Using Catalyst And Additional Nonmetal Material Patents (Class 585/261)
  • Publication number: 20020128528
    Abstract: A process for treatment of a batch with four carbon atoms that contains diene compounds and a minor portion of acetylene compounds is described. A portion of the fluid that circulates in a distillation zone that is enriched with acetylene compounds is drawn off laterally, preferably in the drainage zone, and a selective hydrogenation stage is carried out in a hydrogenation zone that is outside the distillation zone. The hydrogenation effluent that is produced is recycled in the rectification zone. A C4 fraction that comprises butadiene and that is low in acetylene compounds is recovered at the top, and a C5 fraction that is enriched with oligomers is recovered at the bottom.
    Type: Application
    Filed: December 21, 2001
    Publication date: September 12, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Mathieu Pinault, Vincent Coupard, Christophe Boyer
  • Publication number: 20020068843
    Abstract: This invention relates to a selective hydrogenation catalyst for the seletive hydrogenation of unsaturated hydrocarbons, a process for preparing this catalyst and its use. The catalyst of the invention comprises supporter, active component Pd, rare earth metals, and auxiliary metal Bi, Ag etc. The catalyst is able to hydrogenate high-unsaturated hydrocarbons such as alkyne with high selectivity at high space velocity while both green oil formation and carbon deposition on catalyst are very low, and it is very applicable to industrial cracking process.
    Type: Application
    Filed: October 1, 2001
    Publication date: June 6, 2002
    Inventors: Wei Dai, Jing Zhu, Hui Peng, Yanlai Guo, Wei Mu, Helong Li, Qingzhou Cui
  • Patent number: 6388162
    Abstract: The invention pertains to a process of removing dienes from an olefin feedstock. A preferred olefin feedstock is for the production of primary alcohol compositions by skeletal isomerization of the olefins followed by hydroformylation. In this preferred embodiment, the olefin feedstock may be purified before and/or after skeletal isomerization. The olefins in the feedstock preferably have a carbon chain length of about 8 to about 36 carbon atoms, preferably about 10 to about 20 carbon atoms, most preferably about 12 to about 18 carbon atoms.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: May 14, 2002
    Assignee: Shell Oil Company
    Inventors: Paul B. Himelfarb, Cornelius Mark Bolinger
  • Publication number: 20020002315
    Abstract: A process is provided for the selective hydrogenation of dienes from a mixed hydrocarbon stream. The catalyst contains nickel in an amount between approximately 5 and 15 weight percent and, alternatively, may contain nickel oxide and molybdenum oxide in an amount between approximately 3 to 6 and 12 to 25 weight percent, respectively. The catalyst metals are on an aluminum oxide support. The process does not require any activation or pre-treatment of the catalyst. No sulfur is added to the reaction zone and the catalyst is not adversely affected by the presence of up to 0.20% by weight of sulfur in the feed stream. According to the process, conjugated dienes are reduced by at least 80 to 90%.
    Type: Application
    Filed: January 4, 2000
    Publication date: January 3, 2002
    Inventors: Kevin Peter Kelly, James Roy Butler
  • Patent number: 6329561
    Abstract: The method of producing high purity isooctane useful as a gasoline blending component from diisobutylene or isooctane contaminated with minor amounts of oxygenated impurities which comprises converting the impurities at conditions of elevated temperature and pressure to hydrocarbon and water and recovering the purified diisobutylene or isooctane stream.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: December 11, 2001
    Assignee: Equistar Chemicals, LP
    Inventors: Kenneth M. Webber, Mark P. Kaminsky, Andrew P. Kahn
  • Publication number: 20010047119
    Abstract: A solid acid-base catalyst contains vanadium pentoxide hydrate.
    Type: Application
    Filed: March 15, 1999
    Publication date: November 29, 2001
    Inventors: NOBUJI KISHIMOTO, ETSUSHIGE MATSUNAMI
  • Patent number: 6255548
    Abstract: A process for selective hydrogenation of unsaturated compounds such as acetylenic compounds or diolefins is carried out in the presence of a catalyst comprising at least one support, at least one metal from group VIII of the periodic table and at least one additional element M selected from the group formed by germanium, tin, lead, rhenium, gallium, indium, gold, silver and thallium. The process is characterized in that the catalyst is prepared using a process in which said metal M is introduced in an aqueous solvent, in the form of at least one organometallic compound comprising at least one carbon-M bond.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: July 3, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Fabienne Le Peltier
  • Patent number: 6169218
    Abstract: A process for the selective hydrogenation of the diolefins and acetylenic compounds in a olefin rich aliphatic hydrocarbon streams is disclosed wherein the selective hydrogenation is carried out at 40 to 300° F. under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig in a distillation column reactor containing a hydrogenation catalyst which serves as a component of a distillation structure, such as supported PdO encased in tubular wire mesh. Essentially no hydrogenation of the olefins occurs.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: January 2, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Edward M. Jones, Jr., Lawrence A. Smith, Jr., Gary R. Gildert
  • Patent number: 6127588
    Abstract: A supported hydrogenation catalyst composition is disclosed which comprises palladium, an inorganic support such as alumina, and a selectivity enhancer selected from the group consisting of silver, phosphorus, sulfur, and combinations of two or more thereof. Also disclosed is a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are hydrogenated with hydrogen to less unsaturated hydrocarbons such as monoolefins.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: October 3, 2000
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, Joseph J. Bergmeister
  • Patent number: 6124514
    Abstract: A process is disclosed for generating pure aromatic compounds from a reformed gasoline which contains aromatic compounds, olefins, diolefin, and triolefins, which comprises the steps of:(a) selectively hydrogenating the olefins, diolefins and triolefins in the reformed gasoline to obtain a mixture of hydrogenated, non-aromatic compounds and aromatic compounds; and(b) separating the aromatic compounds from the hydrogenated, non-aromatic compounds in the mixture formed during step (a) by either extractive distillation, liquid--liquid extraction or both to obtain the pure aromatic compounds.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: September 26, 2000
    Assignee: Krupp Uhde GmbH
    Inventors: Gerd Emmrich, Hans-Christoph Schneider, Helmut Gehrke, Bernhard Firnhaber
  • Patent number: 6118034
    Abstract: In the process for the selective hydrogenation of dienes in diene-containing feed streams, a diene-containing feed stream is hydrogenated over a nickel-containing precipitated catalyst at from 40 to 100.degree. C., a pressure of from 3 to 20 bar and a WHSV (weight hourly space velocity) of from 1 to 10 kg/(l.times.h) in the presence of free hydrogen.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: September 12, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Maximilian Vicari, Marc Walter, Ekkehard Schwab, Hans-Joachim Muller, Germain Kons, Stephan Dilling, Peter Polanek
  • Patent number: 6096933
    Abstract: A supported hydrogenation catalyst composition is disclosed which comprises a palladium component, at least one alkali metal iodide such as, for example, potassium iodide, and an inorganic support material such as alumina. The palladium component is concentrated in an area within about 150 microns of the exterior surface of the composition. Also disclosed is a selective hydrogenation process in which diolefins and/or alkynes are hydrogenated with hydrogen to corresponding monoolefins.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: August 1, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Marvin M. Johnson
  • Patent number: 6075173
    Abstract: The present invention concerns a process for the production of isobutene and propylene by metathesis of an olefinic C.sub.4 cut. The process comprises three successive steps: 1) selective hydrogenation of butadiene with isomerisation of butene-1 to butene-2; 2) separation by distillation to produce isobutene overhead, leaving a butene-2 bottom cut; 3) metathesis of the butene-2 cut with ethylene. The advantage of this process is that polymerisation quality propylene can be produced very selectively, in contrast to other processes such as dehydrogenation of propane or other cracking processes.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: June 13, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Jean Alain Chodorge, Dominique Commereuc, Jean Cosyns
  • Patent number: 6072091
    Abstract: A process for the treatment of a feed comprising at least hydrocarbons containing at least 3 to 10 carbon atoms per molecule, including acetylenic and diolefinic hydrocarbons, comprises passing the feed into a distillation zone associated with a selective hydrogenation reaction zone comprising at least one catalytic hydrogenation bed which is internal to or external of the distillation zone, in which hydrogenation of at least a portion of the acetylenic and diolefinic hydrocarbons contained in the feed is carried out in the presence of a gas stream rich in hydrogen. The process is particularly suitable for the treatment of products from catalytic cracking.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: June 6, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Jean Cosyns, Blaise Didillon, Jean-Luc Nocca, Etienne Lebas, Francoise Montecot
  • Patent number: 6040489
    Abstract: A process for separating 1,3-butadiene from a crude C.sub.4 stream containing butanes, butenes, butadienes and acetylenes has been developed. The process begins with introducing hydrogen, a solvent, and the crude C.sub.4 stream to a catalytic extractive distillation unit having a reaction zone containing a catalyst capable of hydrogenating acetylenes. Butanes and butenes, being less soluble in the solvent, are distilled in an overhead stream from the catalytic extractive distillation unit. Butadienes and acetylenes, being more soluble in the solvent, are carried with the solvent to the reaction zone located within the catalytic extractive distillation unit. In the reaction zone the acetylenes are converted to hydrogenation products. The hydrogenation products other than butadiene are separated from the butadienes by the extractive distillation occurring in the unit. The solvent and butadiene mixture is removed from the catalytic extractive distillation unit in a distillate stream.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: March 21, 2000
    Assignee: UOP LLC
    Inventor: Tamotsu Imai
  • Patent number: 5948869
    Abstract: Catalytic composition effective in the selective hydrogenation of olefinic double bonds prepared by the reaction between:(A) at least one bis(cyclopentadienyl)Titanium derivative having the general formula (I) (C.sub.5 H.sub.5).sub.2 Ti(R) (R.sub.1) wherein R and R.sub.1, the same or different, are halogens; the above compound (I) being solid or dispersed in one or more non-solvent diluents;(B) at least one organo derivative having general formula (II) M(R.sub.2) (R.sub.3) wherein M is selected from Zinc and Magnesium, and R.sub.2 and R.sub.3, the same or different, are selected from C.sub.1 -C.sub.16 alkyls;(C) at least one modifier.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: September 7, 1999
    Assignee: Enichem S.p.A.
    Inventors: Andrea Vallieri, Claudio Cavallo, Gian Tommaso Viola
  • Patent number: 5866735
    Abstract: A supported hydrogenation catalyst composition is disclosed which comprises a palladium component, at least one alkali metal iodide such as, for example, potassium iodide and an inorganic support material such as alumina. Also disclosed is selective hydrogenation process in which diolefins and/or alkynes are hydrogenated with hydrogen to this corresponding monoolefins.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: February 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Marvin M. Johnson
  • Patent number: 5847250
    Abstract: A silica-supported catalyst suitable for the selective hydrogenation of acetylene in hydrocarbonaceous streams, comprising from 0.001 to 1% by weight, based on the supported catalyst, of palladium and from 0.005 to 5% by weight, based on the supported catalyst, of at least one promoter metal of groups 1 and 2 of the periodic table, obtainable by impregnating a silica support with a solution comprising at least one promoter metal, drying the impregnated support, impregnating with a palladium-including solution, drying and calcining.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: December 8, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Klemens Flick, Christof Herion, Hans-Martin Allmann
  • Patent number: 5698752
    Abstract: A selective hydrogenation of an alkyne in an olefin-containing fluid is provided which comprises contacting the fluid and hydrogen gas with a catalyst in the presence of at least one sulfur compound, under reaction conditions effective to produce at least one alkene wherein the catalyst comprises at least one alkali metal, fluorine and an inorganic support material.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 16, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Scott H. Brown, James B. Kimble, Stan A. Zisman
  • Patent number: 5639926
    Abstract: A process for producing a branched chain olefin which comprises isomerising and transhydrogenating a hydrocarbon stream containing at least one straight chain paraffin of 4 or more carbon atoms by contacting the same at elevated temperature with a stream containing a hydrogen acceptor that is more highly unsaturated than a mono-olefin to produce a stream containing at least one branched chain olefin product. The product is separated to give a stream depleted of the product. The thus depleted stream is recycled to the isomerising and transhydrogenating stages. The hydrogen acceptor stream may comprise a diene and/or acetylene.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: June 17, 1997
    Assignee: Institut Francais Du Petrole
    Inventors: Stephen Keith Turner, Arthur Gough
  • Patent number: 5609654
    Abstract: A process for production of alkyl tertiary alkyl ethers in C.sub.4 + hydrocarbon streams rich in isoolefins, typically containing catalyst deactivating amounts of dienes and/or compounds containing heteroatoms. The process is especially advantageous in extending the cycle length for the zeolite catalyzed etherification of isoolefins in C.sub.4 + FCC gasoline by reducing catalyst aging. It has been discovered that if hydrogen is cofed with the alkanol and C.sub.4 + isoolefin rich feedstreams to an etherification reaction catalyzed by acidic zeolite wherein the zeolite has been impregnated with a noble metal the rate of catalyst aging or deactivation is substantially lowered. The process is especially effective, i.e., catalyst aging is particularly reduced, when hydrogen is cofed to an etherification reaction using acidic zeolite Beta catalyst containing palladium.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: March 11, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Quang N. Le, Robert T. Thomson
  • Patent number: 5600045
    Abstract: A process for conversion of crude hydrocarbon mixtures comprising tertiary olefins and gum-forming constituents with an alcohol in the presence of hydrogen, which process comprises contacting the crude hydrocarbon mixture, the alcohol, and hydrogen with a catalyst comprising an acidic molecular sieve containing an active hydrogenation metal component, as well as a stabilized crude hydrocarbon mixture containing alkyl tertiary alkyl ethers. A process for conversion of a tertiary olefin which contains one or more additional ethylenically or acetylenically unsaturated bonds.
    Type: Grant
    Filed: December 2, 1993
    Date of Patent: February 4, 1997
    Assignee: The Dow Chemical Company
    Inventors: Matheus J. Van Der Aalst, Levien J. Everaert, Juan M. Garces
  • Patent number: 5583274
    Abstract: C.sub.2 -C.sub.6 alkynes (preferably acetylene) contained in feeds which also contain sulfur impurities are hydrogenated to the corresponding alkenes in the presence of a supported palladium catalyst which has been promoted with alkali metal fluoride (preferably potassium fluoride).
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: December 10, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson
  • Patent number: 5534658
    Abstract: The invention concerns a process for reducing the benzene content of petrol fractions and isomerizing paraffins in the presence of an isomerization catalyst comprising 4 to 15% of at least one halogen and at least one metal from group VIII deposited on a support composed of a mixture of specific proportions of eta alumina and gamma alumina, in which isomerization is carried out on a mixture of a) a feed with the following composition by weight: 40% to 80% of paraffins, 0.5% to 7% of cyclic hydrocarbons and 6% to 45% of aromatics, and with a maximum distillation temperature of between 70.degree. C. and 90.degree. C., b) a C.sub.5 -C.sub.6 cut which is generally a straight run cut, and c) a chlorine-containing compound providing a concentration of 50-5000 ppm of chlorine in the mixture.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 9, 1996
    Assignee: Institut Francais du Petrole
    Inventors: Christine Travers, Philippe Courty, Patrick Sarrazin
  • Patent number: 5510550
    Abstract: A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted at a relatively low temperature (of up to about 60.degree. C.) with a liquid composition comprising an effective reducing agent (preferably an alkali metal borohydride, hydrazinc, formaldehyde, formic acid, ascorbic acid, dextrose, aluminum powder). Preferably, at least one alkali metal compound (more preferably KOH, RbOH, CsOH, KF) is also present in the liquid composition. An improved process for selectively hydrogenating acetylene (to ethylene) employs this wet-reduced catalyst composition.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: April 23, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson, Scott H. Brown, Stan A. Zisman, James B. Kimble
  • Patent number: 5489719
    Abstract: A process is disclosed for the production of alkyl tertiary alkyl ethers in C.sub.4 + hydrocarbon streams rich in isoolefins, typically containing catalyst deactivating amounts of dienes and/or compounds containing heteroatoms. The process is especially advantageous in extending the cycle length for the zeolite catalyzed etherification of isoolefins in C.sub.4 + FCC gasoline by reducing catalyst aging. It has been discovered that if hydrogen is cofed with the alkanol and C.sub.4 + isoolefin rich feedstreams to an etherification reaction catalyzed by acidic zeolite wherein the zeolite has been impregnated with a noble metal the rate of catalyst aging or deactivation is substantially lowered. The process is especially effective, i.e., catalyst aging is particularly reduced, when hydrogen is cofed to an etherification reaction using acidic zeolite Beta catalyst containing palladium.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: February 6, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Quang N. Le, Robert T. Thomson
  • Patent number: 5463154
    Abstract: A method for acetylene hydrogenation which involves adding a member selected from the group consisting of arsine and phosphine to moderate the activity of acetylene hydrogenation catalysts while maintaining acceptable catalyst activity and avoiding the risk of product quality contamination by the acetylene converter moderator. The acetylene hydrogenation process involves adding arsine at a concentration level within the range of about 1 wppb-3 wppb to the gas, such as ethylene, containing acetylene to prevent temperature runaway during the exothermic acetylene hydrogenation reaction. By controlling the presence of arsine levels to such a relatively low level, temperature runaway during the highly exothermic acetylene hydrogenation reaction is prevented while maintaining acceptable catalyst activity levels for purposes of the acetylene hydrogenation reaction.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: October 31, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventors: David R. Slim, Edgar L. Mohundro, Stephen M. Mayo
  • Patent number: 5461178
    Abstract: A method and operating technique for treating diene-containing aliphatic streams by introducing the light hydrocarbon stream at a top portion of a vertical stripping tower having an upper catalytic contact zone containing a bed of solid hydrogenation catalyst particles and a lower contact zone, and introducing a light gas stream containing hydrogen at a lower portion of said stripping tower. Selective hydrogenation is effected by flowing the light hydrocarbon stream and light gas stream countercurrently in contact with the solid hydrogenation catalyst particles under hydrogenation and stripping conditions, thereby converting said diene to mono-alkene in the upper contact zone.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: October 24, 1995
    Assignee: Mobil Oil Corporation
    Inventor: Mohsen N. Harandi
  • Patent number: 5417844
    Abstract: The invention relates to a process for the selective hydrogenation of diolefins in steam cracking petrol in the presence of a nickel catalyst and is characterized in that prior to the use of the catalyst, a suphur-containing organic compound is incorporated into the catalyst outside of the reactor.
    Type: Grant
    Filed: November 18, 1992
    Date of Patent: May 23, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Paul Boitiaux, Patrick Sarrazin
  • Patent number: 5103065
    Abstract: Transition metal complexes of the general formula I[A].sup.x- [Q].sup.+ x Iwhere Q is one equivalent of a cation, x is from 0 to 2 and A is a transition metal complex of the general formula ##STR1## where n is from 1 to 3, M is positively charged cobalt, rhodium, iridium or ruthenium, the ligands B are phosphonic, arsonic, phosphinic and/or arsinic acid ligands which are esterified with identical or different alcohols, one or more of these alcohol components carrying a functional group, L is ##STR2## the radicals R.sup.5 are identical or different radicals from the group consisting of C.sub.1 -C.sub.4 -alkyl and phenyl, p is an integer from 0 to 6, q is an integer from 0 to 5, and R.sup.1 is fluorine, chlorine, bromine, iodine, cyanide, isocyanide, cyanate, isocyanate, thiocyanate, isothiocyanate, C.sub.1 -C.sub.4 -alkyl, C.sub.1 -C.sub.
    Type: Grant
    Filed: December 19, 1990
    Date of Patent: April 7, 1992
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Bertleff, Dieter Koeffer, Wolfgang Klaeui, Choong-Eui Song
  • Patent number: 5059731
    Abstract: The invention relates to a process of reduction of a refining catalyst before its use, the catalyst containing a support and an active phase with a base of at least one noble or nonnoble metal of Group VIII or Group Ib of the periodic table, the process consisting in:a) impregnating the catalyst with an aqueous or organic solution of a reducing agent compound,b) breaking down the reducing agent compound by heating the catalyst;c) drying the catalyst thus obtained.The invention is characterized in that a halogen additive is added with the reducing agent.The catalyst thus treated is particularly suitable, for example, for selective hydrogenation of unsaturated hydrocarbons.
    Type: Grant
    Filed: February 6, 1990
    Date of Patent: October 22, 1991
    Assignee: Europeane de Retraitement de Catalyseurs Eurecat
    Inventor: Georges Berrebi
  • Patent number: 5004851
    Abstract: Nitration Grade benzene is made from a benzene stream with impurities including olefins by first fractionally distilling the benzene to a purity of at least 99 mole percent and subsequently passing the stream in a liquid phase in the presence of hydrogen through a hydrogenation step with a palladium catalyst under conditions such that substantially all olefins remaining in the stream are hydrogenated to paraffins.
    Type: Grant
    Filed: November 22, 1988
    Date of Patent: April 2, 1991
    Assignee: The Dow Chemical Company
    Inventors: George R. Durham, Randy S. Hebert
  • Patent number: 4910356
    Abstract: Compositions containing sulfuric acid and one or more of certain chalcogen-containing compounds in which the chalcogen compound/H.sub.2 SO.sub.4 molar ratio is below 2 contain the mono-adduct of sulfuric acid which is catalytically active for promoting organic chemical reactions. Suitable chalcogen-containing compounds have the empirical formula ##STR1## wherein X is a chalcogen, each of R.sub.1 and R.sub.2 is independently selected from hydrogen, NR.sub.3 R.sub.4, and NR.sub.5, at least one of R.sub.1 and R.sub.2 is other than hydrogen, each of R.sub.3 and R.sub.4 is hydrogen or a monovalent organic radical, and R.sub.5 is a divalent organic radical. Such compositions are useful for catalyzing organic reactions such as oxidation, oxidative addition, reduction, reductive addition, esterification, transesterification, hydrogenation, isomerication (including racemization of optical isomers), alkylation, polymerization, demetallization of organometallics, nitration, Friedel-Crafts reactions, and hydrolysis.
    Type: Grant
    Filed: January 29, 1988
    Date of Patent: March 20, 1990
    Assignee: Union Oil Company of California
    Inventor: Donald C. Young
  • Patent number: 4906800
    Abstract: This invention relates to a method for the preparation of selective acetylene hydrogenation catalysts. More specifically, this invention relates to a pretreatment method for supported and unsupported Group VIII metal catalysts and the use thereof for the conversion of an acetylene-, ethylene- and hydrogen-containing feedstream to gasoline range hydrocarbons.
    Type: Grant
    Filed: November 17, 1986
    Date of Patent: March 6, 1990
    Assignee: The Standard Oil Company
    Inventors: JoAnn Henry, Michael J. Desmond, Thomas R. Gaffney
  • Patent number: 4906602
    Abstract: A catalyst for the selective hydrogenation of polyunsaturated hydrocarbons which contain entirely or predominantly more than five carbon atoms, containing palladium with a promotor on a metal oxide support. The promotor is a metal from the subgroup IB of the periodic system (preferably silver) and the metal oxide support (TiO.sub.2 optionally mixed with CeO.sub.2 and/or ZrO.sub.2) is macroporous, the pore volume being about 0.2 to 0.4, preferably about 0.25 to 0.30 ml per g of carrier and the proportion of the macropores having a diameter of more than 14 nm being at least 65%.
    Type: Grant
    Filed: October 24, 1988
    Date of Patent: March 6, 1990
    Assignee: Sud-Chemie Aktiengesellschaft
    Inventors: Michael Schneider, Karl Kochloefl, Jurgen Ladebeck, Gerd Maletz
  • Patent number: 4761509
    Abstract: An improved process for the catalytic dehydrogenation of paraffinic hydrocarbons is disclosed. Feed paraffinic hydrocarbons are dehydrogenated to yield an olefin containing vapor stream which is partially condensed to produce a liquid phase process stream which contains byproduct diolefins along with the intended product monoolefins. The liquid phase process stream in admixture with hydrogen and a sulfur compound is passed through a selective hydrogenation zone in which diolefins are catalytically converted to monoolefins. This selective hydrogenation in the presence of trace quantities of a sulfur compound increases the quality of the product monoolefin stream. The selective hydrogenation zone is located between the vapor-liquid separator and the stripper column of the dehydrogenation zone.
    Type: Grant
    Filed: February 24, 1987
    Date of Patent: August 2, 1988
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Daniel L. Ellig
  • Patent number: 4691070
    Abstract: A catalyst for the hydrogenation of a diolefin, having palladium or a compound thereof and at least one co-catalyst component selected from the group consisting of ruthenium, rhodium, cobalt, and rhenium supported each in the form of an elemental metal or a metal compound on a support, its method of preparation and its use for said hydrogenation, particularly for the hydrogenation of cyclopentadiene to cyclopentene is described herein.
    Type: Grant
    Filed: November 20, 1986
    Date of Patent: September 1, 1987
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Teiji Nakamura, Eiichiro Nishikawa, Takeo Koyama
  • Patent number: 4587369
    Abstract: A C.sub.4 cut of high butadiene content is selectively hydrogenated in contact with a supported palladium catalyst, the operation being performed in admixture with a hydrocarbon and an amine.The C.sub.4 cut of high butadiene content (1) and liquid hydrocarbon containing the amine (6) pass through reactor (2). The resultant product is fractionated (13). The C.sub.4 cut is recovered in the vapor phase (15) and the liquid phase recycled (16).
    Type: Grant
    Filed: October 25, 1984
    Date of Patent: May 6, 1986
    Assignee: Institut Francais du Petrole
    Inventors: Jean Cosyns, Jean-Paul Boitiaux
  • Patent number: 4571442
    Abstract: Acetylene is selectively hydrogenated by passing a mixture of acetylene and ethylene with a hydrocarbon liquid phase through a bed of a palladium-on-alumina catalyst. The liquid phase comprises an aromatic hydrocarbon and a primary or secondary amine.
    Type: Grant
    Filed: September 19, 1984
    Date of Patent: February 18, 1986
    Assignee: Institut Francais du Petrole
    Inventors: Jean Cosyns, Jean-Paul Boitiaux
  • Patent number: 4533779
    Abstract: Supported palladium-gold catalyst of high resistance to poisoning by sulfur compounds, not subject to elution by vinylacetylene and not inducing a substantial formation of oligomers, for use in hydrogenation reactions wherein acetylenics and diolefins are selectively hydrogenated, said catalyst being obtained by the steps of: admixing a palladium compound with an inorganic carrier, roasting in the presence of an oxygen-containing gas, treating with a reducing agent, admixing a halogenated gold compound with the resulting composition, treating with a reducing agent, treating with a compound having a basic reaction so as to lower the halogen content of the catalyst below 10 ppm by weight, and roasting, in the presence of an oxygen-containing gas, the palladium and gold compounds being used in convenient proportions so that the catalyst contains 0.03 to 1% palladium and 0.003 to 0.3% gold by weight.
    Type: Grant
    Filed: November 20, 1984
    Date of Patent: August 6, 1985
    Assignee: Ste Francaise des Produits pour Catalyse chez Institut Francais du Petrole
    Inventors: Jean-Paul Boitiaux, Jean Oosyns
  • Patent number: 4517395
    Abstract: A process for the selective hydrogenation of hydrocarbons having three and more carbon atoms and several double bonds or with triple bonds in monoene-containing hydrocarbon mixtures is described. These compounds are selectively hydrogenated to monoenes in a practically quantitative fashion. Before beginning the hydrogenation, a small amount of carbon monoxide and once to twice the stoichiometric quantity of hydrogen are homogeneously dissolved in the hydrocarbon mixture. The mixture is hydrogenated as a homogeneous liquid phase on a fixed palladium catalyst under a moderately high pressure and at a moderately high temperature. No isomerization can be found in the monoenes and no side reactions or secondary reactions occur.
    Type: Grant
    Filed: November 2, 1982
    Date of Patent: May 14, 1985
    Assignee: Chemische Werke Huls Aktiengesellschaft
    Inventors: Fritz Obenaus, Franz Nierlich, Otto Reitemeyer, Bernhard Scholz
  • Patent number: 4329530
    Abstract: A catalyst for the selective hydrogenation of highly unsaturated hydrocarbons, e.g. acetylene, in the presence of less unsaturated hydrocarbons, e.g. ethylene, comprises palladium supported on a calcined refractory material comprising a calcium aluminate cement having a Ca:Al ratio of 1:4 to 1:10, the average depth of penetration of the palladium into the catalyst pieces being less than 300 .mu.m.
    Type: Grant
    Filed: November 17, 1980
    Date of Patent: May 11, 1982
    Assignee: Imperial Chemical Industries Limited
    Inventors: Elizabeth A. Irvine, Martyn V. Twigg
  • Patent number: 4277313
    Abstract: This invention provides a process for separating 1,3-butadiene from a C.sub.4 -hydrocarbon mixture which contains C.sub.4 -alkyne components.In one embodiment, the invention involves a first step hydrogenation procedure for selectively hydrogenating the C.sub.4 -alkyne components, and a second step extractive distillation procedure for separating out a 1,3-butadiene rich selective solvent extract phase.
    Type: Grant
    Filed: March 27, 1980
    Date of Patent: July 7, 1981
    Assignee: El Paso Products Company
    Inventors: Yuv R. Mehra, Ralph E. Clark
  • Patent number: 4260840
    Abstract: The invention concerns selectively hydrogenating butadiene to butene in a C.sub.4 fraction containing at least 30 weight % butene-1 by treatment with hydrogen under carefully controlled conditions which comprise in combination use of a supported palladium catalyst containing about 0.01 to about 1.0 weight % palladium, a small excess of hydrogen over theoretical, temperatures in the range of about 50.degree. to 90.degree. C., pressures sufficient to maintain the hydrocarbons in a mixed vapor-liquid phase and a mass velocity of above 1500 lbs./(Sq. ft..times.H).
    Type: Grant
    Filed: January 11, 1980
    Date of Patent: April 7, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventors: Friedrich H. Puls, Klaus D. Ruhnke
  • Patent number: 4251672
    Abstract: A copper promoted massive nickel catalyst is disclosed which is capable of having a reduced nickel surface area ranging from about 55 to about 100 m.sup.2 /g as determined by hydrogen chemisorption, after reduction at 400.degree. C., and a B.E.T. total surface area ranging from about 150 to about 300 m.sup.2 /g, wherein the amount of copper in the catalyst ranges from about 2 wt. % to about 10 wt. % and the amount of nickel ranges from about 25 wt. % to about 50 wt. %, said wt. % of copper and nickel metal are based on the total weight of the catalyst. The copper promoted massive catalysts are prepared by the steps comprising comingling a solution containing copper and nickel cations with another solution containing silicate anions and coprecipitating the copper, nickel and silicate ions in an aqueous solution onto solid carrier particles. The catalysts are useful in hydrogenation processes.
    Type: Grant
    Filed: August 25, 1978
    Date of Patent: February 17, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventors: James L. Carter, Allan E. Barnett
  • Patent number: 4205191
    Abstract: A process for the preparation of novel zero-valent metal catalysts. The catalysts are prepared by the reaction of an organic metal cluster compound wherein one of the metals is lithium with a complex of a metal halide and a ligand. The catalyst may, if desired, be deposited on a support such as alumina or silica. It is effective to catalyze the hydrogenation of organic compounds such as benzene, styrene and the like.
    Type: Grant
    Filed: November 20, 1978
    Date of Patent: May 27, 1980
    Assignee: Borg-Warner Corporation
    Inventors: Murray S. Cohen, Jan G. Noltes, Gerard van Koten