Automatic Or Timed Reactor Purge Or Heat-up In Engine Starting Operation Patents (Class 60/284)
  • Patent number: 10876456
    Abstract: A vehicle is provided which includes a Stirling Cycle engine that generates a flow of exhaust gases from the external combustion of a fuel supply. The vehicle is equipped with a thermoelectric generator module which is in fluidic communication with the flow of exhaust gases generated by the Stirling Cycle engine. The thermoelectric generator module includes a thermopile array, and generates electrical energy from the thermal energy in the flow of exhaust gases.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 29, 2020
    Assignees: Quantum Industrial Development Corp., Texas A&M University
    Inventors: Mark A. Junio, Terry R. McCauley, Joseph S. McDowell, Victoria A. Watson, Mirley K. Balasubramanya
  • Patent number: 10837384
    Abstract: A temperature estimation module applied to a control apparatus for an internal combustion engine is configured to execute a virtual temperature estimation process that estimates a virtual temperature, which is a temperature of an exhaust purifying device under an assumption that a dither control process is not executed, based on an operation point of the internal combustion engine during execution of the dither control process. The temperature estimation module is further configured to execute an actual temperature estimation process that estimates an actual temperature of the exhaust purifying device based on a difference between the air-fuel ratio of a rich combustion cylinder and the air-fuel ratio of a lean combustion cylinder and based on the operation point of the internal combustion engine during execution of the dither control process.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: November 17, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuki Nose, Yoshiyuki Shogenji, Eiji Ikuta
  • Patent number: 10823090
    Abstract: A system of controlling an engine includes: an engine including a combustion chamber, an intake valve, an ignition switch, and an exhaust valve; a dual continuously variable valve duration device to adjust an intake duration of the intake valve and an exhaust duration of the exhaust valve; and a controller for adjusting an ignition timing of the ignition switch, the intake duration, and the exhaust duration based on a driving condition of the vehicle. In particular, until the temperature of the exhaust gas reaches a predetermined temperature after the engine starts, the controller sets the ignition timing to an ignition timing within a predetermined ignition timing range, sets the intake duration of the intake valve to an intake duration within a predetermined intake duration range, and increases the exhaust duration of the exhaust valve to a limit exhaust duration according to the set intake duration.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 3, 2020
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Jin Woo Choung, Kiyoung Kwon
  • Patent number: 10767532
    Abstract: A method of treating exhaust gas from an internal combustion engine includes sensing a temperature of the exhaust gas with a temperature sensor, comparing the sensed temperature with a threshold temperature, injecting a first reductant into the exhaust gas at a first location if the sensed temperature is less than the threshold temperature, and injecting a second reductant having a different composition than the first reductant into the exhaust gas at a second location if the sensed temperature is greater than the threshold temperature.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: September 8, 2020
    Assignee: DEERE & COMPANY
    Inventors: Danan Dou, Shyan-Cherng Huang, Ayyappan Ponnaiyan
  • Patent number: 10731530
    Abstract: A heater is suitable to be arranged opposite and away from an upstream or downstream face of an exhaust gas purification member of a vehicle. The heater comprises a fastening ring with an electrically conductive frame having a geometric center, a central support arranged substantially at the geometric center of the frame, and a plurality of elongate heating elements each having first and second ends opposite one another. The first end is connected to the frame and the second end is connected to the central support. The fastening ring further comprises a plurality of electrically conductive radial protrusions distributed around the frame and protruding toward the outside of the frame.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: August 4, 2020
    Assignee: FAURECIA SYSTEMS D'ECHAPPEMENT
    Inventors: Xavier Pierre François Bartolo, Christophe Tournier
  • Patent number: 10711719
    Abstract: A method of controlling activation of light off time of a catalyst which controls exhaust emission from an engine of a vehicle may include determining whether the vehicle is in a cold start condition; determining a deterioration level of the catalyst by use of a temperature sensor; and retarding a spark timing according to the deterioration level of the catalyst and increasing a temperature of exhaust gas.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: July 14, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Hyokyung Lee, Cheol Beom Lim
  • Patent number: 10690073
    Abstract: An exhaust purification system includes: an NOx reduction type catalyst; an MAF sensor; an SOx purge control unit that uses an air system control having an intake air amount feedback-controlled based on a target intake air amount and an injection system control for a target injection increase amount set based on the target intake air amount, and a fuel injection amount feedback-controlled based on the target injection increase amount; an SOx purge prohibition processing unit that prohibits an SOx purge control; and a warming mode control unit that open-loop controls an air system when the SOx purge control is prohibited, controls the fuel injection amount, and maintains the exhaust gas at a temperature. The SOx purge control unit executes the injection system control by switching the target intake air amount into an actual intake air amount when starting the SOx purge control after a warming mode control is ended.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: June 23, 2020
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Teruo Nakada, Takayuki Sakamoto, Daiji Nagaoka, Tomohiro Korenaga
  • Patent number: 10677125
    Abstract: An exhaust gas purification apparatus for an internal combustion engine includes the adsorbent, the catalyst and the heat generating element, wherein in cases where the residual capacity of the battery is smaller than a first predetermined value required for raising the temperature of the catalyst to an activation temperature thereof, and in cases where the residual capacity of the battery is larger than a second predetermined value which is smaller than the first predetermined value and which is required for raising the temperature of the adsorbent to a predetermined temperature at which the adsorbent exhibits adsorption performance required at the time of starting of the internal combustion engine, an amount of electric power to be supplied to the heat generating element from the battery is adjusted such that the temperature of the adsorbent becomes the predetermined temperature.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: June 9, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryohei Ono, Masaaki Sato, Katsuhiro Ito, Akira Mikami, Kazuhiro Umemoto, Daichi Imai
  • Patent number: 10677180
    Abstract: A first limit requesting process limits a dither control process of fuel injection valves in such a manner that the absolute value of the difference between the air-fuel ratios of the cylinders becomes smaller when the degree of variation of the injection amounts of the fuel injection valves provided for respective cylinders is great than when the degree of variation is small. A second limit requesting process limits the dither control process in such a manner that the absolute value is smaller when the torque fluctuation amount of the internal combustion engine is great than when the torque fluctuation amount is small. The limiting process limits the dither control process in accordance with one of requests generated by the first limit requesting process and the second limit requesting process that causes the absolute value to be smaller than the other.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: June 9, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuya Yoshikawa, Isao Nakajima, Akihiro Katayama, Ryo Suzuki, Sohichi Imai, Eiichiro Kido
  • Patent number: 10570840
    Abstract: Methods and systems for operating an engine to provide small amounts of energy to heat an aftertreatment device are described. In one example, fewer than the actual total number of engine cylinders are supplied with late post fuel injections (LPI) to heat an aftertreatment device without heating the aftertreatment device more than is desired. The engines fuel injectors may be operated at minimum fuel pulse widths to reduce fuel consumption.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: February 25, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Peter Mitchell Lyon, Nanci Ray, Joseph Goode
  • Patent number: 10487760
    Abstract: A method may comprise: positioning a pressure control valve (PCV) at an outlet of a fuel rail; positioning a volume control valve (VCV) at an inlet of a high pressure pump; and in response to an exhaust particulate matter (PM) level deviating from a target PM level, adjusting a fuel ratio of a first fuel and a second fuel delivered to an engine, and opening one of the PCV and the VCV. In this way, the fuel oxygen content may be adjusted to maintain a PM at or below a target level without a DPF over a broad range of engine designs and operating conditions, while maintaining fuel economy.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: November 26, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Matthew Kurtz, Christopher Polonowski, James Eric Anderson, Werner Willems, Nan Robarge
  • Patent number: 10480377
    Abstract: A system and method are disclosed for improving the performance of an aftertreatment system by elevating its temperature above an activation temperature. According to at least one aspect of the present disclosure, the method includes injecting a quantity of a fuel into certain fueled cylinders of a plurality of combustion cylinders of an internal combustion engine, the plurality of combustion cylinders further including non-fueled cylinders. Exhaust from the fueled cylinders is directed through the aftertreatment system while uncombusted gas from the non-fueled cylinders is directed away from the aftertreatment system. In certain embodiments, the uncombusted gas may be directed into an intake manifold in fluid communication with the plurality of combustion cylinders through an orifice. The system includes an engine having exhaust valves to control flow of the exhaust and uncombusted gas and a controller configured to perform the operations of the method.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: November 19, 2019
    Assignee: Cummins Inc.
    Inventors: Paul Douglas Free, Jennifer Kay Light-Holets, Vaibhav Daramwar, David A. Brush
  • Patent number: 10458300
    Abstract: An engine system may include an intake line, and a cylinder deactivation (CDA) device selectively deactivating a portion of combustion chambers in the engine. The engine system may further include a first exhaust manifold connected to a first plurality of combustion chambers mounted with the CDA device, a second exhaust manifold connected to a second plurality of combustion chambers without the CDA device, a first exhaust line connected to the first exhaust manifold, a second exhaust line connected to the second exhaust manifold, and a third exhaust line connected with the first and second exhaust lines through an exhaust gas processing device. In addition, a turbocharger including a turbine is mounted at the first exhaust line and rotated by exhaust gas. An air injection device may supply air to the second exhaust manifold or the second exhaust line in a catalyst heating mode of the exhaust gas processing device.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: October 29, 2019
    Assignee: Hyundai Motor Company
    Inventors: Hyungbok Lee, Jong Il Park, Kwanhee Choi, Joowon Lee, Dong Hee Han, Hyun Jun Lim
  • Patent number: 10428785
    Abstract: An engine controller controls a direct fuel-injection, spark ignition engine including a fuel injection valve configured to directly inject a fuel into a cylinder, and an ignition plug that spark-ignites a mixture in the cylinder. The engine controller is provided with an acceleration request sensor configured to detect an acceleration request of a driver, and when the acceleration request occurs and a top surface temperature of a piston in the cylinder is lower than a predetermined temperature, the engine controller retards an ignition timing so that a period of time until a flame after the ignition reaches the piston top surface is extended.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: October 1, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yoshihiro Imaoka, Takeshi Tsuyuki, Takao Inoue
  • Patent number: 10408171
    Abstract: A method of cleaning an EGR valve operatively connected to an exhaust flow from an engine includes determining when cleaning is required, and when cleaning is required, operating the engine in a high temperature mode in which the temperature of exhaust gas exiting the engine is increased while producing a flow of exhaust gas having a low unburnt hydrocarbon content. The method further includes opening the EGR valve to allow hot exhaust gas to flow therethrough so as to remove combustion by-products that are fouling the EGR valve. Furthermore, the method includes producing an estimate of accumulated combustion by-product fouling of the EGR valve. The estimate is then used to determine whether and when to clean the EGR valve.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: September 10, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Jon Dixon, Jim Bromham, Sean Gordon Harman
  • Patent number: 10378471
    Abstract: A control for an internal combustion engine makes an air-fuel ratio in at least one of a plurality of cylinders equal to a rich air-fuel ratio smaller than a theoretical air-fuel ratio, makes an air-fuel ratio in each of the other remaining ones of the plurality of the cylinders equal to a lean air-fuel ratio larger than the theoretical air-fuel ratio, executes a temperature raising process for raising a temperature of a catalyst that purifies exhaust gas from the plurality of the cylinders, executes a detection process for detecting a degree of dispersion of the air-fuel ratio among the plurality of the cylinders, and executes a determination process for determining, based on the detected degree of dispersion, whether or not a plurality of fuel injection valves corresponding to the plurality of the cylinders respectively are normal, and executes the detection process while avoiding a period of the temperature raising process.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 13, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Nakamura, Yuki Nose, Eiji Ikuta
  • Patent number: 10371073
    Abstract: A vehicle system includes: an engine including a combustion chamber in which an air-fuel mixture is burned to generate energy, an intake manifold which supplies air to the combustion chamber, an injector which supplies fuel to the combustion chamber, and an exhaust manifold which discharges exhaust gas generated by combustion of the air-fuel mixture through an exhaust pipe; a hybrid starter and generator (HSG) which generates electricity by starting the engine or by using energy generated in the engine; a soot filter which is mounted to the exhaust pipe and collects particulate matters (soot) included in exhaust gas; and a control unit which controls an operation of the injector and controls an operation of the HSG, in which when the quantity of soot is larger than a predetermined quantity, the control unit increases a size of a load of the HSG by a predetermined load quantity until a temperature of the soot filter reaches a predetermined temperature.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: August 6, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Hwa Yong Jang
  • Patent number: 10344701
    Abstract: An engine system includes an engine that, a fuel supply device, and an electronic control unit. The electronic control unit is configured to control the fuel supply device and to perform operation control of the engine by adjusting an injection ratio between fuel injection from an in-cylinder injection valve and a port injection valve according to the operation state of the engine. The electronic control unit is configured to perform imbalance determination. The electronic control unit is configured to change a region of fuel injection from a first fuel injection region to a second fuel injection region when the electronic control unit determines that a lean imbalance is occurred with respect to the fuel injection in which the fuel injection from the port injection valve is performed.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: July 9, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Genko, Daigo Ando, Chisa Watanabe, Shinya Kondo, Takahiro Nishigaki
  • Patent number: 10344693
    Abstract: A control apparatus for a gasoline engine having a fuel injection means including an in-cylinder injection valve. The control apparatus comprises a controller configured to, when warming up an exhaust gas purification catalyst provided in an exhaust passage provided of the gasoline engine, control the fuel injection means to conduct one or more main injections, control the in-cylinder injection valve to conduct a post injection, perform a retard correction of an ignition timing at which fuel injected by the one or more main injections is ignited, determine an injection quantity by the one or more main injections and an injection quantity by the post injection such that an air-fuel mixture formed in the cylinder by gasoline fuel injected by the one or more main injections has a predetermined lean air-fuel ratio at which a difference between an actual output torque and a required torque is within a predetermined allowable range.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: July 9, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takanobu Hosoya, Norihisa Nakagawa, Koichi Kimura, Takuya Okubo
  • Patent number: 10309286
    Abstract: In a hybrid vehicle that includes an engine having a particulate matter removing filter configured to remove particulate matters in an exhaust system, when an increase in temperature of the particulate matter removing filter is requested in order to regenerate the particulate matter removing filter, dither control is executed to execute control such that an air-fuel ratio of the engine is repeated between a rich state and a lean state. Then, when the dither control is executed, control is executed such that the engine is operated at an operation point where the increase in temperature of the particulate matter removing filter is promoted among operation points where power output from the engine is retainable.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 4, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuya Miyaji, Takashi Suzuki
  • Patent number: 10309328
    Abstract: An exhaust emission control system of an engine is provided, which includes a NOx catalyst disposed in an exhaust passage for storing NOx within exhaust gas when an air-fuel ratio of the exhaust gas is lean, and reducing the stored NOx when the air-fuel ratio is approximately stoichiometric or rich. A processor executes a NOx reduction controlling module for performing, when the NOx stored amount exceeds a given amount, a NOx reduction control in which a fuel injector performs a post injection of fuel to continuously control the air-fuel ratio to a target ratio so that the stored NOx is reduced to be below a given amount, the target air-fuel ratio being a ratio at which the stored NOx is reducible, the post injection causing the injected fuel to combust inside a cylinder, the execution of the control permitted when an engine load is within a medium load range.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: June 4, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Takayuki Yamaguchi, Takashi Tanaka, Kota Matsue, Hiroshi Hayashibara, Yoshiaki Tomita, Kaoru Yamada, Masayuki Tetsuno, Daishi Ikeda, Kazunori Hirasawa, Masanobu Kanno
  • Patent number: 10295245
    Abstract: A refrigeration device, including a cabinet, a door body, a drawer, a first snap assembly, and a second snap assembly. The door body is provided to the cabinet in a drawable manner; the drawer is detachably provided to the door body, the first snap assembly is adapted to limit the door body at a first position where the door body can be fixed to the cabinet, the second snap assembly is adapted to limit the door body at a second position where the door body can be fixed to the cabinet, during the process that the door body is pulled out of the cabinet, the door body passes through the first position and the second position in sequence, when the first snap assembly fails, the drawer is adapted to be taken out of the door body, and when the second snap assembly fails, the door body is adapted to be separated from the cabinet.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: May 21, 2019
    Assignees: HEFEI HUALING CO., LTD., MIDEA GROUP CO., LTD.
    Inventors: Jun Yao, Dongxian Liu
  • Patent number: 10247115
    Abstract: A system and method for increasing engine heating rate to facilitate early introduction of exhaust gas recirculation after a cold start include operating an electric machine connect to the engine to apply a load to the engine. The electric machine may be operated as a generator to produce an increased engine torque demand and increase the rate of engine heating until an engine temperature and an exhaust temperature exceed corresponding thresholds. Operation of the electric machine as a generator may be stopped in response to a battery state of charge exceeding a threshold, or engine load exceeding a threshold.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: April 2, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Paspuleti Ashish Kumar Naidu, Ian Halleron, Peter George Brittle, James Wright
  • Patent number: 10202920
    Abstract: In an exhaust gas control system for an internal combustion engine operable at a lean air-fuel ratio, after a request to stop the internal combustion engine has been issued, the internal combustion engine is operated at a stoichiometric air-fuel ratio or lower until an air-fuel ratio in an SCR catalyst becomes lower than or equal to the stoichiometric air-fuel ratio, and then supply of fuel to the internal combustion engine is stopped.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: February 12, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayoshi Tanaka, Yoshihisa Shinoda
  • Patent number: 10174706
    Abstract: A method is described of injecting fuel into an internal combustion engine. The internal combustion engine utilises direct fuel injection and comprises a plurality of cylinders, each of which has an associated piston. The method comprises simultaneously applying different injection patterns to at least two of the cylinders in dependence on initial positions of their respective pistons. The method comprises injecting a first cylinder of the internal combustion engine according to an optimum injection pattern, and, simultaneously, injecting a second cylinder of the internal combustion engine according to a start-up injection pattern. The start-up injection pattern is determined in dependence on the optimum injection pattern and the initial position of the piston associated with said second cylinder.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: January 8, 2019
    Assignee: JAGUAR LAND ROVER LIMITED
    Inventor: Adam Moorcroft
  • Patent number: 10174699
    Abstract: When the air fuel ratio dither control is carried out, an air fuel ratio of a mixture in each of one or more lean cylinders and one or more rich cylinders is controlled so that an average value of an air fuel ratio of exhaust gas flowing into the three-way catalyst becomes a predetermined target exhaust gas air fuel ratio. At this time, the air fuel ratio dither control is carried out by setting, as the one or more rich cylinders, at least a cylinder for which a degree of uniformity of the flow speed distribution of exhaust gas, which is a degree of uniformity of the flow speed distribution of exhaust gas discharged from that cylinder on a cross section of the three-way catalyst, is the lowest in the cylinder group of an internal combustion engine.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: January 8, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuya Suzuki, Koichi Hoshi
  • Patent number: 10160646
    Abstract: Provided is a waste heat recovery apparatus including a first heat exchanger, a reformer and a reformer feed pre-heater sequentially disposed on or in the waste gas exhaust pipe from the upstream to the downstream thereof, wherein the waste gas temperature at the upstream of the waste gas exhaust pipe is higher than that at the downstream. In an embodiment, the reformer can be a hydrogen-generation reformer, and the generated hydrogen is introduced into the burning equipment for use. In such manner, the waste heat can be effectively utilized, and the carbon deposition issue inside the burning equipment can be fixed. A waste heat recovery method is also provided.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: December 25, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Li Lin, Ting-Wei Huang, Meng-Chang Lin
  • Patent number: 10113469
    Abstract: A method for preventing overheating of a diesel particulate filter during regeneration when an engine is idling may include using an electric machine to apply a load to the engine and compensating for the increase in applied load by increasing an engine torque set point to reduce the concentration of Oxygen in the exhaust gas flowing to the diesel particulate filter. Increased engine torque may be provided by adjusting air-fuel ratio by enriching an air-fuel mixture supplied to the engine and the diesel particulate filter. The control may be initiated in response to entering an idle mode during regeneration or in response to a measured or estimated temperature of the diesel particular filter exceeding a threshold or limit. Estimated temperature may be predicted using a soot combustion model.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: October 30, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Paspuleti Ashish Kumar Naidu, James Wright, Peter George Brittle, Matthew Mitchell
  • Patent number: 9976496
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: May 22, 2018
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9932876
    Abstract: Methods and systems are provided for controlling a vehicle engine to adjust exhaust warm-up strategy based on a vehicle network information. In one example, in response to an expected decrease in temperature of a catalyst of a vehicle below a threshold and an estimated duration thereof based on communications external from the vehicle, a method may include delaying catalyst heating actions, when the catalyst heating actions are determined to be unable to heat up the catalyst to threshold temperatures. However, the catalyst heating actions may be enabled when the catalyst heating actions are determined to be able to achieve the threshold temperature within the duration.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 3, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Jason Ronald Smith, Michael Brendan Hopka, Devesh Upadhyay
  • Patent number: 9895994
    Abstract: The vehicle control system includes an engine, a battery, a motor generator that generates driving power and generates electric power to charge the battery, a power conversion device that generates driving power to the motor generator and charges the battery, and a control device that controls the engine and the power conversion device. The control device controls the engine and the power conversion device and the remaining capacity of the battery is equal to a target value when the remaining capacity of the battery is equal to or less than the lower threshold. The control device reduces the target value of the remaining value of the battery as compared with a case where temperature of the battery is equal to or more than a threshold value when the temperature of the battery is less than the threshold value.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: February 20, 2018
    Assignee: DENSO CORPORATION
    Inventor: Youhei Morimoto
  • Patent number: 9890685
    Abstract: The present disclosure provides a method of diagnosing a failure of a Selective Catalytic Reduction (SCR) system, the method including: injecting urea into the interior of an exhaust pipe using an injector; after the injection step, detecting an amount of NOx and an amount of ammonia through an NOx sensor provided at a rear end of the exhaust pipe; and diagnosing a failure of the injector based on at least one of the amount of NOx and the amount of ammonia.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 13, 2018
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Hwa Yong Jang
  • Patent number: 9890676
    Abstract: A device includes a first catalyst 41 including a Pd-containing catalyst layer and a Rh-containing catalyst layer and a second catalyst 42 containing Pt-loaded alumina and containing neither Rh nor Pd. The first catalyst or the second catalyst are disposed in one place in such a manner that one of the first catalyst 41 or the second catalyst 42 is located upstream of the other in a flow direction of an exhaust gas from an engine 1.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: February 13, 2018
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Hisaya Kawabata, Yasuhiro Matsumura, Hiroshi Yamada, Masahiko Shigetsu
  • Patent number: 9863349
    Abstract: In an exhaust gas control system for an internal combustion engine operable at a lean air-fuel ratio, after a request to stop the internal combustion engine has been issued, the internal combustion engine is operated at a stoichiometric air-fuel ratio or lower until an air-fuel ratio in an SCR catalyst becomes lower than or equal to the stoichiometric air-fuel ratio, and then supply of fuel to the internal combustion engine is stopped.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: January 9, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayoshi Tanaka, Yoshihisa Shinoda
  • Patent number: 9850840
    Abstract: An electronic control unit (ECU) of an internal combustion engine, which includes an air-fuel ratio sensor arranged at a downstream side of an exhaust purification catalyst, is configured to judge if a state of the air-fuel ratio sensor is normal or abnormal based on the first characteristic of change of air-fuel ratio and, if a judgment cannot be made based on the first characteristic, the ECU is configured to judge if the state of the air-fuel ratio sensor is normal or abnormal based on a second characteristic of change of air-fuel ratio. As a result, it is possible to suppress the effects of the change of state of the exhaust purification catalyst while accurately diagnosing the abnormality of deterioration of response of a downstream side air-fuel ratio sensor.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 26, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Miyamoto, Yuji Miyoshi, Yasushi Iwazaki, Toru Kidokoro, Keiichiro Aoki
  • Patent number: 9850793
    Abstract: An automatic regeneration controller for a particular filter comprises an engine controller, a unit controller, and a load application cancellation switch. With filter regeneration being started by determination of particulate accumulation and with an idling or light-load operation being conducted, load request to a work unit is outputted from the engine controller to the unit controller. Then, when load application is not possible or the load application cancellation switch is on and, in addition, exhaust temperature is not maintainable with no load application, a regeneration stop signal is outputted from the unit controller to the engine controller and a regeneration stop signal reception process is conducted in the engine controller, and with no forced load application to a hydraulic unit, fuel addition is stopped to stop automatic regeneration control.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: December 26, 2017
    Assignee: HINO MOTORS, LTD.
    Inventors: Kenji Miyoshi, Akihito Roppongi, Masaru Hironaka
  • Patent number: 9810131
    Abstract: Regarding a work vehicle configured to include an engine mounted on a travelling machine body and an exhaust gas purification device arranged in an exhaust gas path of the engine, it is an object to prevent the regeneration control of the exhaust gas purification device from being executed against an operator's will. The work vehicle of the present invention includes a regeneration switch 329 configured to cause the regeneration control of an exhaust gas purification device 50 to be executed. First, when a cumulative drive time of an engine 5 has passed in a prescribed time or longer, a regeneration control request warning is displayed on a meter panel 246. Then, only when a regeneration switch 329 is manually operated by an operator after the display of the regeneration control request warning on the meter panel 246, the regeneration control of the exhaust gas purification device 50 is started.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: November 7, 2017
    Assignee: Yanmar Co., Ltd.
    Inventors: Akimichi Iwata, Kazuhisa Yokoyama, Yuusuke Koike
  • Patent number: 9777654
    Abstract: A method for controlling a vehicle including an exhaust aftertreatment system for purifying exhaust gases from a compression-ignition engine includes monitoring vehicle operating parameters, determining whether the vehicle is stopped, determining whether the engine is commanded off, and determining whether the exhaust aftertreatment device is at a predetermined operating temperature. When the vehicle is stopped, the engine is commanded off and the exhaust aftertreatment device is at the predetermined operating temperature the engine is controlled in a run-on state for a predetermined period of time. The run-on state includes operating the engine in a throttled and fueled state.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 3, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Gongshin Qi, Eric D. Thomas, Charles E. Solbrig
  • Patent number: 9726094
    Abstract: Various methods and arrangements for controlling catalytic converter temperature are described. In one aspect, an engine controller includes a catalytic monitor and a firing timing determination unit. The catalytic monitor obtains data relating to a temperature of a catalytic converter. Based at least partly on this data, the firing timing determination unit generates a firing sequence for operating the engine in a skip fire manner. Another aspect of the invention relates to an engine exhaust system that can help expedite the heating of a catalytic converter.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: August 8, 2017
    Assignee: Tula Technology, Inc.
    Inventors: Matthew A. Younkins, Ram Subramanian, Leo Breton
  • Patent number: 9660889
    Abstract: Embodiments provide a schema for representing data usage plans and data usage statistics. The data usage plan describes threshold values associated with network connections of computing devices of the user. A web service dynamically generates data usage statistics for the computing devices to represent data consumed by the computing devices under the data usage plan. The schema is updated with the data usage statistics and distributed to the computing devices for presentation to the user.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: May 23, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Gil Zalmanovitch, Gregory James Scott, Shai Guday, Alec Garvin Kwok, Yue Jiang, Kenneth Vincent Ma
  • Patent number: 9644558
    Abstract: A work apparatus has an internal combustion engine and a starter device for starting the engine. Within a housing of the work apparatus, a first electrical component is arranged at a first location and a second electrical component is arranged at a second location. A control unit is provided which is connected to the first electrical component and to the second electrical component. The control unit detects a first temperature-dependent value of the first electrical component at the first location, and a second temperature-dependent value of the second electrical component at the second location, and identifies the starting conditions as a function of these values. The first electrical component is a first actuator and the second electrical component is a second actuator or a sensor.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: May 9, 2017
    Assignee: Andreas Stihl AG & Co. KG
    Inventors: Manuel Dangelmaier, Tim Gegg, Clemens Klatt
  • Patent number: 9631570
    Abstract: An engine operation control apparatus and engine operation control method of a vehicle are provided. The engine operation control apparatus includes a coolant temperature sensor that detects a coolant temperature of a coolant line which passes through an engine. Further, the apparatus includes first and second maps in which corresponding engine operating points are mapped to a vehicle speed, a gear stage, a driver requesting torque, and an electric field load amount of the vehicle. A controller determines a candidate operating point using any one of the first and second maps based on a comparison between the coolant temperature and a predetermined threshold value and determines an optimal operating point of the engine using the candidate operating point.
    Type: Grant
    Filed: October 24, 2015
    Date of Patent: April 25, 2017
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yong Kak Choi, Hyungseuk Ohn, Minseok Song, Dong Jun Shin
  • Patent number: 9624855
    Abstract: Embodiments for controlling an exhaust back-pressure valve are provided. In one example, a method for operating an engine comprises closing an exhaust back-pressure valve in response to a component temperature, adjusting intake and/or exhaust valve operation in response to closing the exhaust back-pressure valve to reduce cylinder internal exhaust gas recirculation (EGR), and while the exhaust back-pressure valve is closing, indicating degradation of an exhaust back-pressure system if a designated engine operating parameter remains constant. In this way, degradation of the exhaust back-pressure system may be diagnosed while maintaining combustion stability.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: April 18, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas G. Leone, Peter C. Moilanen
  • Patent number: 9587573
    Abstract: A system includes a catalyst light-off module that selectively generates a first signal based on an engine coolant temperature and an estimated exhaust enthalpy, a setpoint module that selectively initiates a catalyst light-off period in response to receiving the first signal and that generates a desired exhaust enthalpy, and a first model predictive control (MPC) module that generates predicted parameters based on a model of an engine and a set of possible target values, generates a cost for the set of possible target values based on the predicted parameters and the desired exhaust enthalpy, and selects the set of possible target values from multiple sets of possible target values based on the cost. The system also includes an engine actuator module that adjusts an actuator of the engine based on at least one of the target values.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: March 7, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Robert J. Genslak, Gary Robert Cygan, Jr.
  • Patent number: 9551261
    Abstract: An object is to suppress the occurrence of a failure in supply of urea water as much as possible in filling control of urea water in a pump share-type urea water supply system with two supply valves. In the pump share-type urea water supply system with a first supply valve and a second supply valve, a urea water tank is connected with the respective supply valves by a urea water supply path. The urea water supply path includes a first supply path for the first supply valve and a second supply path for the second supply valve. The second supply path has a larger capacity than the capacity of the first supply path by a predetermined volume.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 24, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Matsuo, Nobumoto Ohashi, Akira Mikami, Keishi Takada, Shigeki Nakayama
  • Patent number: 9517760
    Abstract: A hybrid vehicle according to one embodiment of the present invention has: an internal combustion engine including an in-cylinder fuel injection valve and a crank ventilation system; a motor; a power transmission mechanism connecting a drive shaft of the vehicle and the engine to allow torque transmission therebetween and connecting the drive shaft and the motor to allow torque transmission therebetween; and a control device. The control device controls output torques of the engine and the motor so as to exert an equal torque to a user requiring torque on the drive shaft. Furthermore, the control device stops the engine when an engine stop condition that included a condition that a coolant water temperature is equal to or higher than an intermittency allowance temperature, and start the engine when an engine start condition is satisfied.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: December 13, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Daigo Ando
  • Patent number: 9482129
    Abstract: In a vehicle including an engine, an electrically heatable catalyst device (EHC), and a first motor generator that generates electric power in accordance with the engine's motive power with the vehicle in a substantially stopped state with a vehicular speed lower than a threshold vehicular speed, an ECU determines, based on an amount A by which an accelerator pedal is operated and a vehicular speed V, whether a large accelerator operation has been performed with the vehicle in the substantially stopped state. If the ECU determines that the large accelerator operation has been performed with the vehicle in the substantially stopped state, the ECU activates an energization timer, and before the energization timer reaches a reference energization period of time ?, the ECU energizes the EHC, and once the energization timer has reached the reference energization period of time ?, the ECU ceases energizing the EHC.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 1, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Katsuta
  • Patent number: 9469293
    Abstract: In a vehicle capable of performing regenerative braking by a motor, when regenerative power is supplied to both of a battery and an electric heating catalyst device (EHC), and it is predicted that the battery is overcharged at the time of turning-off of EHC (a supply of power to the EHC is stopped), ECU temporarily delays turning-off of EHC. ECU determines whether or not a condition for turning off the EHC is met during the EHC turning-off delay. When the condition for turning off the EHC is met, the regenerative brake torque is lowered so that the regenerative power becomes less than the battery acceptable power, and the hydraulic brake torque is increased depending on lowering of the regenerative brake torque, and thereafter the EHC turning-off delay is cancelled.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: October 18, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroshi Katsuta
  • Patent number: 9422883
    Abstract: A method is provided for generating rapid light-off for a diesel oxidation catalyst (DOC) close-coupled to a compression-ignition engine. The engine includes an intake passage in fluid communication with a combustion chamber, a throttle for controlling a flow of intake air through the intake passage, and an exhaust passage configured to channel an exhaust gas from the combustion chamber to the DOC. The method includes starting the engine to commence a warm-up thereof and regulating the throttle to restrict supply of the intake airflow to the combustion chamber. The method additionally includes injecting a predetermined amount of fuel into the combustion chamber during the engine's exhaust cycle such that the injected fuel is carried by the exhaust gas and burned in the exhaust passage. Regulating the throttle and injecting fuel during the warm-up of the engine together increase temperature of the exhaust gas for rapid light-off of the close-coupled DOC.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: August 23, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Ping Ge, Ryu Hariyoshi
  • Patent number: 9388722
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided. The exhaust gas treatment system includes an electrically heated catalyst (“EHC”) device in fluid communication with an exhaust gas conduit, a generator, a selective catalytic reduction (“SCR”) device, and a control module. The EHC device includes an electric heater and an EHC catalyst that is heated to an EHC light-off temperature. The generator is selectively operable in a target voltage mode to supply a target voltage to the electric heater. The target voltage represents a voltage required by the electric heater in order to maintain the EHC catalyst at a catalyst temperature. The SCR device is in fluid communication with the exhaust gas conduit. The SCR device is located downstream of the EHC device and includes an SCR catalyst that is selectively heated by the EHC device to a SCR light-off temperature.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: July 12, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Chandra S. Namuduri