Al-and Transition Metal-containing Patents (Class 585/512)
  • Patent number: 7868111
    Abstract: The present invention provides a method for producing ?-olefin polymer, comprising polymerizing ?-olefins in the presence of a halogen atom-containing acid catalyst by use of an aliphatic hydrocarbon having 3-12 carbon atoms, which contains 5 to 95 mass % of ?-olefin, as a raw material; removing catalyst residue and halogen-containing compounds by bringing a product in the polymerization step into contact with an aluminum atom-containing inorganic solid treatment agent with or without deactivating the catalyst; and separating the ?-olefin polymer. According to this method, the catalyst residue and other halogen-containing compounds can be removed, without relying on aqueous deactivation and separation steps using an alkaline aqueous solution or the like, from a polymerization reaction product obtained by polymerization in the presence of a halogen-containing acid catalyst by use of an ?-olefin-containing liquid hydrocarbon as a raw material.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 11, 2011
    Assignee: Nippon Oil Corporation
    Inventors: Toshio Okada, Yoshihiro Gohshi, Tamiko Suga
  • Patent number: 7868216
    Abstract: A process for producing high purity propylene comprises: a step for dimerizing ethylene to 1-butene; a step for hydroisomerizing 1-butene to 2-butenes; and a step for metathesis of 2-butenes by ethylene. Advantageously, the ethylene used to produce the 1-butene and ethylene for metathesis derive from a steam cracking unit. To increase propylene production, the process can use a steam cracking or FCC C4cut as an additional butene source.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: January 11, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Jean-Alain Chodorge, Christian Dupraz
  • Publication number: 20110004036
    Abstract: Methods for dimerizing alpha-olefins utilizing immobilized buffered catalysts wherein the catalytic component is of the form (ligand)2-M-X2 where X is a halogen, M is selected from the group of Ti, Zr, and Hf and ligand is selected from the group consisting of cyclopentadienyl, substituted cyclopentadienyl, indenyl, and substituted indenyl, wherein the two ligands may be the same or different compound are provided.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: ConocoPhillips Company - IP Services Group
    Inventors: Tanja Englmann, Christine Denner, Helmut G. Alt, Roland Schmidt
  • Patent number: 7858833
    Abstract: The present invention relates to a method for preparing linear alpha olefin comonomers, such as 1-butene, 1-hexene or 1-octene, from ethylene monomer. The comonomer generated is stored on site for use in a subsequent process, such as a polyethylene polymerization reactor. The method includes the steps of feeding an ethylene monomer, and a catalyst in a solvent to one or more comonomer synthesis reactors; reacting the ethylene monomer and the catalyst in solvent under reaction conditions to produce an effluent stream comprising unreacted ethylene monomer, a catalyst in a solvent, and comonomer; passing the effluent stream to one or more downstream gas/liquid phase separators to form a gas stream of unreacted ethylene monomer, and a liquid stream of comonomer, and catalyst in a solvent; recycling to the one or more comonomer synthesis reactors the unreacted ethylene monomer and a portion of the liquid stream; and storing a remaining portion of said liquid stream for subsequent processing of the comonomer.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Krishnan Sankaranarayanan, Milind B. Ajinkya, Stephen M. Wood, Anastasios Skoulidas
  • Patent number: 7718838
    Abstract: A process is provided to stabilize and/or reactivate an olefin production catalyst system which comprises contacting an olefin production catalyst system, either before or after use, with an aromatic compound.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: May 18, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: William M. Woodard, Warren M. Ewert, Harvey D. Hensley, Mark E. Lashier, Glyndal D. Cowan, Jeffrey W. Freeman, Ralph V. Franklin, Ronald D. Knudsen, Richard L. Anderson, Lyle R. Kallenbach, Bruce E. Kreischer
  • Patent number: 7687672
    Abstract: The present invention relates to an in-line method for generating comonomer, such as 1-hexene or 1-octene, from monomer, such as ethylene. The comonomer generated is directly transported, without isolation or storage, to a polyethylene polymerization reactor.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Timothy D. Shaffer
  • Publication number: 20100030000
    Abstract: The object of the present invention is to provide production method of an ?-olefin low polymer using a chromium series catalyst comprising a pyrrole compound as a component. The present invention relates to that in producing an ?-olefin low polymer such as 1-hexene using an ?-olefin such as ethylene as a raw material, a chromium series catalyst constituted of a chromium compound (a), a pyrrole compound (b) and an aluminum-containing compound (c) is used as a polymerization catalyst, and a concentration of a pyrrole dimer contained in the pyrrole compound (b) is 2% by weight or less based on the pyrrole compound (b).
    Type: Application
    Filed: October 25, 2007
    Publication date: February 4, 2010
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Hiroki Emoto, Kazuyuki Yokoyama
  • Patent number: 7550639
    Abstract: A process for producing an olefin oligomer, which comprises the steps of (1) contacting a transition metal compound with a compound represented by the formula, R1R2A—G—AR3R4, to produce a contact product (i), (2) contacting an alumoxane compound with an organoaluminum compound to produce a contact product (ii), and (3) contacting the contact product (i), the contact product (ii), and an olefin with one another, wherein A is a nitrogen atom, a phosphorus atom, an arsenic atom or an antimony atom; G is a divalent group; and R1, R2, R3 and R4 are independently of one another a hydrocarbyl group, a halogenated hydrocarbyl group, an oxygen-containing hydrocarbyl group, a sulfur-containing hydrocarbyl group, a selenium-containing hydrocarbyl group, or a tellurium-containing hydrocarbyl group.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: June 23, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Masaaki Nabika
  • Patent number: 7550638
    Abstract: An integrated method that comprises a hydrocarbon thermal cracking operation to form at least one olefin product, coupled with dimerization and metathesis operations, the dimerization operation forming additional feed material for the metathesis operation, and the metathesis operation forming additional amounts of olefin product.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: June 23, 2009
    Assignee: Equistar Chemicals, LP
    Inventors: Robert S. Bridges, Steven T. Coleman
  • Patent number: 7476775
    Abstract: A method of separating an oligomerization reactor effluent, comprising: flashing the oligomerization reactor effluent into a liquid portion and a vapor portion, distilling the liquid and the vapor portions of the oligomerization reactor effluent and recovering an oligomerization product stream. A system for separating an oligomerization reactor effluent comprising liquid and vapor portions: a vapor/liquid separator to flash the oligomerization reactor effluent into a vapor portion and a liquid portion, and a distillation column in fluid communication with the vapor/liquid separator, wherein the distillation column has a side draw for withdrawing an oligomerization product stream and receives as separate feeds the vapor portion and the liquid portion from the vapor/liquid separator.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: January 13, 2009
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Bruce E. Kreischer
  • Publication number: 20080085829
    Abstract: A method for preparing a nickel-containing composition, and a composition prepared by such method, are disclosed including the steps of: a) mixing a phosphorous compound with a nickel complex having nickel bonded to a heteroatom to thereby form a nickel-phosphorous-containing mixture; and b) contacting the nickel-phosphorous-containing mixture with a supported partially hydrolyzed alkylaluminum compound, thereby forming such nickel-containing composition. Use of such nickel-containing composition in the dimerization of propene is also disclosed.
    Type: Application
    Filed: October 4, 2006
    Publication date: April 10, 2008
    Inventors: Katharina J. Schneider, Alt G. Helmut, George D. Parks, Roland Schmidt
  • Patent number: 7323611
    Abstract: A process for producing an olefin oligomer, which comprises the steps of (1) contacting an olefin with an organoaluminum compound to produce a contact product (i), (2) contacting a transition metal compound with a compound represented by the formula, R1R2A-G-AR3R4, to produce a contact product (ii), and (3) contacting the contact product (i), the contact product (ii), an alumoxane compound, and optionally an olefin with one another, wherein A is a nitrogen atom, a phosphorus atom, an arsenic atom or an antimony atom, and As are the same as or different from each other; G is a divalent group; and R1, R2, R3 and R4 are independently of one another a hydrocarbyl group, a halogenated hydrocarbyl group, an oxygen-containing hydrocarbyl group, a sulfur-containing hydrocarbyl group, a selenium-containing hydrocarbyl group, or a tellurium-containing hydrocarbyl group.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: January 29, 2008
    Assignee: Sumitomo Chemical Company Limited
    Inventor: Masaaki Nabika
  • Patent number: 7279609
    Abstract: The invention concerns a method for ?-olefin trimerization comprising a number of carbon atoms not less than 3, by transforming an ?-olefin or a hydrocarbon mixture containing ?-olefins, at temperatures ranging between 0 and 150° C. and pressures ranging between 1 and 200 bars, in the presence of a catalyst. Said method uses a catalyst capable of being produced from: a) a compound of formula RMX3, wherein: R represents a cyclopentadienyl group whereof the hydrogen atoms can be partly or entirely substituted by identical or different alkyl groups and/or aryl groups, two substituents being capable of further forming a saturated or unsaturated hydrocarbon chain; M represents a titanium, zirconium or hafnium atom; and the groups X represent independently of one another extractable counter-ions; and b) at least an activating adjuvant.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: October 9, 2007
    Assignee: BASF Aktiengesellschaft
    Inventor: Shahram Mihan
  • Patent number: 7259285
    Abstract: An oligomerization catalyst for olefins having from 2 to 6 carbon atoms is produced by treating aluminum oxide with a nickel compound and a sulfur compound, either simultaneously or firstly with the nickel compound an then with the sulfur compound, and subsequently drying and calcining the resulting catalyst, wherein a molar ratio of sulfur to nickel in the finished catalyst of from 0.25:1 to 0.38:1 is set in this way. The catalyst and its use are also described.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: August 21, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Walter, Thomas Heidemann
  • Patent number: 7259284
    Abstract: A process for preparing very high viscosity polyalphaolefins using an acidic ionic liquid oligomerization catalyst in the absence of an organic diluent and the products formed thereby. A method of continuously manufacturing a high viscosity polyalphaolefin product by introducing a monomer and an ionic liquid catalyst together into a reaction zone while simultaneously withdrawing from the reaction zone a reaction zone effluent that contains the high viscosity polyalphaolefin. The reaction zone is operated under reaction conditions suitable for producing the high viscosity polyalphaolefin product. The preferred high viscosity polyalphaolefin has a kinematic viscosity exceeding 8 cSt and is the reaction product of the trimerization, oligomerization, or polymerization of an alpha olefin or a mixture of one or more product thereof. The high viscosity polyalphaolefins are useful as lubricants or lubricant additives.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: August 21, 2007
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Kenneth D. Hope, Donald W. Twomey, Michael S. Driver, Donald A. Stern, J. Barry Collins, Thomas V. Harris
  • Patent number: 7161018
    Abstract: A series of soluble ?-diimine late transition metal catalysts has been invented. The catalysts demonstrate high activity and selectivity for linear ?-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalyst. These catalysts can be used in a supported or unsupported form.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7157612
    Abstract: A process is provided to stabilize and/or reactivate an olefin production catalyst system which comprises contacting an olefin production catalyst system, either before or after use, with an aromatic compound.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 2, 2007
    Assignee: Phillips Petroleum Company
    Inventors: Warren M. Ewert, William M. Woodard, Harvey D. Hensley, Mark E. Lashier, Glyndal D. Cowan, Jeffrey W. Freeman, Ralph V. Franklin, Ronald D. Knudsen, Richard L. Anderson, Lyle R. Kallenbach, Bruce E. Kreischer
  • Patent number: 7126037
    Abstract: Butene oligomer derivatives having tert-butyl groups as one of the terminal groups, having a repeating unit of the main hydrocarbon chain consisting of 80% by mole or more of —CH2C(CH3)2—, and carrying the other terminal group consisting of 60% by mole or more of 1,4-butanediol type functional groups. These derivatives are useful as macromonomers which can be subjected to polycondensation, polyaddition, etc.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: October 24, 2006
    Assignee: Nippon Petrochemicals Co., Lt.
    Inventors: Tsutomu Takashima, Koji Fujimura, Yuichi Tokumoto
  • Patent number: 7102038
    Abstract: A process for making a selectively branched alcohol composition contacting a lower olefin feed comprising linear olefins having at least 3 carbon atoms and a concentration of phosphorous-containing compounds with a sorbent comprising a metal or metal oxide on a support, thereby substantially reducing the concentration of phosphorous-containing compounds and producing a purified lower olefin feed. The purified lower olefin feed is skeletally isomerized and then treated to selectively hydrogenate dienes before hydroformylation to produce selectively branched alcohols.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: September 5, 2006
    Assignee: Shell Oil Company
    Inventors: Brendan Dermont Murray, Paul Benjerman Himelfarb, Zaida Diaz, David Michael Singleton
  • Patent number: 7053259
    Abstract: ?-Olefins are made in a modified plug flow reactor system by the oligomerization of ethylene using an iron complex of a selected diimine of a 2,6-pyridinecarboxaldehyde(bisimine) or 2,6-diacylpyridine(bisimine) as the oligomerization catalyst. The reactor is modified to add the iron complex at two or more points along the length of the plug flow reactor, the distance between addition points being dependent on the half-life of the active ethylene oligomerization catalyst.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: May 30, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: David A. Culver, Rinaldo S. Schiffino, Dewey Lynn Kerbow
  • Patent number: 6951831
    Abstract: A catalyst composition for use in dimerizing, co-dimerizing or oligomerizing olefins comprises: at least one zero-valent nickel complex; at least one acid with formula H+X? in which X? represents an anion; and at least one ionic liquid with general formula Q+ A? in which A? is an anion identical to or different from X?. The composition can also comprise a nitrogen-containing ligand. It can be used in dimerizing, co-dimerizing, oligomerizing and in polymerizing olefins.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: October 4, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Vincent Lecocq, Hélène Olivier-Bourbigou
  • Patent number: 6930218
    Abstract: A process for the preparation of low molecular weight linear alpha olefins is disclosed. The process comprises oligomerising ethylene in an inert aliphatic or aromatic solvent in the presence of a catalyst comprising of a first component selected from zirconium alkoxide and zirconium aryloxide and a second component selected from alkyl aluminum halide and/or alkyl aluminum.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: August 16, 2005
    Assignee: Indian Petrochemicals Corporation Limited
    Inventors: Gopal Laxman Tembe, S. Muthukumaru Pillai, M. Ravindranathan
  • Patent number: 6914166
    Abstract: The present invention relates to processes for making a reaction product comprising trimethylpentene(s) which comprises contacting a C4 olefinic feedstock containing isobutene and n-butene(s) with a catalyst comprising zeolite beta under conditions allowing selective dimerization of isobutene to trimethylpentene(s). It also relates to the products obtained by these processes.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: July 5, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, Marc O. J. Geelen, Georges Marie Mathys, Paul William Allen
  • Patent number: 6906230
    Abstract: The invention describes a process for the preparation of surfactant alcohols and surfactant alcohol ethers which are, inter alia, highly suitable as surfactants or for the preparation of surfactants. The process, starting from olefin mixtures having a defined minimum content of linear hexenes, gives mixtures having a predominant fraction of branched dodecenes, which are subsequently derivatized to give surfactant alcohols and then optionally alkoxylated. The surfactant alcohol mixture obtained in the process has a degree of branching of from 2.0 to 3.0 and in particular exhibits advantageous properties as regards ecotoxicity and biodegradability. A description is also given of the use of the surfactant alcohols and surfactant alcohol ethers as surfactants by glycosidation or polyglycosidation, sulfation or phosphation.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: June 14, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Heiko Maas, Michael Röper, Marc Walter, Ralf Schulz, Jürgen Tropsch, Hans-Ulrich Jäger
  • Patent number: 6900152
    Abstract: A catalyst used for trimerization of ethylene into 1-hexene is descrobed, which comprises (i) a specific organometallic complex having a neutral multidentate ligand having a tripod structure, (ii) an alkylaluminoxane, and an optional ingredient selected from: (iii) a halogenated inorganic compound, (iv) a specific alkyl group-containing compound, (v) a combination of a halogenated inorganic compound with a specific alkyl group-containing compound, (vi) an amine compound and/or an amide compound, and (vii) a combination of an amine compound and/or an amide compound with a specific alkyl group-containing compound.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 31, 2005
    Assignee: Tosoh Corporation
    Inventors: Toru Yoshida, Toshihide Yamamoto, Hisanori Okada, Hideyuki Murakita
  • Patent number: 6858767
    Abstract: A liquid polyalphaolefin homo- or copolymer, preferably 1-decene, which is substantially amorphous is obtained by a polymerization process employing hydrogen and a particular type of metallocene catalyst. Additionally, liquid polyalphaolefin homo- or copolymer containing from 2 to about 12 carbon atoms possess a unique combination of properties, i.e., low molecular weight (Mw), low polydispersity index (Mw/Mn controllable kinematic viscosity (Kv100), low Iodine Number (I2) and low glass transition temperature (Tg) and are substantially amorphous. The liquid polyalphaolefin homo- or copolymers provided herein are useful for manufacturing a variety of products including lubricating oils in which the polyalphaolefin functions as a viscosity modifier.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: February 22, 2005
    Assignee: Uniroyal Chemical Company, Inc.
    Inventors: Anthony J. DiMaio, John R. Baranski, John G. Bludworth, Daniel J. Gillis
  • Patent number: 6858765
    Abstract: A polyolefin wax for a coating material which includes an ethylene (co)polymer having a number-average molecular weight within the range of from 400 to 5000 as measured by gel permeation chromatography. The polyolefin wax has a volume average particle diameter in the range of from 0.3 ?m to 20 ?m wherein the relation between a particle diameter a (?m), in which the weight ratio of the large particle diameter side in weight particle-size distribution is 10%, and a particle diameter b (?m), in which the weight ratio of the small particle diameter side in weight particle size distribution is 10%, satisfies the a/b?4 and the relation between the crystallization temperature Tc (° C.), measured at a cooling rate of 2° C./min) as measured by differential scanning calorimetry (DSC) and the density D (kg/m3) as measured by the density gradient tube method satisfies the equation 0.501×D?366?Tc.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: February 22, 2005
    Assignee: Mitsui Chemicals, Inc.
    Inventor: Hideo Toyoda
  • Patent number: 6777584
    Abstract: A process for producing a linear &agr;-olefin which comprises: reacting a stoichiometric excess of a terminal Cn olefin with ethylene in the presence of an organometallic catalyst to produce a Cn+2 linear &agr;-olefin, wherein the catalyst is capable of producing a Schulz-Flory distribution of the linear &agr;-olefin with a Schulz-Flory constant of less than about 0.8 and wherein n is an integer between about 3 to 20.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: August 17, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Abhimanyu Onkar Patil, Stephen Zushma, Timothy Daniel Shaffer
  • Patent number: 6743960
    Abstract: The present invention is related to a method for oligomerizing olefinic monomers under oligomerization conditions to form higher olefins. The novel method comprises contacting a feed comprising the olefinic monomers with a catalyst composition comprising the reaction product of: (a) a compound having a formula selected from the group consisting of M[S2C2(RaRb)]2 and M[S2C6(R1R2R3R4)]2, wherein M is a late transition metal, Ra, Rb, R1, R2, R3 and R4 are independently selected and may be the same or different and are selected from hydrogen, electron-withdrawing groups and unsubstituted and substituted hydrocarbyl groups; and (b) an activating cocatalyst. The improved method advantageously relates to oligomerizing olefinic monomers from feed streams having contaminants, especially sulfur-containing contaminants.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: June 1, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Edward Ira Stiefel, Abhimanyu Onkar Patil, Stephen Zushma
  • Patent number: 6706657
    Abstract: A catalytic composition comprising at least one nickel compound mixed or complexed with at least one tertiary phosphine or a phosphite carrying a functional group, at least partly dissolved in a non-aqueous medium with an ionic nature resulting from bringing at least one aluminum halide into contact with at least one quaternary ammonium halide and/or at least one quaternary phosphonium halide, is useful for dimerizing, co-dimerizing and oligomerizing olefins. Functional groups include, but are not limited to, an amine, a cyclic amine, a nitrogen-containing heterocycle, an ester, an acid, an alcohol, a quaternary ammonium, a quaternary phosphonium, a sulfonium, a sulfonate or a phosphonate group.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: March 16, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Dominique Commereuc, Dominique Le Pennec, Hélène Olivier-Bourbigou
  • Publication number: 20040039238
    Abstract: A series of soluble &agr;-diimine late transition metal catalysts has been invented. The catalysts demonstrate high activity and selectivity for linear &agr;-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalyst. These catalysts can be used in a supported or unsupported form.
    Type: Application
    Filed: May 30, 2003
    Publication date: February 26, 2004
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Publication number: 20040002612
    Abstract: A fluorine-containing styrene monomer of the formula (2) is produced by a first, second or third process. The first process includes (a) reacting a compound of the formula (1) with a compound of the formula (3), in the presence of a metal catalyst; (b) reacting the product of the step (a) with a base; and (c) reacting the product of the step (b) with hydrogen, in the presence of a metal catalyst and a phosphine or amine, thereby producing the target styrene monomer. The second process includes reacting a compound of the formula (1) with a compound of the formula (12), in the presence of a metal catalyst, thereby producing the target styrene monomer. The third process includes reacting a compound of the formula (13) with a compound of the formula (14) or (15), in the presence of a base, thereby producing the target styrene monomer.
    Type: Application
    Filed: June 23, 2003
    Publication date: January 1, 2004
    Applicant: Central Glass Company, Limited
    Inventors: Shinichi Sumida, Takashi Kume, Sunao Koga, Haruhiko Komoriya
  • Patent number: 6653514
    Abstract: The invention pertains to a process of removing phosphorous-containing impurities and preferably also dienes, from an olefin stream using a sorbent selected from the group consisting of an acidic ion exchange resin, an acidic zeolite, an acidic alumina, a neutral alumina, and an activated carbon. The olefin stream preferably comprises primarily olefins having at least 6 carbon atoms.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: November 25, 2003
    Assignee: Shell Oil Company
    Inventors: Brendan Dermot Murray, David Michael Singleton, Zaida Diaz
  • Publication number: 20030181775
    Abstract: A catalyst composition for use in dimerizing, co-dimerizing or oligomerizing olefins results from dissolving a nickel compound, optionally mixed or complexed with a ligand, in a medium resulting from mixing:
    Type: Application
    Filed: February 3, 2003
    Publication date: September 25, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Vincent Lecocq, Helene Olivier-Bourbigou
  • Publication number: 20030166456
    Abstract: A process for the trimerisation of olefins is disclosed, comprising contacting a monomeric olefin or mixture of olefins under trimerisation conditions with a catalyst which comprises (a) a source of chromium, molybdenum or tungsten (b) a ligand containing at least one phosphorus, arsenic or antimony atom bound to at least one hydrocarbyl or heterohydrocarbyl group having a polar substituent, but excluding the case where all such polar substituents are phosphane, arsane or stibana groups; and optionally (c) an activator.
    Type: Application
    Filed: January 10, 2003
    Publication date: September 4, 2003
    Inventor: Duncan Frank Wass
  • Patent number: 6583239
    Abstract: A process for producing a polymer of an &agr;-olefin which comprises polymerizing an &agr;-olefin having at least 4 carbon atoms in the presence of a catalyst for producing polymers of olefins which comprises (A) a specific metal compound and (B) at least one compound selected from (b-1) an organoaluminum oxy compound and (b-2) an ionic compound. The polymer of an &agr;-olefin is useful as a component of lubricant.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: June 24, 2003
    Assignees: Idemitsu Petrochemical Co., Ltd., Idemitsu Kosan Co., Ltd.
    Inventors: Yutaka Minami, Tatsuya Egawa
  • Patent number: 6576721
    Abstract: There is disclosed a process for producing an ethylenic oligomer which comprises subjecting ethylene to oligomerization reaction in an organic solvent in the presence of a Ziegler based catalyst, and recyclingly using for the oligomerization reaction, the organic solvent separated by distilling the resultant oligomerization reaction product, wherein the water concentration in the oligomerization reaction system is at most 8 ppm by weight, or the concentration of olefins which have at least 3 carbon atoms and which are contained in the organic solvent to be recycled in the oligomerization reaction system is at most 2% by weight. The process of the present invention can maintain the catalytic activity of the catalyst at a high level.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: June 10, 2003
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Ryoichi Kobayashi, Shigeki Kura
  • Publication number: 20030105374
    Abstract: The present invention is related to a method for oligomerizing olefinic monomers under oligomerization conditions to form higher olefins. The novel method comprises contacting a feed comprising the olefinic monomers with a catalyst composition comprising the reaction product of: (a) a compound having a formula selected from the group consisting of M[S2C2(RaRb)]2 and M[S2C6(R1R2R3R4)]2, wherein M is a late transition metal, Ra, Rb, R1, R2, R3 and R4 are independently selected and may be the same or different and are selected from hydrogen, electron-withdrawing groups and unsubstituted and substituted hydrocarbyl groups; and (b) an activating cocatalyst. The improved method advantageously relates to oligomerizing olefinic monomers from feed streams having contaminants, especially sulfur-containing contaminants.
    Type: Application
    Filed: November 30, 2001
    Publication date: June 5, 2003
    Inventors: Kun Wang, Edward Ira Stiefel, Abhimanyu Onkar Patil, Stephen Zushma
  • Patent number: 6555723
    Abstract: A manufacturing process for &agr;-olefins using certain iron containing ethylene oligomerization catalysts together with alkylaluminum cocatalysts, in which using a low ratio of Al:Fe in the process results in a lowered formation of undesired polyethylene waxes and polymer. This results in less fouling of the process lines and vessels in the manufacturing plant.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: April 29, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Rinaldo S. Schiffino
  • Patent number: 6534691
    Abstract: An efficient manufacturing process for &agr;-olefins using certain iron containing ethylene oligomerization catalysts, comprises one or more liquid full reactors which are approximately at the bubble point of reacting ethylene, and optionally a final reactor which is at a lower pressure than the first reactor, both operating under other specified conditions. This process minimizes both the capital and operating costs for the plant. The &agr;-olefins produced are useful as monomers for polymers and as chemical intermediates, for example for making detergents.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: March 18, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: David A. Culver, Rinaldo S. Schiffino, Joel David Citron
  • Patent number: 6521806
    Abstract: A process for preparing 1-hexene which comprises trimerizing ethylene in a 1-hexene solvent in the presence of a catalyst system prepared by contacting in a 1-hexene solvent the following components (A), (B), (C) and (D): (A) a chromium-containing compound represented by the general formula: CrXkYm wherein X is a residue of a carboxylic acid, a residue of a 1,3-diketone, a halogen atom or an alkoxyl group, k is an integer of 2 to 4, Y in Ym is an amine compound, a phosphine compound, a phosphine oxide compound, a nitrosyl group or an ether compound and m is an integer of 0 to 6, with the proviso that any two Y's may be same or different; (B) trialkylaluminum or dialkylaluminum hydride; (C) a pyrrole compound or a derivative thereof; (D) a group 13 (IIIB)-halogen compound represented by the general formula: MTtU3-t or a group 14 (IVB)-halogen compound represented by the general formula: M′Tt′U4-t′ wherein M is an atom from the group 13 (IIIB), M′ is an atom from the group 14(IV
    Type: Grant
    Filed: August 30, 1995
    Date of Patent: February 18, 2003
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Mitsuhisa Tamura, Kenshi Uchida, Kiyoshi Iwanaga, Yoshiaki Ito
  • Patent number: 6501001
    Abstract: In order to carry out selective dimerization of propylene principally into branched dimers, a catalytic composition resulting from at least partly dissolving a nickel compound mixed or complexed with a tertiary phosphine carrying a functional group is used in a medium resulting from mixing at least one quaternary ammonium halide and/or at least one quaternary phosphonium halide, at least one aluminum halide and optionally at least one organometallic aluminum compound.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: December 31, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Dominique Commereuc, Dominique Le Pennec, Hélène Olivier-Bourbigou
  • Publication number: 20020183574
    Abstract: The invention provides a hydrocarbon conversion process for converting olefins to longer chain hydrocarbons, the process using a catalyst system including a non-nickel transition metal derived catalyst and one or more ionic liquids at a reaction temperature of between 10° C. and 130° C. and a reaction pressure of up to 100 Bar. The hydrocarbon conversion process may be oligomerisation and trimerisation.
    Type: Application
    Filed: May 23, 2002
    Publication date: December 5, 2002
    Inventors: John Thomas Dixon, Jacobus Johannes Cronje Grove, Alta Ranwell
  • Publication number: 20020177744
    Abstract: Linear 1-butene dimers and other linear alpha-olefin dimers are manufactured in high yield and with high selectivity by coupling of alpha-olefins. The coupling is accomplished by contacting alpha olefins with an iron-based catalyst activated with an aluminum-based co-catalyst. The catalyst is structured to preclude formation of multiple dimer products, and the byproducts of the olefin coupling consist almost exclusively of methyl branched olefin dimers. The dimers have potentially diverse use in areas stretching form pharmaceuticals to plastics. Linear 1-butene dimers may be particularly useful in the production of plasticizer alcohols which may in turn be used to manufacture high quality plastics with reduced leaching.
    Type: Application
    Filed: January 24, 2002
    Publication date: November 28, 2002
    Inventors: Brooke L. Small, Eduardo J. Baralt
  • Patent number: 6479722
    Abstract: A process for the production of dimers from an olefinic feedstock containing &agr;-olefins, by contacting the feedstock with a metallocene/aluminoxane catalyst, thereby selectively to dimerize &agr;-olefins in the feedstock by way of a metallocene-catalyzed dimerization reaction. The feedstock is in the form of a Fischer-Tropsch-derived definic feedstock involving a mixture of Fischer-Tropsch-derived hydrocarbons made up of at most 90% by mass of &agr;-olefins, at least 5% by mass of olefins, other than &agr;-olefins, selected from linear internal olefins, branched internal olefins, cyclic olefins, dienes, trienes and mixtures thereof, at least 5% by mass of constituents, other than olefins, selected from paraffins, oxygenated hydrocarbons, aromatic hydrocarbons and mixtures thereof. The metallocene-catalyzed dimerization reaction takes place while the olefins which are dimerized form part of the mixture constituted by the feedstock.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: November 12, 2002
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Hester De Wet, David Hedley Morgan, Alta Ranwell
  • Patent number: 6459007
    Abstract: Process for the preparation of 1-hexane consisting in effecting the oligomerization of ethylene in the presence of a catalyst comprising a vanaduim complex having the formula: (arene)2 VX wherein the term arene represents benzene or mono-, di-, or tri-alkylsubstituted benzene, V is a vanaduim ion with a low wxidation state, and X is an anion selected from non-coordinated anions such as B(Ar)4—, AlCl4—, carboxylates and sulfonates.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: October 1, 2002
    Assignee: Enichem S.p.A.
    Inventors: Roberto Santi, Anna Maria Romano, Manuela Grande, Anna Sommazzi, Francesco Masi, Antonio Proto
  • Patent number: 6459005
    Abstract: The present invention intends to provide an ethylene/&agr;-olefin copolymer of specific structure, exhibiting excellent performance as a lubricant oil additive, capable of having various functional groups in high ratio, and serviceable as raw material for various solubilizing agents. The ethylene/&agr;-olefin copolymer of the present invention is composed of ethylene and an &agr;-olefin having 3 to 10 carbon atoms, and characterized by specific characteristics.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: October 1, 2002
    Assignee: Mutsui Chemicals, Inc.
    Inventors: Hideki Hirano, Terunori Fujita, Junji Saito, Makoto Mitani
  • Patent number: 6414090
    Abstract: A process for producing a polymer of an &agr;-olefin. The process includes polymerizing one or more &agr;-olefins having at least 4 carbon atoms in the presence of a catalyst for producing polymers of olefins. The catalyst contains (A) a specific metal compound and (B) either or both of (b-1) an organoaluminum oxy compound and (b-2) an ionic compound. The polymer of an &agr;-olefin is useful as a lubricant component.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: July 2, 2002
    Assignees: Idemitsu Petrochemical Co., Ltd., Idemitsu Kosan Co., Ltd.
    Inventors: Yutaka Minami, Tatsuya Egawa
  • Patent number: 6407189
    Abstract: The present invention relates to a polypropylene wax having a melt viscosity of from 50 to 100,000 mPas at 170° C., a DSC heat of fusion less than 80 J/g, a DSC melting point of greater than 130° C. and a molecular weight distribution Mw/Mn of less than or equal to 3.
    Type: Grant
    Filed: December 22, 1995
    Date of Patent: June 18, 2002
    Assignee: Clariant GmbH
    Inventor: Hans-Friedrich Herrmann
  • Patent number: 6395948
    Abstract: A process for preparing very high viscosity polyalphaolefins using an acidic ionic liquid oligomerization catalyst in the absence of an organic diluent and the products formed thereby.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: May 28, 2002
    Assignee: Chevron Chemical Company LLC
    Inventors: Kenneth D. Hope, Michael S. Driver, Thomas V. Harris