Polyhydroxy Containing Patents (Class 568/623)
  • Publication number: 20120016049
    Abstract: An object of the present invention is to provide a polyoxyalkylene polyol and a polyoxyalkylene monool, capable of producing a urethane elastomer and a urethane foam which are sufficiently excellent in mechanical properties and moisture resistance. The present invention is directed to a polyoxyalkylene polyol or monool (S), which is an alkylene oxide adduct of an active hydrogen-containing compound (H), wherein 40% or more of hydroxyl groups located at the terminal are primary hydroxyl group-containing groups represented by the general formula (1) shown below, and a hydroxyl value x, the total degree of unsaturation y and the content of ethylene oxide z satisfy a relationship of the mathematical expression (1). [In the general formula (1), R1 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group or a phenyl group, each of which may be substituted with a halogen atom or an aryl group.] y?28.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 19, 2012
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiromichi Nakaminami, Shogo Sugahara, Shu Yasuhara, Kouichi Murata
  • Patent number: 8071712
    Abstract: An object of the present invention is to provide a novel multibranched polyoxyalkylene derivative, and an intermediate for the production thereof. Specifically, the object is to provide a multibranched polyoxyalkylene derivative which can keep a high activity of a bio-related substance modified with the multibranched polyoxyalkylene derivative and which can easily produce the modified substance; an intermediate thereof; and a bio-related substance to which the multibranched polyoxyalkylene derivative is bonded. The novel multibranched polyoxyalkylene derivative according to the invention is a polyoxyalkylene derivative (1) having a functional group reactive with a bio-related substance and the bio-related substance according to the invention has a structure modified with the above polyoxyalkylene derivative (1) by a reaction. Furthermore, the intermediate for the production of the novel multibranched polyoxyalkylene derivative according to the invention is a polyoxyalkylene derivative (A).
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: December 6, 2011
    Assignee: NOF Corporation
    Inventors: Kenji Sakanoue, Hiroki Yoshioka, Tomohiro Shirosaki
  • Patent number: 8058388
    Abstract: The invention relates to a process for preparing polyethers of the formula (I) R1—(CHR2CHR3—O)n—H??(I) where n=1 to 12 000, R1=a radical comprising at least one carbon atom and R2 and R3 are each independently H or a hydrocarbon radical, where the units designated with the index n may be the same or different (the R2 and R3 radicals in the different units n may thus be the same or different), by alkoxylating a starter compound which comprises the R1 radical in the presence of a double metal cyanide catalyst (DMC catalyst) in a loop reactor, which is characterized in that the alkoxylation is performed in a loop reactor which has an ejector mixing nozzle, in which all substances involved in the reaction or assistants can be added to the circulated reaction mixture, an alkylene oxide or a plurality of different alkylene oxides being metered into the reaction mixture via the ejector mixing nozzle at the same time (random addition) or at different times (block addition).
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 15, 2011
    Assignee: Evonik Goldschmidt GmbH
    Inventors: Andreas Sellmann, Irina Neisius-Sellmann, legal representative, Volker Zellmer
  • Patent number: 8053607
    Abstract: A method for producing a polyether-polyol having a narrow molecular weight distribution, which comprises carrying out selective fractional extraction of the low-molecular weight component from a polyether-polyol (A) having an average molecular weight of from 500 to 4500 represented by formula (1): HO—[(CH2)4O]n—[(CR1R2)pO]q—H??(1) wherein R1 and R2, which may be the same or different, each represents a hydrogen atom or a linear or branched alkyl group having from 1 to 5 carbon atoms; n indicates a positive integer; p indicates an integer of from 1 to 8; and q indicates 0 or a positive integer, by the use of an aqueous solution (C) containing from 15 to 70 wt % sulfuric acid at a room temperature to 100° C., to thereby suitably determine the amount of the aqueous sulfuric acid solution to the overall organic layer and the sulfuric acid concentration in accordance with the molecular weight and molecular weight distribution of the intended polyether-polyol to be fractionally extracted.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 8, 2011
    Assignee: Hodogaya Chemical Co., Ltd.
    Inventors: Kazuaki Okabe, Hiroshi Nakaoka, Ikuhiko Kanehira
  • Publication number: 20110269789
    Abstract: Provided herein are compounds and methods for achieving a sustained therapeutic effect of small molecule anti-cancer agents when administered in vivo.
    Type: Application
    Filed: September 23, 2009
    Publication date: November 3, 2011
    Applicant: Nektar Therapeutics
    Inventors: Michael A. Eldon, Shibani S. Harite, Tamra L. Barker
  • Publication number: 20110236957
    Abstract: Compositions and methods for labeling biological targets using a conjugate of a luminescent component and a targeting molecule attached to a nanoparticle core structure are described. The labeling conjugates offer high intensity and low background, and are ideal for histology and pathology.
    Type: Application
    Filed: October 2, 2009
    Publication date: September 29, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Kevin C. Weng
  • Patent number: 8017814
    Abstract: A process for the preparation of a polyether polyol containing at most about 15 ppm of sodium and potassium, comprising: (a) reacting an initiator having at least two active hydrogen atoms with at least one alkylene oxide in the presence of a catalyst having an alkali metal hydroxide to form a polyether polyol reaction product; (b) neutralizing the polyether polyol reaction product obtained in step (a) by contacting this reaction product with phosphoric acid and water; and (c) removing the salt crystals from the polyether polyol and recovering the neutralized polyether polyol containing at most about 15 ppm of sodium and potassium, wherein no adsorption agent and no hydrate of a metal salt of the acid are used before, during or after the neutralization.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 13, 2011
    Assignee: Shell Oil Company
    Inventors: Melis Hasselaar, Parminder Singh Sangha, Andreas Wilhelmus De Winter
  • Publication number: 20110178338
    Abstract: To provide a catalyst composed of a salt of a phosphazenium cation and an active hydrogen compound anion, which can be easily synthesized, does not contain metal components at all, and does not leave any odor on a resulting product; a method for its production; and an economical and efficient method for producing a polyalkylene oxide by means thereof. A salt of a phosphazenium cation and an active hydrogen compound anion, represented by the following formula (2): [in the above formula (2), each of R1 and R2 which are independent of each other, is a C1-10 alkyl group, an unsubstituted or substituted C6-10 phenyl group, or an unsubstituted or substituted C6-10 phenylalkyl group, provided that R1 and R2, or R2's, may be bonded to each other to form a ring structure, n is a real number of from 1 to 8, and Yn- is an anion of an active hydrogen compound which is obtained by removing n protons from an active hydrogen compound Y] is used as a polyalkylene glycol producing catalyst.
    Type: Application
    Filed: October 2, 2009
    Publication date: July 21, 2011
    Inventors: Toshihide Yamamoto, Yoshiaki Inoue
  • Publication number: 20110133114
    Abstract: Provided is a refrigerating machine oil composition including a base oil which contains at least one substance selected from the group consisting of monoether compounds, alkyleneglycol diethers, and polyoxyalkyleneglycol diethers having an average repetition number of an oxyalkylene group of 2 or less as a main component, and has a kinematic viscosity at 40° C. of 1 to 8 mm2/s. The refrigerating machine oil composition is preferably applied to refrigerators whose sliding parts are composed of an engineering plastic or provided with an organic coating film or an inorganic coating film. The refrigerating machine oil can improve energy-saving performance due to its low viscosity, has high sealing property and excellent load capacity, and is suitably used in various refrigeration applications, especially in closed-type refrigerators.
    Type: Application
    Filed: February 14, 2011
    Publication date: June 9, 2011
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventor: Masato KANEKO
  • Publication number: 20110120304
    Abstract: The invention relates to a method for producing membrane, in particular gas separation membrane, wherein the membrane comprises a selective separating layer. The following steps are carried out: a) a polymer solution is produced from at least one polymer and at least one polyglycol ether, b) the polymer solution is cast into a film, c) in a further step, the selective separating layer is produced from the film, preferably by drying. The invention, among other things, further relates to a membrane, in particular gas separation membrane, comprising a selective separating layer.
    Type: Application
    Filed: December 22, 2010
    Publication date: May 26, 2011
    Inventors: Klaus-Viktor Peinemann, Grete Johannsen, Wilfredo Yave Rios, Anja Car
  • Publication number: 20110124844
    Abstract: Aspects of the present invention are directed to novel methods for making discrete polyethylene compounds selectively and specifically to a predetermined number of ethylene oxide units. Methods which can be used to build up larger dPEG compounds (a) containing a wider range of utility to make useful homo- and heterofunctional and branched species, and (b) under reaction configurations and conditions that are milder, more efficient, more diverse in terms of incorporating useful functionality, more controllable, and more versatile then any conventional method reported in the art to date. In addition, the embodiments of the invention allow for processes that allow for significantly improving the ability to purify the intermediates or final product mixtures, making these methods useful for commerial manufacturing dPEGs. Protecting groups and functional groups can be designed to make purification at large scale a practical reality.
    Type: Application
    Filed: January 27, 2011
    Publication date: May 26, 2011
    Inventors: Paul D. Davis, Edward C. Crapps
  • Publication number: 20110112332
    Abstract: Disclosed is an improvement to a polyether preparation process that includes a coalescing step. Amine-initiated polyethers prepared using a mixed alkylene oxide feed tend to coalesce significantly more slowly than glycerin-initiated polyethers, particularly in processes that include a holding step and/or elevated temperature following an initial alkoxylation to form a pre-polymer. This improvement is to perform a remedial end-capping of the pre-polymer, which may include amine degradation products, using an alkylene oxide which contains at least (3) carbons, prior to the molecular weight-building alkoxylation with the mixed alkylene oxide feed. The rate and performance of coalescing thereafter may be substantially enhanced.
    Type: Application
    Filed: July 22, 2009
    Publication date: May 12, 2011
    Applicant: Dow Global Technologies Inc.
    Inventors: Sunil K. Chaudhary, Jean P. Chauvel, Christopher P. Christenson, Istvan Lengyel, James P. Cosman, John W. Weston, Katie Fischer, David A. McCrery
  • Publication number: 20110077434
    Abstract: In the present invention, when polyoxyalkylene alkyl ethers are produced by adding propylene oxide to a linear alcohol in the presence of an alkali catalyst, the proportion of the alkali catalyst and the proportion of propylene oxide, per mole of active hydrogen of the linear alcohol, are in specific ranges respectively and the temperature in the addition between the linear alcohol and propylene oxide is in a specific range.
    Type: Application
    Filed: December 26, 2008
    Publication date: March 31, 2011
    Applicant: KAO CORPORATION
    Inventors: Yasuki Ohtawa, Yoshifumi Nishimoto, Tetsuaki Fukushima
  • Publication number: 20110077433
    Abstract: Processes for reducing the color of polytrimethylene ether glycol or copolymers thereof are provided. The processes include polycondensing diols in the presence of an acid catalyst and adding base continuously over a period of the polycondensation reaction. The invention also relates to the polytrimethylene ether glycol thereof produced by these processes.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 31, 2011
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Aaron Minter, Edward R. Murphy, Howard C. Ng, Rupert Spence, Tuyu Xie
  • Publication number: 20110060115
    Abstract: Methods of producing a hybrid petro-plant oil polyol having a high bio-content by coupling a petro-chemical polyol with a plant oil based polyol is provided, including coupling an intermediate petro-polyol prepolymer with a plant oil polyol so as to synthesize a hybrid petro-plant oil polyol having a high bio-content and a hydroxyl number of between about 50 and 60.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 10, 2011
    Applicant: MCPU Polymer Engineering LLC, a California limited liability company
    Inventors: Thomas M. Garret, Xian Xian Du
  • Publication number: 20100323948
    Abstract: The invention relates to selected surface-active substances of groups a) and b), the surface-active compound a) being selected from compounds of general formula (Ia), wherein M represents a group CH2—CH2 or CHR—CH2, R, R? or R? independently represent saturated, unsaturated, linear or branched alkyl groups or alkenyl groups with 6 to 22 C atoms, and the indices n and m independently can have values between 1 and 40, and/or compounds of general formula (Ib), wherein R?? and R?? independently represent saturated, unsaturated, linear or branched alkyl groups or alkenyl groups with 4 to 22 C atoms, and the indices n and m independently can have values between 1 and 40 and X? and X? independently represent H or saturated, unsaturated, linear or branched alkyl groups or alkenyl groups with 1 to 18 C atoms.
    Type: Application
    Filed: February 6, 2009
    Publication date: December 23, 2010
    Inventors: Teresa Alexandre, Hans-Christian Raths, Manfred Weuthen, Sabine Both
  • Patent number: 7714174
    Abstract: The present invention relates to a process for preparing lower-color polytrimethylene ether glycol, comprising contacting said polytrimethylene ether glycol, or its precursor reaction-mixture, with a hydride compound during at least one stage of the process of manufacture, or on the polytrimethylene ether glycol resulting form such process, such that the polytrimethylene ether glycol demonstrates a reduced color (as compared to using no hydride compound).
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: May 11, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Yanhui Niu, Zuohong Yin
  • Publication number: 20090297609
    Abstract: The present invention provides a method for the covalent immobilization of biomolecules on polymers for delivery of the biomolecules, which has the advantage of being simple, highly efficient, environmentally friendly and free of side products relative to traditional immobilization techniques. The invention provides a modified micro/nanoparticle system, which uses a functionalized polymer formed into micro or nanoparticles to bind a molecule to the particles using uses facile chemistry, the Diels-Alder cycloaddition between a diene and a dienophile with the polymer being functionalized with one of them and the molecule with the other, or the Huisgen 1,3-dipolar cycloaddition between a terminal alkyne and an azide to bind the molecule to the particle. The molecules and/or other therapeutic agents may be encapsulated within the polymer particles for intravenous therapeutic delivery.
    Type: Application
    Filed: July 6, 2006
    Publication date: December 3, 2009
    Inventors: Molly S. Shoichet, Yumin Yuan, Meng Shi, Jordan Wosnick
  • Publication number: 20090220407
    Abstract: Disclosed are methods for forming carbon nano-onions. The methods include annealing a carbon nanodiamond starting material in an inert atmosphere. The method can be carried out at ambient pressure. Also disclosed are methods for functionalizing carbon nano-onions. For instance, carbon nano-onions can be functionalized so as to be soluble in aqueous or organic solvents, as desired. Also disclosed are methods for separating mixtures of carbon nano-onions. In particular, mixtures of carbon nano-onions can be separated from one another based upon differences in electrochemical characteristics of the different nano-onions.
    Type: Application
    Filed: August 15, 2006
    Publication date: September 3, 2009
    Inventors: Luis Echegoyen, Amit J. Palkar, Arno S. Rettenbacher, Frederic Melin, Bevan Elliot
  • Patent number: 7553921
    Abstract: A polyether polyol composition, the reactivity of which with a polyisocyanate can be controlled, to thereby obtain an isocyanate group-terminated prepolymer having excellent storage stability. A polyether polyol composition comprising a polyether polyol obtained by a ring-opening polymerization of an alkylene oxide in the presence of a composite metal cyanide complex catalyst, and a phosphoric acid compound comprising a phosphoric acid selected from orthophosphoric acid, polyphosphoric acid and polymetaphosphoric acid, and/ or a partial ester of such a phosphoric acid, wherein the polyether polyol composition contains metals derived from the composite metal cyanide complex catalyst in an amount of from 1 to 30 ppm based on the polyether polyol, and the above phosphoric acid compound in an amount of from 0.5 to 100 ppm based on the polyether polyol.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: June 30, 2009
    Assignee: Asahi Glass Company, Limited
    Inventors: Chitoshi Suzuki, Hiroki Fukuda, Shigeru Ikai
  • Patent number: 7226988
    Abstract: A polyether polyol is formed by a method utilizing a carboxy-modified aluminum-based catalyst. The method includes providing an alkylene oxide, providing an initiator molecule having at least one alkylene oxide reactive hydrogen, and reacting the alkylene oxide with the initiator molecule in the presence of the catalyst. The ideal carboxy-modified aluminum based catalysts used herein are selected from the group of carboxy-modified aluminum phosphate catalysts, carboxy-modified aluminum phosphonate catalysts, and residues or mixtures thereof.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: June 5, 2007
    Assignee: BASF Corporation
    Inventor: Edward Michael Dexheimer
  • Patent number: 7132574
    Abstract: A process for preparing perfluoropolyethers having at least one —CH2OH or —CH(CF3)OH end group by reaction of the corresponding pefluoropolyethers having at least one carboxylic —COOH or ketonic —(CF3)C?O end group with gaseous hydrogen, between 80° C. and 140° C., in the presence of hydrogenation catalysts.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: November 7, 2006
    Assignee: Solvay Solexis S.p.A.
    Inventors: Rosaldo Picozzi, Claudio Tonelli
  • Patent number: 7022884
    Abstract: Polyetherpolyols are prepared by reacting diols or polyols with ethylene oxide, propylene oxide, butylene oxide or a mixture thereof in the presence of a multimetal cyanide complex catalyst by a process which is carried out in a vertical, highly cylindrical reactor having a central stirrer and having heat exchanger plates through which a heat-exchange medium flows and which are arranged essentially in the longitudinal direction of the reactor, at an angle ? of from 0 to 70° in the direction of rotation of the stirrer relative to the reactor radius.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: April 4, 2006
    Assignee: Basf Aktiengesellschaft
    Inventors: Thomas Ostrowski, Kathrin Harre, Georg Heinrich Grosch, Jürgen Winkler
  • Patent number: 7015364
    Abstract: A process for preparing polyether polyols includes a precipitation step, a recrystallization step, and a reaction step. In the precipitation step, a multimetal cyanide compound is precipitated by reaction of a metal salt with a cyanometalate compound. In the recrystallization step, the multimetal cyanide compound precipitated above is recrystallized by adding further metal salt and/or further cyanometalate compound. The recrystallization forms a multimetal cyanide catalyst compound. In the reaction step, an initiator and one or more alkylene oxide are reacted in the presence of the multimetal cyanide catalyst compound.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 21, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Dirk Franke, Manfred Munzinger, Kathrin Harre, Eva Baum, Michael Stösser
  • Patent number: 6919486
    Abstract: A method for the production of polyetherols using aluminum phosphonate catalysts is disclosed. Reaction products of the process include various polyetherols including very low unsaturation polyether polyols. The aluminum phosphonate catalyst preferably has a general structure of RPO-(OAlR?R?)2, wherein O represents oxygen, P represents pentavalent phosphorous, Al represents aluminum, R comprises a hydrogen, an alkyl group, or an aryl group, and R? and R? independently comprise a halide, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group. Polyols produced according to the disclosed procedure have properties very similar to or more beneficial than those produced utilizing the typical base catalysts.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 19, 2005
    Assignee: BASF Corporation
    Inventor: Edward M. Dexheimer
  • Patent number: 6878661
    Abstract: The invention relates to novel double metal cyanide (DMC) catalysts for the preparation of polyether polyols by polyaddition of alkylene oxides to starter compounds containing active hydrogen atoms, wherein the catalyst contains a) double metal cyanide compounds, b) organic complex ligands other than c), and c) complex ligands formed by introduction of a glycidyl ether into the catalyst. The catalysts according to the invention have greatly increased activity in the preparation of polyether polyols.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: April 12, 2005
    Assignee: Bsyer Aktiengesellschaft
    Inventors: Pieter Ooms, Jörg Hofmann, Pramod Gupta, Walter Schäfer
  • Patent number: 6858761
    Abstract: The present invention provides a process and its utilization in a process comprising the step of carrying out an addition reaction of an alkylene oxide to an addition-receiving substance in the presence of a resin catalyst, thereby producing the addition reaction product, when the resin catalyst as used for the reaction is persevered so as to recycle it after it is recovered, the unreacted alkylene oxide remaining in the resin catalyst can be prevented from polymerizing and solidifying during the preservation, and the resin catalyst accordingly can be preserved stably for a long time. The resin catalyst as recovered after it is used for the reaction may be preserved under any of the following conditions: 1) at a low temperature of not higher than 40° C.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: February 22, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yukihiro Yoneda, Tokumasa Ishida, Masahiro Uemura
  • Patent number: 6812367
    Abstract: Polyethylene glycol for use in fields with application to a living body wherein the sum of the contents of ethylene glycol and diethylene glycol in the polyethylene glycol is less than or equal to that expressed in the following formula [I]: Sum ⁢   ⁢ of ⁢   ⁢ ethylene ⁢   ⁢ glycol ⁢   ⁢ and ⁢   ⁢ diethylene ⁢   ⁢ glycol ⁢   ⁢ contents ⁢  
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: November 2, 2004
    Assignee: NOF Corporation
    Inventors: Kenji Sakanoue, Kouzoh Sanchika, Tohru Yasukohchi
  • Patent number: 6806393
    Abstract: In multimetal cyanide complexes, more than 30% by weight of the primary particles have a platelet-like habit, i.e. the length and width of the primary particles is at least three times the thickness of the particles.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: October 19, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Kathrin Harre, Jörg Erbes, Reinhard Lorenz, Stephan Bauer, Thomas Ostrowski, Eva Baum, Dieter Junge
  • Patent number: 6740686
    Abstract: The invention concerns a method for making a polyurethane foam by reacting at least a polyester polyol with at least a polyisocyanate in the presence of a foaming agent and a catalytic agent, such a polyester polyol having been previously obtained by reacting a reactive acid A comprising at least an aliphatic or aromatic polyacid with functionality not less than 2 with at least a polyol P2 with functionality equal to 2 and at least an aliphatic or aromatic polyacid with functionality not less than 2 with at least a polyol P2 with functionality equal to 2 and at least a polyol P3 with functionality not less than 3, being thereafter called AP2P3, wherein the catalytic agent at least partly consists of at least one amine polyester polyol AP2P3, wherein at least part of polyol P3 consists of at least a polyoxyalkylene polyalkanolamine having at least a tertiary amine function, the alkanol radicals of said polyalkanolamine being C1-C6, the alkylene oxide units being C2-C4 and the statistical mean of the number N o
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 25, 2004
    Assignee: Crompton Corporation
    Inventors: Denis Ghesquiere, Remy Dumont
  • Patent number: 6717019
    Abstract: The present invention pertains to glycidyl ether-capped acetylenic diol ethoxylates having a structure according to the formula: wherein R1 is hydrogen or a linear, branched, or cyclic alkyl group having from 1 to about 6 carbon atoms; R2 is a linear, branched, or cyclic alkyl group having from 1 to about 12 carbon atoms; R3=—CH2OR4; R4 is a linear, branched, or cyclic alkyl, alkenyl, aryl, or aralkyl group having from 2 to about 30 carbon atoms; (n+m) is from 1 to about 100; and (p+q) is from 0.5 to about 5 and its use to reduce equilibrium and dynamic surface tension in water-based compositions containing an organic or inorganic compound, particularly aqueous organic coating, ink, acid gas scrubbing and agricultural compositions.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: April 6, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Kevin Rodney Lassila
  • Patent number: 6664428
    Abstract: A process for the preparation of polyetherpolyols by reacting diols or polyols with ethylene oxide, propylene oxide, butylene oxide or a mixture thereof in the presence of a multimetal cyanide complex catalyst is proposed, the reaction being carried out in a stirred kettle reactor and the reaction mixture being circulated via an external heat exchanger by means of a pump.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: December 16, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Ostrowski, Kathrin Harre, Georg Heinrich Grosch, Gerd Höppner, Peter de Vocht, Dirk Leys, Jürgen Winkler, Stephan Bauer
  • Patent number: 6646145
    Abstract: Processes for preparing alkoxylated nonionic surfactants are disclosed, wherein a compound having at least one active hydrogen atom, a carboxylic acid ester or mixtures thereof are reacted with an alkylene oxide in the presence of a hydrotalcite catalyst to form a reaction product mixture; and the reaction product mixture is combined with an acid in at least an equimolar amount based on the amount of the catalyst present.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: November 11, 2003
    Assignee: Cognis Deutschland GmbH
    Inventors: Ansgar Behler, Horst-Dieter Schares, Almud Folge
  • Patent number: 6620976
    Abstract: Polyethylene glycol for use in fields with application to a living body wherein the sum of the contents of ethylene glycol and diethylene glycol in the polyethylene glycol is less than or equal to that expressed in the following formula [I]: Sum ⁢   ⁢ of ⁢   ⁢ ethylene ⁢   ⁢ glycol ⁢   ⁢ and ⁢   ⁢ diethylene ⁢   ⁢ glycol ⁢   ⁢ contents ⁢  
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: September 16, 2003
    Assignee: NOF Corporation
    Inventors: Kenji Sakanoue, Kouzoh Sanchika, Tohru Yasukohchi
  • Patent number: 6608231
    Abstract: The invention relates to novel double metal cyanide (DMC) catalysts for the preparation of polyether polyols by polyaddition of alkylene oxides to starter compounds containing active hydrogen atoms, wherein the catalyst contains a) double metal cyanide compounds, b) organic complex ligands other than c), and c) carboxylic acid ester of polyhydric alcohols. The catalysts according to the invention have greatly increased activity in the preparation of polyether polyols.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: August 19, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Pieter Ooms, Jörg Hofmann, Pramod Gupta
  • Patent number: 6586564
    Abstract: The invention relates to double-metal cyanide (DMC) catalysts for preparing polyether polyols by the polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, wherein the DMC catalysts are composed of: a) at least one DMC compound; b) at least one organic complexing ligand which is not a coronand; and c) at least one coronand. The DMC catalysts of the present invention have increased activity compared to known catalysts.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: July 1, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Walter Schäfer, Jörg Hofmann, Pieter Ooms
  • Patent number: 6540942
    Abstract: Nonaqueous compositions comprising at least one product of the reaction between A) a linking agent of formula I R4(Y)3  (I) Wherein each Y group is a halogen atom or one Y group is a halogen atom and two Y groups represent an epoxy oxygen atom, which is attached to two adjacent carbon atoms in the R4 group to form an epoxy group, and R4 is an alkanetriyl group containing from 3 to 10 carbon atoms; and B) a compound of formula II R3(EO)n(PO)m(BO)pX  (II) Wherein R3 is substituted or unsubstituted, saturated or unsaturated, organic oxy or thio group having from 1 to 36 carbon atoms or a primary or secondary amino group having from 1 to 36 carbon atoms; n is a number of from 0 to 50; m is a number of from 0 to 50; p is a number of from 0 to 50; and X is hydrogen, or X can be a mercapto group, an amino group, or a C1-C6 alkylamino group in place of a terminal —OH group, provided that when X is mercapto, amino or a C1-C6 alkylamino, the sum of n, m, and p must be at least 1; and the
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: April 1, 2003
    Assignee: Cognis Corporation
    Inventors: Miguel A. Dones, Ramesh L. Narayan
  • Patent number: 6531566
    Abstract: A polyoxyalkylene polyol or monool (I) of the general formula (1) below, in which not less than 40% of the terminally located hydroxyl-containing groups, namely —AO—H groups, are primary hydroxyl-containing groups of the general formula (2) below, or; a method of producing ring-opening polymerization products, by subjecting a heterocyclic compound to ring-opening addition polymerization with an active hydrogen-containing compound, using as a catalyst tris(pentafluorophenyl)borane, tris(pentafluorophenyl)aluminum, etc.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: March 11, 2003
    Assignee: Sanyo Chemical Industries, Ltd.
    Inventor: Munekazu Satake
  • Patent number: 6515036
    Abstract: A method of recovering a decomposition product from a polyurethane, the method comprising the steps of thermally decomposing a polyurethane into a liquid containing a polyol and a urea compound which is soluble in the polyol, and solids containing a urea compound which is insoluble in the liquid in the presence of a polyamine compound at a temperature of 120 to 250° C.; removing the solids; hydrolyzing the residue with water retained at a high temperature of 200 to 320° C. and a high pressure; and recovering the resulting polyamine and/or polyol.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: February 4, 2003
    Assignee: Mitsui Takeda Chemicals Inc.
    Inventors: Koichi Murayama, Katsuhisa Kodama, Takashi Kumaki
  • Patent number: 6486354
    Abstract: Embodiments of the present invention generally relate to carrying out organic chemistry on solid supports comprising derivatised functionalities, methods for synthesizing said supports, methods for synthesizing compounds comprising amine groups or N-containing heterocycles using said solid supports, intermediate compounds linked to said supports and uses thereof.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: November 26, 2002
    Assignee: Akzo Nobel N.V.
    Inventors: David Gani, Friedrich Erich Karl Kroll, Michael John Plater, John Richard Morphy, David Rees
  • Patent number: 6465605
    Abstract: Polymeric compounds useful as low foaming surfactants and defoaming and stabilizing agents for aqueous-and nonaqueous-based compositions, and to processes for the preparation of the polymeric compounds, wherein the polymeric compounds are the reaction products of reactants comprising A) at least one linking compound of formula I R1(X)3  (I) wherein each X group is a halogen atom or one X group is a halogen atom and two X groups represent an epoxy oxygen atom, which is attached to two adjacent carbon atoms in the R1 group to form an epoxy group, and R1 is an alkanetriyl group containing from 3 to 10 carbon atoms; and B) compounds of formula 11 R2(OA)nX  (II) wherein R2 is an organic group containing from 4 to 36 carbon atoms, n is a number of from 0 to 200, X is —OH, —NHR′, or —SH and each OA group is independently an ethyleneoxy, 1,2-propyleneoxy, or 1,2-butyleneoxy group.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: October 15, 2002
    Assignee: Cognis Corporation
    Inventors: Kenneth Breindel, Ronald W. Broadbent, Michael S. Wiggins, Marcie Natale
  • Patent number: 6403842
    Abstract: Disclosed are a process for producing a poly(alkylene ether) glycol which comprises polymerizing a cyclic ether in the presence of at least a catalyst and a carboxylic acid anhydride, wherein the carboxylic acid anhydride has a ketene dimer content of 50 ppm or lower, and a process for producing a poly(alkylene ether) glycol which comprises polymerizing a cyclic ether in the presence of at least a catalyst and acetic anhydride, wherein the acetic anhydride is purified acetic anhydride obtained by treating acetic anhydride by contacting with at least one of a metal oxide and a mixed oxide, and optionally, distilling the acetic anhydride simultaneously with or after the contact treatment.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: June 11, 2002
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Mitsuharu Kobayashi, Nobuyuki Murai
  • Patent number: 6359101
    Abstract: A process for making polyether polyols employing a double metal cyanide (DMC) catalyst with specific low molecular weight polyether polyols as starters in combination with specific reaction conditions and impurity levels.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: March 19, 2002
    Assignee: SynUthane International, Inc.
    Inventors: James M. O'Connor, Donald L. Lickei, Robin L. Grieve
  • Patent number: 6350920
    Abstract: Polyether polyols can be prepared by reacting polyols with epoxides in the presence of basic catalysts, by treating the polyether polyols containing the basic catalysts with OH-functional solid compounds of metals of groups III to VIII of the periodic system of the elements (Mendeleyev), the compounds being insoluble in the polyether polyols and having BET surface areas of from 10 to 1000 m2/g, isolating the solid inorganic compounds laden with the basic catalysts from the polyether polyol and using them in the reaction of polyols with epoxides, or bringing the isolated inorganic compounds laden with the basic catalysts into contact with the polyols that are to be used in the reaction with epoxides, separating those polyols from the inorganic compounds and delivering them to the reaction with epoxides.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: February 26, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Hans-Josef Buysch, Manfred Dietrich, Pramod Gupta, Pieter Ooms
  • Patent number: 6323375
    Abstract: The present invention relates to highly active, substantially crystalline double metal cyanide (DMC) catalysts, a process for the preparation of these double metal cyanide catalysts, a process for producing polyether polyols by the polyaddition of alcohol ethers onto starter compounds containing active hydrogen atoms from these DMC catalysts, and to the polyether polyols produced by this process. The DMC catalysts of the invention comprise a) double metal cyanide compounds, b) organic complexing ligands, and c) functionalized polymers. These catalysts exhibit increased activity in the process for the production of polyether polyols.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: November 27, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Jörg Hofmann, Pramod Gupta, Robert-Joseph Kumpf, Pieter Ooms, Walter Schäfer, Michael Schneider
  • Patent number: 6313060
    Abstract: A resilient polyurethane foam produced by using a polyether polyol produced by reacting alkylene oxides with a polyhydroxy compound having at least 2 hydroxyl groups as an initiator in the presence of the catalyst for alkylene oxide ring-opening polymerization of the present invention, which is excellent in foam physical properties, vibration characteristics and molding properties.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: November 6, 2001
    Assignee: Asahi Glass Company, Limited
    Inventors: Kayoko Sugiyama, Hiroki Fukuda, Akio Horie, Hiroshi Wada
  • Patent number: 6303833
    Abstract: A crystalline multimetal cyanide complex of the formula (I) M1a[M2(CN)bL1c]d*e(M1fXg)*hL2′iH2O  (I) where M1 is at least one element from the group consisting of Zn(II), Fe(II), Co(III), Ni(II), Mn(II), Co(II), Sn(II).
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: October 16, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Harald Larbig, Reinhard Lorenz, Dieter Junge, Eugen Gehrer, Ulrich Treuling
  • Patent number: 6255537
    Abstract: There is provided a process for preparing a poly(alkylene oxide) by using a polymerization initiator which does not cause any problem on preparing and handling in the preparation of the polyalkylene oxide by polymerizing an alkylene oxide compound and does not require a special treatment before the initiation of the polymerization. That is, it is a process of polymerizing the alkylene oxide compound in the presence of a phosphine oxide compound represented by the formula (1): wherein R is the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and x represents an amount of water molecules contained in terms of a molar ratio and is within a range from 0 to 5.0, or in the presence of said phosphine oxide compound and an active hydrogen compound selected from water or an organic compound having a partial structural formula —OH or —NH—.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: July 3, 2001
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takaomi Hayashi, Katsuhiko Funaki, Atsushi Shibahara, Kazumi Mizutani, Isao Hara, Shinji Kiyono, Tadahito Nobori, Usaji Takaki
  • Patent number: 6248889
    Abstract: A process for preparing a fluoride from its corresponding alcohol comprises the steps of (a) forming a mixture comprising (i) at least one fluorinated, saturated aliphatic or alicyclic sulfonyl fluoride (for example, perfluorobutanesulfonyl fluoride) and (ii) at least one primary or secondary alcohol; and (b) adding a molar excess of at least one strong, aprotic, non-nucleophilic, hindered, double bond-containing, organic base (for example, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)) to the mixture.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: June 19, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Patricia M. Savu, Daniel C. Snustad
  • Patent number: RE38558
    Abstract: The present invention comprises novel preparations of polyoxypropylene/polyoxyethylene copolymers which retain the therapeutic activity of the commercial preparations, but are substantially free from the undesirable effects which are inherent in the prior art preparations. Because the preparations of polyoxypropylene/polyoxyethylene copolymers which comprise the present invention are a less polydisperse population of molecules than the prior art polyoxypropylene/polyoxyethylene copolymers, the biological activity of the copolymers is better defined and more predictable.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: July 20, 2004
    Assignee: CytRx Corporation
    Inventors: R. Martin Emanuele, Robert L. Hunter, Paula H. Culbreth