Using S Or Group I Or Ii Transition Metal-containing Catalyst Patents (Class 585/262)
  • Patent number: 6297415
    Abstract: A catalyst packing which can be produced by vapor deposition and/or sputtering of at least one substance active as catalyst and/or promotor onto woven or knitted fabrics or sheets as support material is used in a process for catalytic distillation in which a heterogeneously catalyzed reaction is combined with a simultaneous distillation or rectification over the catalyst packing.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: October 2, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Franz Josef Bröcker, Klemens Flick, Cristina Freire Erdbrügger, Gerd Kaibel, Gerald Meyer, Hans-Joachim Müller, Peter Polanek, Ekkehard Schwab
  • Patent number: 6278033
    Abstract: A catalyst which contains, in its active composition, from 0.05 to 1.0% by weight of at least one metal or compound of a metal of the 10th group of the Periodic Table of the Elements and from 0.05 to 1.0% by weight of at least one metal or compound of a metal of the 11th group of the Periodic Table of the Elements, with the weight ratio of the metal of the 11th group to the metal of the 10th group being from 0.95 to 1.05, and, as support, an SiO2 -containing catalyst support having a BET surface area of from 2 to 400 m2/g, wherein at least 20% of the total pore volume of the catalyst is made up by pores having a diameter greater than 100 nanometers, can be used in processes for removing alkynes, dienes and/or monounsaturated hydrocarbons from streams of materials.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: August 21, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Klemens Flick, Ruprecht Meissner, Werner Hefner, Rainer Feser, Fabian Kunz
  • Patent number: 6255548
    Abstract: A process for selective hydrogenation of unsaturated compounds such as acetylenic compounds or diolefins is carried out in the presence of a catalyst comprising at least one support, at least one metal from group VIII of the periodic table and at least one additional element M selected from the group formed by germanium, tin, lead, rhenium, gallium, indium, gold, silver and thallium. The process is characterized in that the catalyst is prepared using a process in which said metal M is introduced in an aqueous solvent, in the form of at least one organometallic compound comprising at least one carbon-M bond.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: July 3, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Fabienne Le Peltier
  • Patent number: 6127588
    Abstract: A supported hydrogenation catalyst composition is disclosed which comprises palladium, an inorganic support such as alumina, and a selectivity enhancer selected from the group consisting of silver, phosphorus, sulfur, and combinations of two or more thereof. Also disclosed is a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are hydrogenated with hydrogen to less unsaturated hydrocarbons such as monoolefins.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: October 3, 2000
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, Joseph J. Bergmeister
  • Patent number: 6118034
    Abstract: In the process for the selective hydrogenation of dienes in diene-containing feed streams, a diene-containing feed stream is hydrogenated over a nickel-containing precipitated catalyst at from 40 to 100.degree. C., a pressure of from 3 to 20 bar and a WHSV (weight hourly space velocity) of from 1 to 10 kg/(l.times.h) in the presence of free hydrogen.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: September 12, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Maximilian Vicari, Marc Walter, Ekkehard Schwab, Hans-Joachim Muller, Germain Kons, Stephan Dilling, Peter Polanek
  • Patent number: 6100373
    Abstract: Functionalized diene monomers and polymerized functionalized diene monomers including 2-cyanomethyl-1,3-butadiene, 2-acetoxymethyl-buta-1,3-diene, dimethyl-(2-methylene-but-3-enyl)-amine, 2-dimethylaminomethyl-1,3-butadiene, 2-di-n-propylaminomethyl-1,3-butadiene, 3-methylene-pent-4-enoic acid, 3-methylene-pent-4-enoic acid ethyl ester, bis-2,3-[N,N-diethylaminomethyl]-1,3-butadiene, ethyl-5,6-dimethylenedecanediote, and cyano- 5,6-dimethylenedecanediote. Methods for synthesizing such functionalized diene monomers and polymers are also provided.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: August 8, 2000
    Assignee: Iowa State University Research Foundation, Inc.
    Inventor: Valerie V. Sheares
  • Patent number: 6096933
    Abstract: A supported hydrogenation catalyst composition is disclosed which comprises a palladium component, at least one alkali metal iodide such as, for example, potassium iodide, and an inorganic support material such as alumina. The palladium component is concentrated in an area within about 150 microns of the exterior surface of the composition. Also disclosed is a selective hydrogenation process in which diolefins and/or alkynes are hydrogenated with hydrogen to corresponding monoolefins.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: August 1, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Marvin M. Johnson
  • Patent number: 6075173
    Abstract: The present invention concerns a process for the production of isobutene and propylene by metathesis of an olefinic C.sub.4 cut. The process comprises three successive steps: 1) selective hydrogenation of butadiene with isomerisation of butene-1 to butene-2; 2) separation by distillation to produce isobutene overhead, leaving a butene-2 bottom cut; 3) metathesis of the butene-2 cut with ethylene. The advantage of this process is that polymerisation quality propylene can be produced very selectively, in contrast to other processes such as dehydrogenation of propane or other cracking processes.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: June 13, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Jean Alain Chodorge, Dominique Commereuc, Jean Cosyns
  • Patent number: 5877364
    Abstract: A process is provided for simultaneous selective hydrogenation of diolefins and nitriles from a hydrocarbon feedstock, wherein hydrogenation is carried out using a catalyst in one reactor zone while partially deactivated catalyst in another reactor zone is regenerated.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: March 2, 1999
    Assignee: Intevep, S.A.
    Inventors: Zaida Hernandez, Wolfgang Garcia, Magdalena Ramirez de Agudelo
  • Patent number: 5821397
    Abstract: A process is described for the high-efficiency selective hydrogenation of an aromatic hydrocarbon cut which also contains monoolefinic hydrocarbons and polyolefinic and/or acetylenic hydrocarbons with a bromine number of 10000 to 100 mg per 100 g of product with an aromatic degree of conversion which is limited to a maximum of 0.15% by weight, the process being characterized in that the cut, which is at least partially in the liquid phase, is passed with hydrogen into a hydrogenation zone in contact with a catalyst containing 0.1% to 1% by weight (with respect to the support) of palladium, the catalyst having been treated before activation with at least one organic sulphur-containing compound to introduce 0.05% to 1% of sulphur (by weight with respect to the weight of the catalyst), the process being carried out at a temperature in the range 20.degree. C. to 25.degree. C., at a pressure of 4-50 bar, a GHSV of 0.2-25 h.sup.-1 and with a H.sub.2 /monoolefin +polyolefin and/or acetylenes ratio in the range 0.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: October 13, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Fran.cedilla.ois Joly, Charles Cameron, Jean Cosyns, Gerard Leger, Pierre Renard, Fran.cedilla.oise Montecot
  • Patent number: 5817589
    Abstract: A process for regenerating a spent hydrogenation catalyst, comprising the steps of providing a catalyst comprising a support material selected from the group consisting of an inorganic oxide-zeolite composite, carbon and zeolite, and a catalytically active metal phase selected from the group consisting of partially reduced group IB metals and completely reduced group VIII metals, said metal phase being present in an amount of grater than or equal to about 0.03 wt %, and said catalyst having an initial diolefin hydrogenation activity, treating a hydrocarbon feedstock having a diolefin content of greater than or equal to about 0.
    Type: Grant
    Filed: April 2, 1996
    Date of Patent: October 6, 1998
    Assignee: Intevep, S.A.
    Inventors: Magdalena Ramirez de Agudelo, Zaida Hernandez de Godoy, Raul Navarro, Julia Guerra
  • Patent number: 5698752
    Abstract: A selective hydrogenation of an alkyne in an olefin-containing fluid is provided which comprises contacting the fluid and hydrogen gas with a catalyst in the presence of at least one sulfur compound, under reaction conditions effective to produce at least one alkene wherein the catalyst comprises at least one alkali metal, fluorine and an inorganic support material.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 16, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Scott H. Brown, James B. Kimble, Stan A. Zisman
  • Patent number: 5679241
    Abstract: The C.sub.2 to C.sub.5 and heavier acetylenes and dienes in a thermally cracked feed stream are hydrogenated without significantly hydrogenating the C.sub.2 and C.sub.3 olefins. Additionally, the C.sub.4 and heavier olefins may be hydrogenated. Specifically, the cracked gas feed in an olefin plant is hydrogenated in a distillation reaction column containing a hydrogenation catalyst without the necessity of separating the hydrogen out of the feed and without any significant hydrogenation of the ethylene and propylene. A combined reaction-fractionation step known as catalytic distillation hydrogenation is used to simultaneously carry out the reactions and separations while maintaining the hydrogenation conditions such that the ethylene and propylene remain substantially un-hydrogenated and essentially all of the other C.sub.2 and heavier unsaturated hydrocarbons are hydrogenated. Any unreacted hydrogen can be separated by a membrane and then reacted with separated C.sub.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: October 21, 1997
    Assignees: ABB Lummus Global Inc., Chemical Research & Licensing Company
    Inventors: Stephen J. Stanley, Francis D. McCarthy, Charles Sumner, Gary Robert Gildert
  • Patent number: 5639926
    Abstract: A process for producing a branched chain olefin which comprises isomerising and transhydrogenating a hydrocarbon stream containing at least one straight chain paraffin of 4 or more carbon atoms by contacting the same at elevated temperature with a stream containing a hydrogen acceptor that is more highly unsaturated than a mono-olefin to produce a stream containing at least one branched chain olefin product. The product is separated to give a stream depleted of the product. The thus depleted stream is recycled to the isomerising and transhydrogenating stages. The hydrogen acceptor stream may comprise a diene and/or acetylene.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: June 17, 1997
    Assignee: Institut Francais Du Petrole
    Inventors: Stephen Keith Turner, Arthur Gough
  • Patent number: 5595634
    Abstract: A process for treating C.sub.3 to C.sub.12 petroleum fractions, such as a light cracked naphtha to be used as an etherification feed stock in which H.sub.2 S is removed by distillation of at least the C.sub.3 fraction and mercaptans and diolefins are removed simultaneously in a distillation column reactor using a dual catalyst bed. The mercaptans and H.sub.2 S are reacted with the diolefins in the presence of a reduced nickel catalyst to form sulfides which are higher boiling than the portion of the feed which is fractionated to an upper hydrogenation catalyst bed of palladium for hydrogenating diolefins and acetylenes. The higher boiling sulfides are removed as bottoms along with heavier materials. Any diolefins not converted to sulfides and acetylenes are selectively hydrogenated to mono-olefins in the presence of a palladium oxide catalyst in an upper bed, producing overheads, substantially free of sulfur compounds, diolefins and acetylenes.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: January 21, 1997
    Assignee: Chemical Research & Licensing Company
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman
  • Patent number: 5583274
    Abstract: C.sub.2 -C.sub.6 alkynes (preferably acetylene) contained in feeds which also contain sulfur impurities are hydrogenated to the corresponding alkenes in the presence of a supported palladium catalyst which has been promoted with alkali metal fluoride (preferably potassium fluoride).
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: December 10, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson
  • Patent number: 5510550
    Abstract: A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted at a relatively low temperature (of up to about 60.degree. C.) with a liquid composition comprising an effective reducing agent (preferably an alkali metal borohydride, hydrazinc, formaldehyde, formic acid, ascorbic acid, dextrose, aluminum powder). Preferably, at least one alkali metal compound (more preferably KOH, RbOH, CsOH, KF) is also present in the liquid composition. An improved process for selectively hydrogenating acetylene (to ethylene) employs this wet-reduced catalyst composition.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: April 23, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson, Scott H. Brown, Stan A. Zisman, James B. Kimble
  • Patent number: 5417844
    Abstract: The invention relates to a process for the selective hydrogenation of diolefins in steam cracking petrol in the presence of a nickel catalyst and is characterized in that prior to the use of the catalyst, a suphur-containing organic compound is incorporated into the catalyst outside of the reactor.
    Type: Grant
    Filed: November 18, 1992
    Date of Patent: May 23, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Paul Boitiaux, Patrick Sarrazin
  • Patent number: 5208405
    Abstract: A process for selectively hydrogenating C.sub.4 -C.sub.10 diolefins to the corresponding monoolefins is carried out with a catalyst comprising (a) nickel metal and/or compound(s), (b) silver metal and/or compound(s), and (c) a solid inorganic support material (preferably alumina).
    Type: Grant
    Filed: March 3, 1992
    Date of Patent: May 4, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson
  • Patent number: 5030779
    Abstract: A hydrogenation catalyst prepared by combining one or more Group VIII metal compounds with one or more alkylalumoxanes and one or more alkyls or hydrides of a metal selected from the group consisting of the Group Ia, IIa, and IIa metals and a hyrogenation process wherein said catalyst is used to hydrogenate compounds containing ethylenic and/or aromatic unsaturation. Preferably, the one or more Group VIII metal compounds will be contacted sequentially with the one or more alkylalumoxanes and the one or more alkyls or hydrides, first with the one or more alkylalumoxanes and then with one or more alkyls and/or hydrides. The one or more Group VIII metal compounds is selected from the group of compounds consisting of carboxylates, chelates, alkoxides, salts of acids containing sulfur, salts of partial esters of acids containing sulfur and salts of aliphatic and aromatic sulfonic acids. Nickel and cobalt compounds are preferred for use in the hydrogenation catalysts.
    Type: Grant
    Filed: August 29, 1990
    Date of Patent: July 9, 1991
    Assignee: Shell Oil Company
    Inventors: Ronald J. Hoxmeier, Lynn H. Slaugh
  • Patent number: 4910356
    Abstract: Compositions containing sulfuric acid and one or more of certain chalcogen-containing compounds in which the chalcogen compound/H.sub.2 SO.sub.4 molar ratio is below 2 contain the mono-adduct of sulfuric acid which is catalytically active for promoting organic chemical reactions. Suitable chalcogen-containing compounds have the empirical formula ##STR1## wherein X is a chalcogen, each of R.sub.1 and R.sub.2 is independently selected from hydrogen, NR.sub.3 R.sub.4, and NR.sub.5, at least one of R.sub.1 and R.sub.2 is other than hydrogen, each of R.sub.3 and R.sub.4 is hydrogen or a monovalent organic radical, and R.sub.5 is a divalent organic radical. Such compositions are useful for catalyzing organic reactions such as oxidation, oxidative addition, reduction, reductive addition, esterification, transesterification, hydrogenation, isomerication (including racemization of optical isomers), alkylation, polymerization, demetallization of organometallics, nitration, Friedel-Crafts reactions, and hydrolysis.
    Type: Grant
    Filed: January 29, 1988
    Date of Patent: March 20, 1990
    Assignee: Union Oil Company of California
    Inventor: Donald C. Young
  • Patent number: 4761509
    Abstract: An improved process for the catalytic dehydrogenation of paraffinic hydrocarbons is disclosed. Feed paraffinic hydrocarbons are dehydrogenated to yield an olefin containing vapor stream which is partially condensed to produce a liquid phase process stream which contains byproduct diolefins along with the intended product monoolefins. The liquid phase process stream in admixture with hydrogen and a sulfur compound is passed through a selective hydrogenation zone in which diolefins are catalytically converted to monoolefins. This selective hydrogenation in the presence of trace quantities of a sulfur compound increases the quality of the product monoolefin stream. The selective hydrogenation zone is located between the vapor-liquid separator and the stripper column of the dehydrogenation zone.
    Type: Grant
    Filed: February 24, 1987
    Date of Patent: August 2, 1988
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Daniel L. Ellig
  • Patent number: 4727202
    Abstract: Catalytically-active metallic glasses containing at least one element from a subgroup of the periodic system and at least one element from a main group of the periodic system. Process for the production of catalytically-active metallic glasses where the metallic glass is produced from at least one element from a subgroup of the periodic system and at least from one element from a main group of the periodic system. The metallic glasses are activated by self-activation or by an oxidative and/or reductive treatment. The catalytically-active metallic glasses can be used as hydrogenation, oxidation or isomerization catalysts.
    Type: Grant
    Filed: May 18, 1987
    Date of Patent: February 23, 1988
    Assignee: Lonza Ltd.
    Inventors: Volker Franzen, Hans-Joachim Guntherodt, Alfons Baiker, Erich Armbruster, Halim Baris
  • Patent number: 4705906
    Abstract: Ethylene is produced by the selective hydrogenation of acetylene in the presence of carbon monoxide at a concentration of greater than 1% vol, generally greater than 5% vol, and optionally also ethylene by contact at an elevated temperature in the range from 100.degree. to 500.degree. C. with a catalyst comprising a metal oxide or sulphide or mixture of metal oxides or sulphides having hydrogenation activity, for example ZnO either alone or in combination with other metal oxides or sulphides.
    Type: Grant
    Filed: November 12, 1986
    Date of Patent: November 10, 1987
    Assignee: The British Petroleum Company, p.l.c.
    Inventors: John H. Brophy, Anthony Nock
  • Patent number: 4695560
    Abstract: A composition is presented for a catalyst useful in the selective hydrogenation of unconjugated diolefinic hydrocarbons to monoolefinic hydrocarbons. The catalyst comprises nickel and sulfur deposited on the surface of an alumina support. The preferred catalyst does not contain halogens, noble metals, alkaline earth metals, or alkali metals and is characterized by having only a very low percentage of the total pore volume being provided by pores having an average pore diameter less than 150 angstroms. The great majority of the pore volume is present in the form of macropores having diameters of 500 to 1500 angstroms.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: September 22, 1987
    Assignee: UOP Inc.
    Inventors: Mark J. Gattuso, Daniel L. Ellig
  • Patent number: 4691070
    Abstract: A catalyst for the hydrogenation of a diolefin, having palladium or a compound thereof and at least one co-catalyst component selected from the group consisting of ruthenium, rhodium, cobalt, and rhenium supported each in the form of an elemental metal or a metal compound on a support, its method of preparation and its use for said hydrogenation, particularly for the hydrogenation of cyclopentadiene to cyclopentene is described herein.
    Type: Grant
    Filed: November 20, 1986
    Date of Patent: September 1, 1987
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Teiji Nakamura, Eiichiro Nishikawa, Takeo Koyama
  • Patent number: 4658080
    Abstract: A catalyst for removing acetylenic impurities from gaseous organic product streams, comprising at least Fe and Ni, other elements from Groups 8, 1b, 2b, 4b, 6b and 7b of the Periodic Table, an alkaline earth metal and an alkali metal.
    Type: Grant
    Filed: August 15, 1983
    Date of Patent: April 14, 1987
    Assignee: Petro-Tex Chemical Corporation
    Inventor: Cecil G. McFarland
  • Patent number: 4523045
    Abstract: A process is disclosed for the production of linear olefinic hydrocarbons. A feed stream of paraffins is fed to a catalytic dehydrogenation reaction zone. Liquid phase hydrocarbons withdrawn from the dehydrogenation reaction zone are passed through a diolefin selective hydrogenation zone. The effluent of the hydrogenation zone is stripped of light ends and passed into an olefin separation zone, which preferably employs a selective adsorbent. The paraffinic effluent of the separation zone is recycled to the dehydrogenation zone. The paraffinic recycle stream contains some monoolefins, but is essentially free of diolefins. Dehydrogenation catalyst life is lengthened by elimination of diolefins in total charge to dehydrogenation zone. Product quality and yield is improved.
    Type: Grant
    Filed: August 2, 1984
    Date of Patent: June 11, 1985
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora
  • Patent number: 4520214
    Abstract: An improved process for the catalytic dehydrogenation of paraffinic hydrocarbons is disclosed. Feed paraffinic hydrocarbons are dehydrogenated to yield an olefin-containing vapor stream, which is partially condensed to produce a liquid phase process stream which contains by-product diolefins along with the intended product monoolefins. The liquid phase process stream and added hydrogen are passed through a selective hydrogenation zone in which diolefins are catalytically converted to monoolefins. This increases the quality of the product monoolefin stream. The selective hydrogenation zone is located between the vapor-liquid separator and stripper column of the dehydrogenation zone.
    Type: Grant
    Filed: April 4, 1984
    Date of Patent: May 28, 1985
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora
  • Patent number: 4484015
    Abstract: A catalyst and process for the selective hydrogenation of acetylene, said catalyst comprising palladium and silver with the palladium concentrated as a skin and the silver distributed throughout.
    Type: Grant
    Filed: June 22, 1983
    Date of Patent: November 20, 1984
    Assignee: Phillips Petroleum Company
    Inventors: Marvin M. Johnson, Darrell W. Walker, Gerhard P. Nowack
  • Patent number: 4409410
    Abstract: Process for selectively hydrogenating a diolefin present in a mixture of hydrocarbons having at least 4 carbon atoms per molecule: the hydrocarbon mixture is reacted with hydrogen in contact with a catalyst comprising palladium and silver, the molar ratio of hydrogen to the diolefin being from 1:1 to 5:1.
    Type: Grant
    Filed: February 9, 1982
    Date of Patent: October 11, 1983
    Assignee: Institut Francais du Petrole
    Inventors: Jean Cosyns, Daniel Durand
  • Patent number: 4277313
    Abstract: This invention provides a process for separating 1,3-butadiene from a C.sub.4 -hydrocarbon mixture which contains C.sub.4 -alkyne components.In one embodiment, the invention involves a first step hydrogenation procedure for selectively hydrogenating the C.sub.4 -alkyne components, and a second step extractive distillation procedure for separating out a 1,3-butadiene rich selective solvent extract phase.
    Type: Grant
    Filed: March 27, 1980
    Date of Patent: July 7, 1981
    Assignee: El Paso Products Company
    Inventors: Yuv R. Mehra, Ralph E. Clark
  • Patent number: 4243824
    Abstract: A process for the preparation of novel zero-valent rhodium catalysts. The catalysts are prepared by the reaction of a hydrocarbyl-lithium compound with a hydrocarbon-soluble complex of a rhodium halide and a ligand. The catalyst may, if desired, be deposited on a support such as alumina or silica. It is effective to catalyze the hydrogenation of organic compounds such as benzene, styrene and the like.
    Type: Grant
    Filed: October 25, 1979
    Date of Patent: January 6, 1981
    Assignee: Borg-Warner Corporation
    Inventors: Jan G. Noltes, Gerard van Koten, Murray S. Cohen
  • Patent number: 4228312
    Abstract: A process for the hydrogenation of certain aromatic, olefinic and acetylenic compounds. The process is catalyzed by a zero-valent mixed metal catalyst which is in turn prepared by the reaction of an organic metal cluster compound wherein one of the metals is lithium with a complex of rhodium halide and an olefinic hydrocarbon ligand. The catalyst may, if desired, be deposited on a support such as alumina or silica. The hydrogenation process can, in many instances, be carried out under ordinary conditions, i.e., at room temperature and atmospheric pressure.
    Type: Grant
    Filed: March 7, 1979
    Date of Patent: October 14, 1980
    Assignee: Borg-Warner Corporation
    Inventors: Jan G. Noltes, J. T. B. H. Jastrzebski, Gerard van Koten
  • Patent number: 4218572
    Abstract: Substituted or unsubstituted cyclohexylbenzene is dehydrogenated to substituted or unsubstituted biphenyl in the absence of oxygen over an oxide complex catalyst. The oxide complex catalyst comprises at least one element selected from the group consisting of Group VB and Group VIII elements, optionally promoted with at least one element selected from the group consisting of Group IA, Group IB, Group IIB, Group VIIB and Group VIB.
    Type: Grant
    Filed: September 28, 1978
    Date of Patent: August 19, 1980
    Assignee: Standard Oil Company
    Inventors: Serge R. Dolhyj, Louis J. Velenyi
  • Patent number: 4205191
    Abstract: A process for the preparation of novel zero-valent metal catalysts. The catalysts are prepared by the reaction of an organic metal cluster compound wherein one of the metals is lithium with a complex of a metal halide and a ligand. The catalyst may, if desired, be deposited on a support such as alumina or silica. It is effective to catalyze the hydrogenation of organic compounds such as benzene, styrene and the like.
    Type: Grant
    Filed: November 20, 1978
    Date of Patent: May 27, 1980
    Assignee: Borg-Warner Corporation
    Inventors: Murray S. Cohen, Jan G. Noltes, Gerard van Koten
  • Patent number: 4202758
    Abstract: A process for hydrotreating (hydroprocessing) hydrocarbons and mixtures of hydrocarbons utilizing a catalytic composite comprising an alumina-zeolite support, a rare earth exchange metal component, at least one metal component from Group VIB or Group VIII and from about 0.1 to about 5 weight percent of at least one component from Group IIA based on the weight of the finished catalyst in which process there is effected a chemical consumption of hydrogen. Hydrocarbon hydroprocesses are hydrocracking, the hydrogenation of aromatic nuclei, the ring-opening of cyclic hydrocarbons, desulfurization, denitrification, hydrogenation, etc.
    Type: Grant
    Filed: December 26, 1978
    Date of Patent: May 13, 1980
    Assignee: UOP Inc.
    Inventors: Mark J. O'Hara, Russell W. Johnson, Lee Hilfman
  • Patent number: 4152365
    Abstract: A feedstock comprising olefinic hydrocarbons having more than one double bond per molecule is selectively hydrogenated to produce hydrocarbons having less unsaturation relative to the feedstock by contacting the feedstock in the presence of steam and hydrogen with a catalyst comprising a Group VIII metal or an oxide thereof on a carrier comprising a Group II metal aluminate spinel containing tin or an oxide of tin. The feedstock can be produced by reforming paraffin and cycloparaffin hydrocarbons in the presence of steam with a catalyst comprising a Group VIII metal or an oxide thereof on a carrier comprising a Group II metal aluminate spinel containing tin or an oxide of tin.
    Type: Grant
    Filed: March 17, 1975
    Date of Patent: May 1, 1979
    Assignee: Phillips Petroleum Company
    Inventor: Lewis E. Drehman