether polyols of the instant invention are desirably of lower viscosity than their precursor intermediate polyester polyols and are generally soluble in either polyester- and/or polyether-based polyols.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: February 15, 2005
    Assignee: Stepan Company
    Inventors: Eric J. Geiger, Douglas K. Hillshaffer
  • Patent number: 6835856
    Abstract: A process for preparing (per)fluorohalogenethers having general formula (I): (R)nC(F)mOCAF—CA′F2  (I) wherein: A and A′, equal to or different the one from the other, are Cl or Br or one is selected from A and A′ and hydrogen and the other is halogen selected from Cl, Br; R═F, or a fluorinated, preferably perfluorinated, substituent, selected from the following groups: linear or branched C1-C20 alkyl more preferably C1-C10; C3-C7 cycloalkyl; aromatic, C6-C10 arylalkyl, alkylaryl; C5-C10 heterocyclic or alkylheterocyclic; when R is fluorinated or perfluorinated alkyl, cycloalkyl, arylalkyl, alkylaryl, it can optionally contain in the chain one or more oxygen atoms; when R is fluorinated it can optionally contain one or more H atoms and/or one or more halogen atoms different from F: n is an integer and is 1 or 2; m=3-n; by reaction of carbonyl compounds having formula (II): (R)pC(F)q(O)  (II) wherein: p is an integer and is 1 or 2; q is an integer a
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: December 28, 2004
    Assignee: Solvay Solexis S.p.A.
    Inventors: Vito Tortelli, Pierangelo Calini
  • Patent number: 6583308
    Abstract: A yellow colorant comprising a chromophore having at least one poly(oxy-C2-C4-alkylene) chain attached to an aromatic methine backbone having at least one cyanoester moiety attached thereto is provided. The ester portion must include a C1-C8 (such as ethyl, butyl, hexyl, or ethyl-hexyl) pendant group and the poly(oxyalkylene) chain must be at most 10 monomers and at least 3 monomers, with ethylene oxide as the capping group. Such a specific group of coloring agents provides the best overall yellow colorations or effects (either alone or in blends with other coloring agents, particularly at low color loadings) as well as the best overall low extraction levels when present within clear polyester (such as polyethylene terephthalate, for example), when compared to all other known polymeric yellow colorants for the same end-use. Compositions and articles comprising such colorants are provided as well as methods for producing such inventive colorants.
    Type: Grant
    Filed: November 3, 2001
    Date of Patent: June 24, 2003
    Assignee: Milliken & Company
    Inventor: Eric B. Stephens
  • Patent number: 6569352
    Abstract: Disclosed are polyester-ether polyols and their use in urethane prepolymers, urethane foams and non-foam urethane coatings, adhesives, sealants and/or elastomers. Methods for producing such polyester-ether polyols are disclosed, along with methods for producing urethane prepolymers. The polyester-ether polyols of the instant invention are preferably the reaction product of phthalic anhydride, diethylene glycol, and propylene oxide. These polyester-ether polyols are useful as either the primary polyol in urethane compositions or in combination with conventional auxiliary polyester- and/or polyether-based polyols. The polyester-ether polyols impart greatly improved solubility and compatibility to mixtures of either polyether and/or polyester polyols. The polyester-ether polyols of the instant invention are desirably of lower viscosity than their precursor intermediate polyester polyols and are generally soluble in either polyester- and/or polyether-based polyols.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: May 27, 2003
    Assignee: Stepan Company
    Inventors: Douglas K. Hillshafer, George Magnus
  • Patent number: 6552091
    Abstract: The invention relates to block-copolymeric polyalkylene oxides containing styrene oxide, obtained by alkoxylation, and their use as low-foam pigment wetting agents in aqueous pigment pastes with or without cosolvent and in aqueous and low-solvent coating materials and printing inks.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: April 22, 2003
    Assignee: Goldschmidt AG
    Inventors: Tammo Boinowitz, Ellen Reuter, Stefan Silber, Joachim Venzmer
  • Patent number: 6552213
    Abstract: The present invention relates to a new stereoselective method for the preparation of tris-O-substituted-(E)-1-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)ethene derivative of the formula (I) which is a key intermediate in the synthesis of trans-resveratrol (I, R2=R2=R3=H). The invention also provides a method for the exclusive synthesis of trans-isomer of compounds of formula (I) without any contamination of cis-isomer.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: April 22, 2003
    Assignee: Orchid Chemicals & Pharmaceuticals Limited, India
    Inventors: Pandurang Balwant Deshpande, Udayampalayam Palanisamy Senthilkumar, Gnanaprakasam Andrew
  • Publication number: 20030050187
    Abstract: The invention relates to double-metal cyanide (DMC) catalysts for preparing polyether polyols by the polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, wherein the DMC catalysts are composed of: a) at least one DMC compound; b) at least one organic complexing ligand which is not a cyclic polyol; and c) at least one cyclic polyol. The DMC catalysts of the present invention have increased activity compared to known catalyst.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 13, 2003
    Inventors: Walter Schafer, Jorg Hofmann, Pieter Ooms
  • Patent number: 6444858
    Abstract: The present invention provides a method for alkoxylating organic compounds comprising contacting an organic compound adapted to be alkoxylated with an alkylene oxide in a reaction vessel under conditions effective to alkoxylate the organic compound. The alkylene oxide is maintained in vapor form during transport to said reaction vessel, during discharge into said reaction vessel, and during contacting of the organic compound with the alkylene oxide. The result is an alkoxylated product containing less flocculant.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: September 3, 2002
    Assignee: Baker Hughes Incorporated
    Inventor: Philip Leung
  • Patent number: 6410801
    Abstract: A continuous alkoxylation process for the production of polyether polyols is disclosed. The process comprises the use of a plurality of reaction modules each having an outer tube and an inner tube with annular chamber between them. A spiral reaction tube is spaced from the inner tube and winds around the inner tube within the annular chamber. The spiral reaction tube includes an inlet and an outlet, each of which extend through said outer tube. A heat exchange medium flows through the annular chamber and controls the reaction temperature in the spiral reaction tube. The process comprises continuously forming an initial reaction mixture of at least one alkylene oxide and an initiator having at least one reactive hydrogen which is reactive to the alkylene oxide.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: June 25, 2002
    Assignee: BASF Corporation
    Inventors: Werner Hinz, Edward Michael Dexheimer
  • Publication number: 20020019572
    Abstract: The present invention provides a method for alkoxylating organic compounds comprising contacting an organic compound adapted to be alkoxylated with an alkylene oxide in a reaction vessel under conditions effective to alkoxylate the organic compound. The alkylene oxide is maintained in vapor form during transport to said reaction vessel, during discharge into said reaction vessel, and during contacting of the organic compound with the alkylene oxide. The result is an alkoxylated product containing less flocculant.
    Type: Application
    Filed: April 19, 1999
    Publication date: February 14, 2002
    Inventor: PHILIP LEUNG
  • Publication number: 20020010350
    Abstract: The process for preparing an alkylene oxide adduct, including the steps of feeding an organic compound having active hydrogen and an alkylene oxide to a reaction column packed with a solid catalyst, and carrying out addition reaction of the organic compound having active hydrogen with an alkylene oxide in a gas-liquid fixed bed reaction, wherein the alkylene oxide is in a state of gas and the organic compound having active hydrogen is in a state of liquid.
    Type: Application
    Filed: August 10, 1998
    Publication date: January 24, 2002
    Inventors: NOBUHIRO TATSUMI, YOSHIKAZU OGURA, TAKANOBU KATAYAMA, OSAMU TABATA
  • Patent number: 6320085
    Abstract: The subject matter of the invention is the process for the preparation of mixed ethers of formula I, wherein Ar represents an aromatic or one or more heteroatom-containing moiety, optionally substituted by one or more C1-4 alkoxy, methylenedioxy, C1-4 alkyl, halogen, C1-4 haloalkyl or nitro-group, and/or condensed with a benzene ring; R1 and R2 independently mean hydrogen, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, phenyl, substituted phenyl, C3-6 cycloalkyl group, R3 means C3-6 alkynyl, optionally substituted by one or more C1-6 alkyl, C3-6 alkenyl, C3-6 alkynyl, C1-6 haloalkyl group, or halogen atom, R3 also means a C1-4 alkyloxy-C1-4 alkyloxy-C1-4 alkyl group.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: November 20, 2001
    Assignee: Agro-Chemie Novenyvedoszer Gyarto Ertekesito est Forgalmazo Kft.
    Inventors: Geza Arvai, Bela Bertok, Zsuzsanna Kuruczne Ribai, Laszlo Pap, Istvan Szekely
  • Patent number: 6303533
    Abstract: A process for preparing double metal cyanide catalysts, comprising combining an aqueous solution of a metal salt of the formula M1m(X)n, with an aqueous solution of a cyanometallic acid of the formula HaM2(CN)b(A)c, where one or both aqueous solutions may comprises at least one water-miscible organic ligand selected from the group consisting of alcohols, aldehydes, ketones, ethers, polyethers, esters, ureas, amides, nitrites or sulfides, if desired, combining the aqueous suspension thus obtained with at least one water-miscible organic ligand selected from the above-mentioned group, which ligand may be identical to or different from any previously added ligand, and separating the resulting two-metal cyanide complex from the suspension.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: October 16, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Harald Larbig, Dieter Junge, Daniella Geelen, Peter de Vocht, Gerd Hoeppner
  • Patent number: 6291704
    Abstract: Vinyl ether compounds having the formula: R—O—X—O—CH═CH2 wherein R is a radical selected from R1—CnHm—, R1—CnHm—C(═O)—, R1—CnHm—CH[—O—X—O—CH═CH2—], R1—CnHm—CH[—O—X—O—CH═CH2—]C(═O)—, R1—CnHm—CH[—C(═O)—O—X—O—CH═CH2—], R1—CnHm—CH[—C(═O)—O—X—0—CH═CH2—]C(═O)—, R1—[CFCl—CF2—]pCH2— and HCFCl—CF2—, wherein R1 is hydrogen, an unsubstituted or substituted fluorinated aliphatic radical, an unsubstituted or substituted fluorinated cyclic aliphatic radical, an unsubstituted or substituted fluorinated aromatic radical, an unsubstituted or substituted fluorinated araliphatic radical, or an unsubstituted or substituted fluorinated heterocyclic radi
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: September 18, 2001
    Assignee: AlliedSignal Inc.
    Inventors: Russell F. Anderson, David E. Bradley, David Nalewajek, Haridasan K. Nair, Mariola J. Proszowski, Eugene V. Sitzman, Ellen L. Swan
  • Patent number: 6281393
    Abstract: Mannich polyols having a viscosity of from 300 to 3,500 cps (0.3 to 3.5 Pa*s) at 25° C. are prepared by admixing a phenol, an alkanolamines, and formaldehyde mixed in molar ratios of from 1:1:1 to 1:2.2:2.2 resulting in an initiator which can be alkoxylated using a mixture of ethylene oxide and propylene oxide to prepare polyols that have a nominal functionality of from 3 to 5.4.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: August 28, 2001
    Assignee: The Dow Chemical Company
    Inventors: Nelson F. Molina, Stanley E. Moore
  • Patent number: 6248889
    Abstract: A process for preparing a fluoride from its corresponding alcohol comprises the steps of (a) forming a mixture comprising (i) at least one fluorinated, saturated aliphatic or alicyclic sulfonyl fluoride (for example, perfluorobutanesulfonyl fluoride) and (ii) at least one primary or secondary alcohol; and (b) adding a molar excess of at least one strong, aprotic, non-nucleophilic, hindered, double bond-containing, organic base (for example, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)) to the mixture.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: June 19, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Patricia M. Savu, Daniel C. Snustad
  • Patent number: 6022937
    Abstract: This invention relates to novel polyether polyols and to a process for their production. These polyether polyols are prepared by forming a polyhydroxyl group containing component in a first step by the reaction of a triazole-group containing compound with a compound that contains at least one functional group that is capable of reacting with the amine groups of the triazole group containing compound, and reacting the hydroxyl-group containing component with an alkylene oxide to form the polyether polyol of the invention. The present invention also relates to isocyanate-reactive compositions comprising these novel polyether polyols, and to a process for the production of a polyurethane comprising reacting a polyisocyanate with the novel polyether polyols of the present invention.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: February 8, 2000
    Assignee: Bayer Corporation
    Inventors: Rick L. Adkins, Harold R. Parsons
  • Patent number: 6002049
    Abstract: Latexes are thickened by compounds of the formula ##STR1## wherein R.sup.1 is an aliphatic, substituted aliphatic, aromatic, or substituted aromatic radical having a valence of from 2 to 8; each of B.sub.1 -B.sub.8 is independently an ester, amide, amine, ether, sulfide, disulfide, thiocarbamate, urea, thiourea, urethane, sulfate, phosphate, carbonyl, methylene, thioamide, carbonate, or imide linkage; each of X.sup.1 -X.sup.8 is independently --A.sub.1 --R.sup.2 --A.sub.2 -- or --A.sub.1 -- wherein each of A.sub.1 and A.sub.2 is independently an ester, amide, amine, ether, sulfide, disulfide, urethane, thiocarbamate, urea, thiourea, sulfate, phosphate, carbonyl, methylene, thioamide, carbonate, or imide linkage and R.sup.2 is a divalent aliphatic, substituted aliphatic, aromatic, or substituted aromatic radical with the proviso that only one of B.sub.1 -B.sub.8 is urethane and that when one of B.sub.1 -B.sub.8 is urethane, one of A.sub.1 and A.sub.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: December 14, 1999
    Assignee: Henkel Corporation
    Inventors: Michael S. Wiggins, Reuben H. Grinstein, Stephen A. Fischer
  • Patent number: 5945393
    Abstract: Novel nonionic gemini surfactants are extremely effective emulsifiers for oil-in-water emulsions that provide improved detergency at even low concentration levels. The surfactants are characterized by the formula: ##STR1## wherein R.sub.1 is independently H or a C.sub.1 to C.sub.22 alkyl, R.sub.2 is C.sub.6 to C.sub.22 alkyl and R.sub.3 is D.sub.1 --R.sub.4 --D.sub.1 or R.sub.4 --D.sub.1 --R.sub.4 wherein R.sub.4 is independently a C.sub.1 -C.sub.10 alkyl group, --O--R.sub.5 --O--, or aryl, e.g. phenyl, and D.sub.1 is independently --O--, an amide group ?--C(O)N(R.sub.6)--!, an amino group ?--N(R.sub.6)--!, --O--R.sub.5 --O--, or aryl. (EO).sub.a (PO).sub.b is a polyether group and Z is a C.sub.1 -C.sub.4 alkyl, or an alkylaryl or hydrogen wherein EO represents ethyleneoxy radicals, PO represents propyleneoxy radicals, a and b are numbers of from 0 to 100, a is preferably from about 0 to about 30 and b is preferably from about 0 to 10, wherein a plus b is at least one, and the EO and PO alkyl or alkylaryl.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: August 31, 1999
    Assignee: Rhodia Inc.
    Inventors: David James Tracy, Ruoxin Li, Manilal S. Dahanayake, Jiang Yang
  • Patent number: 5889092
    Abstract: The rheological properties of latexes and latex paint formulations thickened with non-urethane thickeners according to the invention are modified by adding to the latex or latex paint formulation an amount of a nonionic surfactant having an HLB value of from 4 to about 20 sufficient to decrease the low shear viscosity of the thickened latex without a corresponding reduction in the high shear viscosity.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: March 30, 1999
    Assignee: Henkel Corporation
    Inventors: Reuben Grinstein, Michael S. Wiggins
  • Patent number: 5885952
    Abstract: A detergent base which is obtainable from the reaction of an ethylenically unsaturated sulfonic acid or carboxylic acid or anhydride thereof with a nonionic surfactant of the formulaR.sub.1 --O-(alkylene-O).sub.n.sbsb.1 --R.sub.2 (1)in whichR.sub.1 is C.sub.8 -C.sub.22 alkyl or C.sub.8 -C.sub.18 alkenyl;R.sub.2 is hydrogen, C.sub.1 -C.sub.4 alkyl, a cycloaliphatic radical having at least 6 C atoms or benzyl; andn.sub.1 is a number from 1 to 60;and if appropriate with sugar derivatives.The detergent base has a good calcium-dispersing power, is very stable to electrolytes and heat and has an excellent washing action and anti-redeposition properties. It is therefore suitable for the preparation of powder and liquid detergents.
    Type: Grant
    Filed: May 15, 1996
    Date of Patent: March 23, 1999
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Rolf Kuratli, Claude Eckhardt, Frank Bachmann, Werner Schreiber
  • Patent number: 5877214
    Abstract: The present invention is directed to the certain polyaryl-poly(ethylene glycol) compounds ("polyaryl-PEG" compounds) which are useful as soluble polyvalent supports in the preparation of combinatorial libraries of compounds. The resultant combinatorial libraries are useful in screening for biologically active moieties in the drug discovery process or in developing compounds with desired physical and chemical properties.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: March 2, 1999
    Assignee: Merck & Co., Inc.
    Inventor: Ronald M. Kim
  • Patent number: 5728895
    Abstract: Latexes are thickened by compounds of the formula ##STR1## wherein R.sup.1 is an aliphatic, substituted aliphatic, aromatic, or substituted aromatic radical having a valence of from 2 to 8; each of B.sub.1 -B.sub.8 is independently an ester, amide, amine, ether, sulfide, disulfide, thiocarbamate, urea, thiourea, urethane, sulfate, phosphate, carbonyl, methylene, thioamide, carbonate, or imide linkage; each of X.sup.1 -X.sup.8 is independently -A.sub.1 -R.sup.2 -A.sub.2 - or -A.sub.1 - wherein each of A.sub.1 and A.sub.2 is independently an ester, amide, amine, ether, sulfide, disulfide, urethane, thiocarbamate, urea, thiourea, sulfate, phosphate, carbonyl, methylene, thioamide, carbonate, or imide linkage and R.sup.2 is a divalent aliphatic, substituted aliphatic, aromatic, or substituted aromatic radical with the proviso that only one of B.sub.1 -B.sub.8 is urethane and that when one of B.sub.1 -B.sub.8 is urethane, one of A.sub.1 and A.sub.
    Type: Grant
    Filed: October 9, 1996
    Date of Patent: March 17, 1998
    Assignee: Henkel Corporation
    Inventors: Michael S. Wiggins, Reuben Grinstein, Stephen A. Fischer
  • Patent number: 5728796
    Abstract: A process reaction between: (1) a compound that contains one or more epoxide moieties per molecule, and (2) a compound that contains one or more primary aliphatic hydroxyl groups per molecule; is catalyzed by: (3) a catalyst compound containing one or more trifluoromethanesulfonate moieties and one or more silyl moieties and run at a temperature of no more than 130.degree. C., such that the catalyst preferably catalyzes reaction at the primary aliphatic hydroxyl group, so that the resulting resin does not gel.
    Type: Grant
    Filed: May 31, 1996
    Date of Patent: March 17, 1998
    Assignee: The Dow Chemical Company
    Inventors: Zeng K. Liao, James L. Bertram
  • Patent number: 5723694
    Abstract: Phenols monomethylated or dimethylated in the ortho or para position to the OH group and having the formula ##STR1## can be prepared by reaction of tert-alkyl-substituted phenols of the formula ##STR2## in which at least one free ortho or para position to the OH group is present, in three reaction steps a), b) and c). In a), (II) is reacted with formaldehyde or its polymers and a carboxylic acid of the formulaR.sup.3 --COOH, (III)which gives a mixture of substituted phenols of the formulae ##STR3## In b) the mixture of (IV)/(V) is hydrogenated using catalytically activated hydrogen to give the substituted phenols of the formula ##STR4## which, if m=0, are reacted in c) in the presence of an acid cleavage catalyst with elimination of tert-alkenes to give the methylated phenols of the formula (I).Before or during the hydrogenation, the phenols of the formulae (IV) and (V) can be reacted with the aid of an alcohol of the formulaR.sup.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: March 3, 1998
    Assignee: Bayer Aktiengesellschaft
    Inventors: Artur Botta, Hans-Josef Buysch
  • Patent number: 5714639
    Abstract: Improved double metal cyanide (DMC) catalysts useful for making epoxide polymers are disclosed. One catalyst is a paste of a double metal cyanide (DMC) compound, an organic complexing agent, and water. The paste comprises at least about 90 wt. % of particles having a particle size within the range of about 0.1 to about 10 microns as measured by light scattering in polyether polyol dispersions of the catalyst particles. Preferred catalysts have a bimodal particle size distribution. The paste catalyst is more active and simpler to prepare than powder DMC catalysts. Polyols made from the paste catalyst have low unsaturations, low viscosities, and narrow molecular weight distributions, and are useful in making a variety of polyurethane products.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: February 3, 1998
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Paul T. Bowman, Harry R. Hinney, Robert L. Meeker
  • Patent number: 5714638
    Abstract: Polyoxyalkylene glycol monoethers of monohydric alcohols are prepared by a process in which tetrahydrofuran or a mixture of tetrahydrofuran with a total of not more than 95 mol %, based on the amount of tetrahydrofuran used, of one or more comonomers from the group consisting of the cyclic ethers and acetals is polymerized in the absence of water and in the presence of a monohydric alcohol and of an anhydrous heteropoly acid catalyst.
    Type: Grant
    Filed: February 1, 1995
    Date of Patent: February 3, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Juergen Weyer, Rolf Fischer, Gerhard Jeschek, Herbert Mueller
  • Patent number: 5659068
    Abstract: Polyoxyalkylene glycol monoesters of carboxylic acids are prepared by a process in which tetrahydrofuran or a mixture of tetrahydrofuran with a total of not more than 95 mol %, based on the amount of tetrahydrofuran used, of one or more comonomers from the group consisting of the cyclic ethers and acetals is polymerized in the absence of water and in the presence of a carboxylic acid and of an anhydrous heteropolyacid catalyst.
    Type: Grant
    Filed: May 31, 1994
    Date of Patent: August 19, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Juergen Weyer, Rolf Fischer, Gerhard Jeschek, Herbert Mueller
  • Patent number: 5648449
    Abstract: A copolyester consisting essentially of ethylene terephthalate units and further comprising 0.01 to 1 mole % based on the sum of the moles of total diol units and the moles of triol units of a triol unit represented by the following formula (I) and/or a triol unit represented by the following formula (II). ##STR1## wherein A is a group represented by formula --CH.sub.2 CH.sub.2 -- or formula --CH(CH.sub.3)CH.sub.2 --, B is a divalent hydrocarbon group, --CO--, --SO.sub.2 --, --0-- or a direct bond (-), and p, q, r, s, t and u are each an integer of 1 to 8. A process for producing the same and molded articles (in particular extrusion blow molded articles) therefrom. The copolyesters of the present invention are applicable to melt moldings accompanying melt extrusion, in particular extrusion blow molding, where parisons therefrom have good draw-down tendency and blow moldability.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: July 15, 1997
    Assignee: Kuraray Co., Ltd.
    Inventors: Shinji Tai, Tetsuya Hara, Akira Kageyu, Tsugunori Kashimura
  • Patent number: 5621133
    Abstract: Novel compounds having the formula ##STR1## and the pharmaceutically acceptable salts, esters and amides thereof, whereinA is --O--, --S-- or --CR.sup.2 R.sup.8 --;R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, R.sup.6, R.sup.7, R.sup.8, R.sup.9, R.sup.10, X and Y are specifically defined; andup to one combination of (a) R.sup.2 and R.sup.5, (b) R.sup.5 and R.sup.6, (c) R.sup.5 and R.sup.7, (d) R.sup.6 and R.sup.7, and (e) R.sup.7 and Y, taken together with the atoms to which they are attached, may form a ring, the compounds being useful for treating dopamine-related neurological, psychological and cardiovascular disorders as well as in the treatment of cognitive impairment, attention deficit disorder, and substance abuse and other addictive behavior disorders.Also disclosed are intermediates and processes useful in the preparation of the above compounds.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: April 15, 1997
    Inventors: Michael P. DeNinno, Richard J. Perner
  • Patent number: 5591884
    Abstract: Novel compounds having the formula ##STR1## and the pharmaceutically acceptable salts, esters and amides thereof, whereinA is --O--, --S-- or --CR.sup.2 R.sup.8 --;R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, R.sup.6, R.sup.7, R.sup.8, R.sup.9, R.sup.10, X and Y are specifically defined; andup to one combination of (a) R.sup.2 and R.sup.5, (b) R.sup.5 and R.sup.6, (c) R.sup.5 and R.sup.7, (d) R.sup.6 and R.sup.7, and (e) R.sup.7 and Y, taken together with the atoms to which they are attached, may form a ring, the compounds being useful for treating dopamine-related neurological, psychological and cardiovascular disorders as well as in the treatment of cognitive impairment, attention deficit disorder, and substance abuse and other addictive behavior disorders.Also disclosed are intermediates and processes useful in the preparation of the above compounds.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: January 7, 1997
    Assignee: Abbott Laboratories
    Inventors: Michael P. DeNinno, Richard J. Perner