Material From Exhaust Structure Fed To Engine Intake Patents (Class 60/278)
  • Patent number: 9121373
    Abstract: An induction system in an engine is provided. The air induction system includes an induction conduit including an air flow passage in fluidic communication at least one combustion chamber in the engine and a passive-adsorption hydrocarbon trap positioned within the induction conduit, a portion of the passive-adsorption hydrocarbon trap defining a boundary of the air flow passage, the passive-adsorption hydrocarbon trap including a breathable layer coupled to a substrate layer coupled to the induction conduit, a hydrocarbon adsorption layer interposing the breathable layer and the substrate layer.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: September 1, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: David S. Moyer, Andrew George Bellis, Roger Khami, Michael G. Heim
  • Patent number: 9115617
    Abstract: Disclosed is a hydrogen combustion system with closed-cycle recycling comprising a hydrogen combustion system with closed-cycle recycling of exhaust gas, comprising: a hydrogen supplier 110 which supply hydrogen used as a fuel, a combustion chamber 120 which is located in the engine 130 and connected to the hydrogen supplying pipe 111 in which the hydrogen is combusted, a condenser 140 which converts the hot exhaust gas emitted through the discharge pipe 121 installed on the outlet of the combustion chamber 120 into the cold exhaust gas and condensed water, and a recycling pipe 150 which performs recycling of a part of the cold exhaust gas from the condenser 140 to the inlet of the combustion chamber 120.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: August 25, 2015
    Assignee: AGENCY FOR DEFENSE DEVELOPMENT
    Inventor: Hyun Jong Paik
  • Patent number: 9103272
    Abstract: Methods and systems are provided for adjusting the opening of a scroll valve of a binary flow turbine. Scroll valve adjustments are used at different engine operating conditions to improve engine performance and boost response. Scroll valve adjustments are coordinated with wastegate and EGR valve adjustments for improved engine control.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: August 11, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Julia Helen Buckland, Jeffrey Allen Doering, Brad Alan Boyer
  • Patent number: 9068489
    Abstract: Method for reducing oxides of nitrogen and sulphur in exhaust gas from a lean burn internal combustion engine.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: June 30, 2015
    Assignee: Haldor Topsoe A/S
    Inventors: Joakim Reimer Thøgersen, Henrik Trolle
  • Patent number: 9032715
    Abstract: A method and device for controlling emissions of VOC's comprises transporting VOC's to an engine and transporting the exhaust from the engine into a manifold. Supplemental air is transporting into the manifold and heat is transferred from the exhaust to the supplemental air within the manifold. The supplemental air is mixed with the exhaust and the mixture is transferred to a pollution abatement device.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 19, 2015
    Assignee: BRB/SHERLINE, INC.
    Inventor: Bernhardt R. Bruns
  • Patent number: 9032707
    Abstract: A diesel exhaust gas collection and treatment system for collecting exhaust gas from a diesel engine powered vehicle, treating the exhaust gas with injected ambient air, then releasing the air and exhaust gas mixture to the atmosphere features a vehicle powered by a diesel engine. A stream of exhaust gas from operation of the diesel engine flows through an exhaust manifold into a generally tubular exhaust collector via an exhaust inlet port. A plurality of ambient air injection ports is located on a posterior collector end, each having an ambient air injection tube connected to a corresponding air injection port. The exhaust collector features a plurality of collector outlet ports located on the exhaust collector side wall, each having a collector outlet pipe located on and fluidly connected to a corresponding collector outlet port. The exhaust collector is flexibly suspended underneath a vehicle.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 19, 2015
    Inventor: Rosolino J. Piazza, Sr.
  • Publication number: 20150121853
    Abstract: An engine system for a machine is disclosed. The engine system may have an intake manifold configured to direct air into a donor cylinder and a non-donor cylinder of an engine. The engine system may also have a first exhaust manifold configured to direct exhaust from the non-donor cylinder to the atmosphere. The engine system may also have a second exhaust manifold configured to receive exhaust from the donor cylinder. The engine system may further have a control valve configured to selectively direct a first amount of exhaust from the second exhaust manifold to the intake manifold. In addition, the engine system may have an orifice configured to allow a second amount of exhaust to flow from the second exhaust manifold to the first exhaust manifold.
    Type: Application
    Filed: January 8, 2015
    Publication date: May 7, 2015
    Applicant: ELECTRO-MOTIVE DIESEL, INC.
    Inventors: Keith E. MORAVEC, Teoman UZKAN
  • Publication number: 20150121848
    Abstract: Embodiments for heating a vehicle cabin are disclosed. In one example, a method for an engine comprises pumping coolant from a coolant reservoir to an exhaust component and then to a heater core, the coolant heated by the exhaust component, and during engine warm-up conditions, adjusting a flow rate of coolant into a heater core to maximize heat transfer to a vehicle cabin.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Publication number: 20150121851
    Abstract: Systems, methods and techniques for exhaust gas recirculation are provided. The system includes controlling the mixing of exhaust flow from at least one cylinder of an engine with air in an air intake system prior to combustion in response to an EGR fraction deviation condition. The exhaust flow from the at least one cylinder is accumulated prior to mixing and distributed into the intake air system in a controlled manner to mitigate or prevent the EGR flow from deviating from an expected EGR fraction.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventors: Marten H. Dane, John C. Wall, Wayne A. Eckerle
  • Publication number: 20150121846
    Abstract: The invention relates to a system for recovering energy from an exhaust gas circuit (3) of a heat engine (1), including an exhaust gas by-pass pipe (12) that includes a heat exchanger with two compartments, and has a first manifold (14) leading into one compartment (16) and a second manifold (15) leading into the other compartment (17), said system comprising a first valve (18) installed in the exhaust circuit (3) and capable of controlling the flow of gases into each of said manifolds (14, 15), and a second valve (20) intended to control the flow of gases at the outlet of the heat exchanger (13). The main technical feature of a system for recovering energy according to the invention is that the first valve (18) can only be used in two positions, a first position wherein same seals the first manifold (14), and a second position wherein same seals the exhaust circuit (3) and only allows the exhaunt gases to flow into the first manifold (14).
    Type: Application
    Filed: April 26, 2013
    Publication date: May 7, 2015
    Inventors: Grégory Hodebourg, Samuel Leroux
  • Publication number: 20150121847
    Abstract: Embodiments for heating a vehicle cabin are disclosed. In one example, a method for heating a vehicle cabin comprises closing an exhaust throttle while diverting at least a portion of throttled exhaust gas through an exhaust gas recirculation (EGR) cooler coupled upstream of the throttle, and transferring heat from the EGR cooler to a heater core configured to provide heat to the vehicle cabin. In this way, exhaust heat may be directly routed to the cabin heating system.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Ross Dykstra Pursifull
  • Patent number: 9021805
    Abstract: Methods and systems are disclosed for controlling an exhaust gas recirculation valve in an engine by determining errors in exhaust backpressure estimates and adapting EGR flow estimations based on these errors to meet target EGR dilutions in the engine. In one example approach, a method comprises adjusting valve position based on desired EGR flow and estimated EGR flow, where the estimated flow is based on estimated exhaust backpressure, and the estimated exhaust backpressure is updated based on errors between actual and desired intake oxygen concentration.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: May 5, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Imad Hassan Makki, Timothy Joseph Clark
  • Patent number: 9021785
    Abstract: An engine system for a machine is disclosed. The engine system may have an intake manifold configured to direct air into a donor cylinder and a non-donor cylinder of an engine. The engine system may also have a first exhaust manifold configured to direct exhaust from the non-donor cylinder to the atmosphere. The engine system may also have a second exhaust manifold configured to receive exhaust from the donor cylinder. The engine system may further have a control valve configured to selectively direct a first amount of exhaust from the second exhaust manifold to the intake manifold. In addition, the engine system may have an orifice configured to allow a second amount of exhaust to flow from the second exhaust manifold to the first exhaust manifold.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Keith E. Moravec, Teoman Uzkan
  • Publication number: 20150113961
    Abstract: An engine system for treating nitrogen oxides present in an exhaust gas generated by the combustion of fuel. The engine system includes one or more long breathing lean nitrogen oxide traps that is/are configured to store at least a portion of the nitrogen oxide in the exhaust gas when the lean nitrogen oxide trap operates in an absorption mode. The lean nitrogen oxide trap is also configured for the conversion of the nitrates stored by the lean nitrogen oxide trap during a regeneration event. The engine-out nitrogen oxide levels may be reduced to extend the duration of the absorption process, thereby reducing both the frequency of regeneration events and the associated fuel penalty. The system may include primary and secondary exhaust gas recirculation systems, with exhaust gas from the secondary system being returned to the engine cylinder to reduce the level of nitrogen oxides in that exhaust gas.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Inventors: William de Ojeda, Ming Zheng, Xiaoye Han, Marko Jeftic, Meiping Wang
  • Patent number: 9016044
    Abstract: A method is provided for operating an internal combustion engine of a motor vehicle. The method includes, but is not limited to storing exhaust gas while the engine is working, and supplying the stored exhaust gas into at least an engine cylinder during a subsequent start phase of the engine.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Giovanni Mafrici, Lorenzo Magro
  • Publication number: 20150107230
    Abstract: In an exhaust gas purification apparatus for an internal combustion engine which is provided with an NOx catalyst arranged in an exhaust passage of the internal combustion engine, the present invention has for its problem to be solved to suppress an increase in exhaust emissions, which results from processing for raising the temperature of the NOx catalyst, to a small level. In order to solve the above-mentioned problem, the exhaust gas purification apparatus for an internal combustion engine of the invention is constructed such that when an amount of increase in the NOX removal rate becomes smaller with respect to an amount of rise in the temperature of the NOx catalyst, the execution of temperature raising processing is deferred, and processing to make small the flow rate of exhaust gas discharged from the internal combustion engine and processing to make small the amount of smoke discharged from the internal combustion engine are executed.
    Type: Application
    Filed: June 1, 2012
    Publication date: April 23, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Katsuhiro Ito
  • Publication number: 20150101564
    Abstract: Methods and systems are provided for correcting an EGR rate determined based on an intake manifold oxygen sensor based on an air-fuel ratio of EGR. The output of the sensor is corrected to compensate for extra fuel in rich EGR or extra air in lean EGR and used to reliably estimate the EGR rate. One or more engine operating parameters are adjusted based on an uncorrected output of the sensor.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Timothy Joseph Clark, James Alfred Hilditch, Matthew John Gerhart
  • Publication number: 20150096284
    Abstract: A valve assembly and air flow management assembly for use in an exhaust gas recirculation system capable of providing substantially zero air flow at closure, is described. The valve assembly includes a valve housing having a central axis bore, a rotatable support shaft disposed centrally within the housing, a flapper having an outer circumferential edge, the flapper operably connected to the support shaft and, a ring seal integral with the outer circumferential edge of the flapper, wherein the ring seal closes an opening between the flapper and the bore when the flapper is in the closed position. The outer circumferential edge of the flapper further includes a groove having the ring seal disposed within the groove, wherein the seal floats within the groove, eliminating thermal stress and providing improved sealing capabilities.
    Type: Application
    Filed: May 3, 2012
    Publication date: April 9, 2015
    Applicant: International Engine Entellectual Property Company ,LLC
    Inventors: Paul Gottemoller, Luis Carlos Cattani
  • Publication number: 20150082772
    Abstract: An engine includes an engine body, a DPF case therein, high pressure and low pressure EGR paths, and a supercharger. The high pressure EGR path is between exhaust and intake manifolds. An exhaust gas discharge path extends from the DPF case. An intake pipe extends from the supercharger air compressor. The low pressure EGR path is between the exhaust gas discharge path of the DPF case and the intake pipe. The low pressure EGR path includes a low pressure EGR cooler. An extending direction of a crankshaft defines a longitudinal direction. A flywheel exists on a rear side. A width direction of the engine body defines a lateral direction. The low pressure EGR path includes a rear path portion extending along a rear side of the engine body, and a side path portion extending along a lateral side of the engine body on a side close to the exhaust manifold.
    Type: Application
    Filed: August 8, 2014
    Publication date: March 26, 2015
    Inventors: Kazumichi MATSUISHI, Tetsuya KOSAKA, Tomohiro NINOMIYA, Yusuke SUZUKI, Toshio NAKANISHI, Yongchol LEE, Takashi KUSHIGEMACHI
  • Patent number: 8978359
    Abstract: A turbocharged internal combustion engine disclosed that may comprise an engine block with a first end side opposing a second end side and a two-stage turbocharged system. The two-stage turbocharged system may comprise a low-pressure turbocharger with a first turbine and a first compressor and a high-pressure turbocharger with a second turbine and a second compressor. A turbine connection may fluidly connect the first turbine and the second turbine and a compressor connection fluidly connects the first compressor and the second compressor. The low-pressure turbocharger is mounted at the first end side of the engine block and the high-pressure turbocharger is mounted at a second end side of the engine block.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: March 17, 2015
    Assignee: Caterpillar Motoren GmbH & Co. KG
    Inventor: Udo Schlemmer-Kelling
  • Publication number: 20150047322
    Abstract: Various methods and systems are provided for blocking backflow of exhaust through an exhaust gas recirculation system. In one embodiment, a method comprises flowing exhaust gas through an exhaust gas recirculation (EGR) passage in a first direction from at least a first cylinder group of an engine to an intake manifold of the engine, the exhaust gas flowing in the first direction through a filter arranged in the EGR passage prior to reaching the intake manifold, and blocking flow of gas through the filter in a second, opposite direction with a mechanical one-way valve positioned in the EGR passage between the filter and the intake manifold.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 19, 2015
    Applicant: General Electric Company
    Inventors: Eric David Peters, Nicholas Eric Hansen, Rose Denning
  • Patent number: 8943798
    Abstract: Various systems and methods are described for detecting ammonia slip. In one example method, an amount of exhaust gas recirculation is reduced when output from an exhaust gas sensor indicates an increase in nitrogen oxide above a threshold amount. When the sensor output increases above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to nitrogen oxide; and when the sensor output does not increase above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to ammonia.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Riffle, Frank M. Korpics, Michiel J. Van Nieuwstadt, Devesh Upadhyay, John Paul Bogema, Jeff Reich
  • Patent number: 8943802
    Abstract: An exhaust gas purification system for an internal combustion engine, which is provided with: a selective reduction type catalyst arranged in an exhaust passage of the internal combustion engine; a low pressure EGR mechanism that is equipped with a low pressure EGR passage for introducing a part of an exhaust gas flowing through a portion of the exhaust passage downstream of a turbine of a centrifugal supercharger to a portion of an intake passage upstream of a compressor as a low pressure EGR gas, and a low pressure EGR valve for changing a channel cross section of the low pressure EGR passage; a supply device.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Bungo Kawaguchi, Tomihisa Oda, Tomomi Onishi, Masaaki Sato, Satoshi Kobayakawa, Takeru Shirasawa
  • Patent number: 8943804
    Abstract: A compression-ignition engine (10) comprises an exhaust system (16) with an exhaust gas after-treatment assembly, the after-treatment assembly comprising a three-way catalyst device (30) and an SCR device (34), the three-way catalyst device being arranged upstream the SCR device in close-coupled position with respect to the engine. An engine control unit (47) is provided for controlling operation of the engine. The engine control unit is configured to monitor the temperature of the SCR device and to control the engine to change over from an operation with a lean air/fuel mixture to an operation with a stoichiometric or a rich air/fuel mixture in response to the temperature of the SCR device dropping below a temperature threshold.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 3, 2015
    Assignee: Delphi International Operations Luxembourg, S.A.R.L.
    Inventor: Bart Hubert Schreurs
  • Patent number: 8943801
    Abstract: A valve (10) may be used with an internal combustion engine exhaust breathing system (12) and may include a body (60), a partition (62), and a plate (66). The body (60) may define a first port (70) that has a first interior surface (76), and may also define a second port (82) that has a second interior surface (84). The partition (62) may be located within the body (60), may at least partially separate the first port (70) and the second port (82) from each other, and may define an opening (104). The plate (66) may be dimensioned to seat and seal against the opening (104) and against the first and second interior surfaces (76, 84). The plate (66) may rotate, depending on predetermined factors, between a first position and a second position.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: February 3, 2015
    Assignee: BorgWarner Inc.
    Inventor: Todd R. Peterson
  • Patent number: 8931254
    Abstract: An exhaust pipe injection control device to optimally control a degree of exhaust gas recirculation (“EGR”) opening during diesel particulate filter (“DPF”) regeneration. The device includes a regeneration-time opening control unit which controls a degree of EGR opening of an EGR device during DPF regeneration, and a regeneration-time opening map in which an optimal degree of EGR opening of the EGR device during DPF regeneration is set in advance according to an engine rotation speed and a fuel injection amount of an engine. The regeneration-time opening control unit performs exhaust gas recirculation by referring to the regeneration-time opening map based on the engine rotation speed and the fuel injection amount of the engine and controlling the degree of EGR opening of the EGR device.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 13, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Naofumi Ochi, Shinji Hara, Kenzou Yaginuma
  • Patent number: 8925302
    Abstract: A system and method for operating an engine turbocharger is described. In one example, the turbocharger is rotated in different directions in response to operating conditions. The system and method may reduce engine emissions.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 6, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: William Charles Ruona, Kevin Durand Byrd, Keith Michael Plagens
  • Patent number: 8919107
    Abstract: A control device of a diesel engine with a turbocharger is provided. The device includes an engine body having a cylinder, a fuel injection valve, a turbine of the turbocharger, a bypass passage for bypassing the turbine, a bypass valve for opening and closing the bypass passage, an oxidation catalyst for purifying HC, and a DPF for capturing soot. The device includes a fuel cutting module for stopping, when the diesel engine is in a deceleration state, a main injection of the fuel performed on compression stroke, a DPF regenerating module for performing, when a predetermined DPF regeneration condition is satisfied, a post injection on expansion stroke to supply HC to the oxidation catalyst and regenerate the DPF by heat generated from an oxidation reaction of HC, and a bypass valve control module for controlling the bypass valve.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Mazda Motor Corporation
    Inventor: Hiroyuki Nishimura
  • Patent number: 8915063
    Abstract: The present invention provides for a system for controlling NOx emissions based on the calculation of an error given by the difference between a first measured value obtained from a NOx sensor (7) and a second one estimated from a NOx estimation. Said sensor (7) can be used in an adaptation loop, where an open-loop or closed-loop EGR control system is adapted such that the expected NOx emissions (from the EGR controller) match the ones measured with the NOx sensor under steady-state conditions.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 23, 2014
    Assignee: Iveco Motorenforschung AG
    Inventor: Theophil Auckenthaler
  • Patent number: 8915070
    Abstract: Systems, methods, and computer readable storage media are described in which exhaust gas is routed to a hydrocarbon retaining device during starting, and purged to the engine intake manifold. Various alternative approaches are described for controlling operation and diagnosing degradation. Further, various interrelated configurations are described.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: December 23, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael James Uhrich, Shane Elwart, James Michael Kerns, Jason Aaron Lupescu
  • Patent number: 8915072
    Abstract: An exhaust port structure of a cylinder head includes a connection pipe communicating with a plurality of exhaust ports of the cylinder head and an exhaust hole connected to the connection pipe and performing a function of an exhaust manifold, wherein the connection pipe has an EGR line integrally formed and connected thereto and each of the exhaust ports is formed with the same shape or a symmetrical shape, and the present invention can reduce the weight of the cylinder head and the manufacturing cost and improve the EGR rate and T/C efficiency.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: December 23, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Seung Woo Ko, Hyunwook Ryu
  • Publication number: 20140360186
    Abstract: A method for desulphurizing an exhaust-gas recirculation flow of an internal combustion engine supplied to the internal combustion engine on the fresh-air side includes branching a partial exhaust-gas flow from the exhaust-gas flow of the internal combustion engine. At least one reactant is supplied to the partial exhaust-gas flow that splits to form ammonia, and the thus laden partial exhaust-gas flow is supplied partially, as an exhaust-gas recirculation flow, to the fresh-air side and partially, as an aftertreatment partial flow, to an exhaust-gas aftertreatment system. The flow rate of the exhaust-gas recirculation flow supplied to the fresh-air side and the flow rate of the aftertreatment partial flow supplied to the exhaust gas aftertreatment system are predefined and/or varied by a regulating device as a function of at least one operating parameter that defines the respective operating state of the internal combustion engine.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 11, 2014
    Inventor: Andreas DOERING
  • Patent number: 8899016
    Abstract: An integrated water-gas-shift (WGS) and emissions control device (ECD) catalyst for treating exhaust from an internal combustion engine. The engine is assumed to have an EGR loop, such that exhaust is recirculated back to the engine's intake. A WGS catalyst on the EGR loop, for conditioning the EGR flow, is integrated with a catalyzed ECD on the main exhaust line, for reducing pollutant emissions.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 2, 2014
    Assignee: Southwest Research Institute
    Inventors: Jess W. Gingrich, Steven H. Almaraz
  • Patent number: 8893687
    Abstract: A method using exhaust gas recirculation (EGR) in an internal combustion engine. The engine has at least one “dedicated EGR cylinder”, whose entire exhaust is recirculated back to all the engine cylinders. The dedicated EGR cylinder is operated at a rich air-fuel ratio, and the other cylinders are operated stoichiometrically so that a conventional three way catalyst may be used to treat the exhaust. A fuel injector is used to inject fuel into the combustion chamber of the dedicated EGR cylinder after initiation of the main combustion event. This post injection method overcomes flammability limits of a dedicated EGR cylinder, and increases the hydrogen (H2) and carbon monoxide (CO) in its exhaust.
    Type: Grant
    Filed: February 25, 2012
    Date of Patent: November 25, 2014
    Assignee: Southwest Research Institute
    Inventors: Jess W. Gingrich, Terrence F. Alger, II, Raphael Gukelberger
  • Publication number: 20140331668
    Abstract: An engine system, comprising a first gaseous fuel source with a first gaseous fuel located therein coupled to one or more engine cylinders and an exhaust gas recirculation (EGR) system with a reform catalyst located therein, the reform catalyst reforming natural gas into a gas with a wider AFR operating range. The engine may thus operate at an AFR that may be outside of that available during natural gas combustion alone to allow for cooler engine operation.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 13, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: David Karl Bidner, Mark Allen Dearth
  • Publication number: 20140331643
    Abstract: The systems and method described above in the present disclosure allow for regeneration of a diesel particulate filter while a vehicle is in stationary power take-off mode. Described is a method of: during select power take-off conditions, reducing an EGR rate responsive to an indication to regenerate a diesel particulate filter.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Jeff Reich, Frank M. Korpics, Dean Pennala, Michiel J. Van Nieuwstadt, David Wynn Philion, James Campbell, Timothy Webb
  • Publication number: 20140325962
    Abstract: An exhaust gas purification method of a diesel engine, which purifies exhaust gas while suppressing deterioration in drivability and fuel consumption, including when exhaust gas enters a rich reduction state, opening an EGR valve and closing an intake throttle, if a temperature of an NOx occlusion reduction catalyst is at or above a predetermined temperature, and a vehicle having a diesel engine is decelerating from a speed at or above a predetermined speed, and then closing an exhaust throttle provided downstream of the NOx occlusion reduction catalyst and supplying fuel to the NOx occlusion reduction catalyst as a reductant.
    Type: Application
    Filed: November 13, 2012
    Publication date: November 6, 2014
    Inventors: Daiji Nagaoka, Teruo Nakada, Hiroyuki Yuza
  • Patent number: 8875488
    Abstract: An internal combustion engine, in which intake air flows through an intake passage into a combustion chamber and exhaust gas resulting from the combustion in the combustion chamber flows through an exhaust passage, includes an exhaust gas purifier provided in the exhaust passage and having an oxidation catalyst, an LPL-EGR passage connecting between the intake passage and the exhaust passage at a position downstream of the exhaust gas purifier as seen in exhaust gas flow direction, a first estimating device for estimating exhaust gas composition at a position upstream of the exhaust gas purifier, a second estimating device for estimating exhaust gas composition at a position downstream of the exhaust gas purifier, a cylinder temperature adjusting device for adjusting temperature in the combustion chamber, and a controller for controlling the cylinder temperature adjusting device based on the difference in the exhaust gas composition between the first and second estimating devices.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Takehito Hamamatsu, Tsutomu Umehara, Hiroshi Kuzuyama
  • Publication number: 20140318121
    Abstract: An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 30, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Edward J. Keating, Rodney E. Baker
  • Patent number: 8869512
    Abstract: An apparatus for controlling engine operations to a low NOx output amount at low selective catalytic reduction (SCR) temperature values and alternatively for controlling engine operations in an EGR cooler bypass regime at low engine load levels is described. The apparatus includes a controller that interprets a present speed and a present load of an engine, that determines an engine operating region in response to the present speed and the present load, and that provides an EGR cooler bypass command that provides EGR cooler bypass flow in response to the engine operating region being a first, low load, region. The controller operates the engine with supplemental NOx management in response to the engine operating region being a second, intermediate load, region. The controller operates the engine without either of the EGR cooler bypass or the supplemental NOx management in response to the engine operating region being a third region.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: October 28, 2014
    Assignee: Commins Inc.
    Inventors: Vivek Anand Sujan, Abdul R. Ofoli, Govindarajan Korthandaraman
  • Patent number: 8857155
    Abstract: Various methods and system are described for determining ambient humidity via an exhaust gas sensor disposed in an exhaust system of an engine. In one example, a reference voltage of the sensor is modulated between a first and second voltage during non-fueling conditions of the engine. The ambient humidity is determined based on an average change in pumping current while the voltage is modulated.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Timothy Schram, Timothy Joseph Clark, Evangelos Skoures
  • Patent number: 8857156
    Abstract: In accordance with the embodiments of the present invention, an engine is disclosed. The engine includes at least one donor cylinder and at least one non-donor cylinder coupled to an intake manifold feeding intake air and an exhaust manifold. The exhaust manifold is configured to carry an engine exhaust emission from the donor cylinder and the non-donor cylinder. The engine also includes an exhaust gas recirculation manifold extending from the donor cylinder to the intake manifold for recirculating a donor cylinder exhaust emission from the donor cylinder to the donor, and non-donor cylinders via the intake manifold. The engine further includes an after-treatment system and a sensor configured to sense a temperature of the engine exhaust emission and a device configured to receive a sensing signal from the sensor and to control a parameter of the engine and a component of the engine in response to the sensing signal.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Roy James Primus, Luke Michael Henry, Paul Gerard Nistler, James Robert Mischler, John Stephen Roth
  • Publication number: 20140298800
    Abstract: Embodiments may provide an exhaust gas management arrangement for an engine. The exhaust gas management arrangement may include a port disposed to capture an exhaust gas leaked from a movable portion of an exhaust gas flow directing mechanism. The arrangement may also include a passage to direct the leaked exhaust gas to a crankcase of the engine.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: David Karl Bidner, Christopher House, Chad Stateler
  • Publication number: 20140298777
    Abstract: A spark ignition internal combustion engine includes an exhaust gas reflux device capable of refluxing exhaust gas having passed through a catalyst for exhaust gas purification to an intake passage, an ignition timing control means for setting an ignition timing retard amount capable of preventing knocking according to a NOx concentration in the exhaust gas while the exhaust gas is refluxed, a NOx concentration estimation means for estimating the NOx concentration in the exhaust gas, and a purification performance reduction determination means for determining a reduction in purification performance of the catalyst. The ignition timing control means sets the ignition timing retard amount based on the NOx concentration in the exhaust gas before passage through the catalyst if the purification performance reduction determination means determines that the purification performance of the catalyst has been reduced to a state set in advance.
    Type: Application
    Filed: September 10, 2012
    Publication date: October 9, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Masaki Koga
  • Patent number: 8844272
    Abstract: Various systems and method are described for controlling an engine having an exhaust system which includes a particulate filter. One example method comprises, after shutting down the engine and spinning down the engine to rest, operating a vacuum pump to draw fresh air through the exhaust system to an intake system, and regenerating at least a portion of the particulate filter during the engine rest.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: September 30, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: David Karl Bidner, Ralph Wayne Cunningham, Jeffrey Scott Hepburn
  • Patent number: 8844284
    Abstract: The invention relates to an internal combustion engine system (1), particularly in a motor vehicle, comprising an internal combustion engine (2), a fresh gas system (3) for supplying fresh gas to the internal combustion engine (2), an exhaust gas system (4) for discharging exhaust gas from the internal combustion engine (2), and an exhaust gas recirculation system (5) for removing exhaust gas from the exhaust gas system (4) at a removal point (11) and introducing the removed exhaust gas into the fresh gas system (3) at an introduction point (12). In order to improve exhaust gas recirculation, the exhaust gas system (4) is equipped with an exhaust gas valve (14) downstream of the removal point (11) in order to control the penetrable cross-section of the exhaust gas system (4).
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 30, 2014
    Assignee: Mahle International GmbH
    Inventors: Alfred Elsässer, Patric Genieser, Achim Gommel, Mike Lau, Boris Lerch, Adam Loch, Kristijan Mudroh
  • Publication number: 20140260205
    Abstract: A modular exhaust after-treatment system including a plurality of exhaust after-treatment modules. Each module includes a housing defining a non-linear flow path arranged between an inlet passage and an outlet passage. The non-linear flow path includes a first portion adjacent the inlet passage that includes a first exhaust treatment component, a second portion downstream from the first portion, and a third portion downstream from second portion adjacent the outlet passage, wherein the third portion includes a second exhaust treatment component. The plurality of exhaust after-treatment modules are secured to each other in either horizontally or vertically.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: TENNECO AUTOMOTIVE OPERATING COMPANY INC.
    Inventors: Michael Golin, Guanyu Zheng, Timothy P. Gardner, Paul Majewski
  • Patent number: 8820050
    Abstract: Embodiments for reducing ammonia slip are provided. In one example, a method for reduction of ammonia emissions from an engine exhaust gas aftertreatment device with an SCR catalyst comprises determining a concentration of NOx and/or ammonia in the exhaust gas aftertreatment device, comparing a determined value of NOx and/or ammonia concentration with a nominal value for NOx and ammonia, respectively, and if an actual or shortly forecasted ammonia concentration is above the respective nominal value, triggering engine conditions with higher exhaust NOx concentration. In this way, ammonia slip may be reduced without degrading fuel economy.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: September 2, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Alexey A. Dubkov, Mario Balenovic, Jan Harmsen, Robert Ukropec, Brendan Patrick Carberry
  • Publication number: 20140238016
    Abstract: A supercharging system for an engine includes: a cylinder block forming a combustion chamber; an intake manifold connected to the cylinder block to supply ambient air thereto; an exhaust manifold collecting exhaust gas discharged from the combustion chamber and guiding the same to the environment; a third supercharge path connecting an inlet of the intake manifold to the exhaust manifold; and an electric supercharger supplying compressed air to the exhaust manifold through the third supercharge path. Responsiveness of an engine is enhanced and stabilization of the engine is promoted.
    Type: Application
    Filed: November 6, 2013
    Publication date: August 28, 2014
    Applicant: Hyundai Motor Company
    Inventors: Hyun Jun Lim, Dong Hee Han, Yoon Joo Kim, Jaeyoung Jeun, Seung Kook Han, Jong II Park
  • Patent number: 8813490
    Abstract: An exhaust emission control device for an internal combustion engine is provided that can suppress the adherence of HC to an EGR path and the like accompanying enrichment of the exhaust air/fuel ratio.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Katsuji Wada