Exhaust Gas Diverted From Reactor Or Treating Agent Mixer Patents (Class 60/288)
  • Patent number: 8800270
    Abstract: An exhaust system for treating an exhaust gas composition having NO2 in a first NO2 concentration. The exhaust system includes a first catalyst that contacts a first portion of the exhaust gas composition converting it into a first oxidized exhaust mixture that includes NO2 in a second NO2 concentration that is greater than the first NO2 concentration. The system further includes a bypass that receives a second portion of the exhaust gas composition and a recombination section positioned downstream of the first catalyst. The first oxidized exhaust mixture is combined with the second portion of the exhaust gas composition to produce a first combined exhaust gas mixture. A second catalyst converts the first combined exhaust gas mixture to a second combined exhaust gas mixture having a third NO2 concentration that is less than the second NO2 concentration. The method used by the exhaust system is also provided.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: August 12, 2014
    Assignee: Umicore Autocat USA Inc.
    Inventors: Owen Herman Bailey, Robert Reginald Loucks, Christopher Simon Owens
  • Patent number: 8789360
    Abstract: A safety device for an exhaust gas aftertreatment system provides an alternative exhaust route in case of high temperatures or pressures within the regenerating particulate filter of the exhaust gas aftertreatment system that may cause damage to the particulate filter. The safety device comprises a valve that redirects the flow of exhaust gas from the regenerating particulate filter when specified temperature or pressure thresholds are met or exceeded.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 29, 2014
    Assignee: Boshart Automotive Testing Services, Inc.
    Inventor: Kenneth J. Boshart
  • Patent number: 8776498
    Abstract: Embodiments are described to improve the durability of a lean NOx aftertreatment system. According to one embodiment of the present invention an air injection system is used to inject air continuously into the exhaust system between the upstream three-way catalyst and the downstream selective catalytic reduction (SCR) catalyst when the engine is operating at stoichiometric or rich air/fuel ratios and the exhaust temperatures are above a calibratible level (e.g., 700° C.). In another embodiment, an oxidation catalyst is positioned downstream of the air injection point to prevent exothermic reactions from occurring on the SCR. In another embodiment, the reductant for the SCR is generated in-situ. In yet another embodiment, a diverter valve with a reduction catalyst in a bypass arm is utilized to bypass the SCR during high load conditions.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 15, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Harendra S Gandhi, Robert Walter McCabe, Joseph Robert Theis
  • Patent number: 8763381
    Abstract: A method of heating an engine exhaust gas of an engine, including flowing a first exhaust gas at a first temperature within and along internal flow channels of a catalyst brick, and flowing a second exhaust gas at a second, different, temperature around an exterior of the catalyst brick. Heat may be transferred between the gases and the catalyst brick to achieve various operations.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: July 1, 2014
    Assignee: General Electric Company
    Inventor: James Henry Yager
  • Patent number: 8752532
    Abstract: This invention relates to an internal combustion engine and a control device for the internal combustion engine and has an object to provide an internal combustion engine and a control device therefore that can suppress occurrence of knocking if an EGR rate is increased. An EGR gas can be made to flow separately through one path via one EGR passage and an other path via another EGR passage. The EGR gas flow through the other path can be cooled by an intercooler. Since the intercooler usually has a capacity larger than that of an EGR cooler, its cooling capability is high, and the EGR gas can be made to flow into a surge tank in a state where heat of the EGR gas has been sufficiently emitted.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: June 17, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shingo Korenaga, Shigeki Miyashita, Hiroki Ito, Yusuke Saitou, Kouhei Kiyota
  • Patent number: 8713919
    Abstract: In an exemplary embodiment of the invention an exhaust gas after treatment system for an internal combustion engine comprises an exhaust gas conduit configured to transport exhaust gas from the internal combustion engine to exhaust treatment devices of the exhaust gas treatment system. A controller in signal communication with the exhaust gas aftertreatment system is configured to monitor the temperature of a selective catalytic reduction device, wherein the controller is operable to move a valve assembly to an open position when the selective catalytic reduction device is at or above an operating temperature and to move the valve assembly to a closed position when the selective catalytic reduction device is below the operating temperature for entrainment of NOx constituents from the exhaust gas.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 6, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Joshua Clifford Bedford
  • Publication number: 20140116027
    Abstract: An apparatus is disclosed, including an exhaust conditions module structured to interpret a diesel particulate filter (DPF) delta pressure value, a flow balance correlation, a NOx input value, and an exhaust flow rate value. A flow determination module is structured to determine a flow imbalance value in response to the DPF delta pressure value, the flow balance correlation, and the exhaust flow rate value. A reductant determination module is structured to determine a first reductant injection command and a second reductant injection command in response to the flow imbalance value and the NOx input value.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 1, 2014
    Applicant: Cummins Inc.
    Inventor: Richard J. Ancimer
  • Patent number: 8683791
    Abstract: The present invention relates to a method and system for homogenizing exhaust from an engine. In one embodiment, the present invention includes an automobile. The automobile can include a fuel delivery unit, an engine, an exhaust system, and a control unit. The exhaust system can include a swirl inducement unit, multiple sensors, and multiple catalytic converters. The swirl inducement unit can homogenize an exhaust from the engine. The swirl inducement unit can include a plurality of vanes and/or a plurality of protrusions. The protrusions can be a plurality of bumps and/or a plurality of semi-circular rings. The plurality of vanes can be rotatable with the rotation of the vanes being controlled by the control unit. The rotation of the vanes can be based on an operating condition of the engine.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: April 1, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: James M. Crane
  • Patent number: 8678813
    Abstract: A stream of exhaust gases from the combustion of hydrocarbon-containing fuels with a variable temperature can be produced by dividing the exhaust gases into two separate part-streams, cooling one part-stream and then combining the two part-streams again. The temperature of the exhaust-gas stream which has been combined again can be set to between the temperature of the combustion of the hydrocarbon-containing fuels and the temperature of the cooled exhaust-gas part-stream by corresponding throttling of the two part-streams before they are brought together again. The exhaust-gas stream produced in this way is preferably used for the defined ageing of automotive exhaust catalysts. In this context, it is particularly advantageous that the change in the temperature of the exhaust-gas stream has no influence on its air/fuel ratio.
    Type: Grant
    Filed: December 17, 2005
    Date of Patent: March 25, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Juergen Gieshoff, Hartmut Finkbeiner, Thomas Kreuzer
  • Patent number: 8640445
    Abstract: This disclosure provides an exhaust flow detection and variable dosing system and method for treating exhaust flow from an engine. The system includes first and second exhaust flow legs, a cross passage connecting these legs upstream of SCRs and a sensor positioned along the cross passage to detect at least one of differential pressure between the exhaust flow legs, and exhaust flow in the cross passage. A dosing circuit connects a dosing treatment supply to each of the exhaust flow legs at or upstream of the SCRs, and at least one dosing device positioned along the dosing circuit to control the amount of the dosing agent delivered to each exhaust leg. An electronic control unit controls the amount of a dosing agent delivered to the exhaust flow legs independently based on exhaust flows determined for each leg using at least one of the differential pressure and cross passage exhaust flow.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: February 4, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventors: Phanindra Garimella, Ousmane Gueye, Anita Singhal, Randy W. Nelson, Axel zur Loye
  • Patent number: 8631648
    Abstract: A system for treating exhaust gases from an engine is described. The system includes, the exhaust gases routed from the engine to atmosphere through an exhaust passage, the system comprising: an injector directing a spray of reductant into the exhaust gases routed from the engine to atmosphere; an exhaust separation passage that separates an exhaust gas flow received from the engine into a plurality of separate exhaust gas flows; a plurality of oxidation catalysts, each of which receives one of the plurality of separate exhaust gas flows; a flow combining passage that receives the plurality of separate exhaust gas flows and combines them into a re-combined exhaust gas flow; a turbocharger that receives the re-combined exhaust gas flow from the flow combining passage; and a selective catalytic reduction catalyst positioned downstream of the turbocharger.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 21, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Christine Kay Lambert, Yinyan Huang, Harold Huimin Sun, Christopher Oberski
  • Patent number: 8627650
    Abstract: An exhaust gas purification device has: a bypass passage (20) disposed in an exhaust passage (15) of an internal combustion engine (10); an adsorbent (21) which is disposed in the bypass passage (20), and adsorbs unburned components in exhaust gas at a low temperature and desorbs the adsorbed unburned components at a high temperature; and an exhaust gas purification catalyst (22) which is disposed in the exhaust passage (15) at a downstream side of a portion where the bypass passage (20) merges, and purifies unburned components in exhaust gas; and a desorption amount adjustment (19) unit that adjusts the desorption amount of unburned components adsorbed by the adsorbent (21) based on an integrated fuel cut air amount (fgs), which is an integrated value of air amount taken into a combustion chamber of the internal combustion engine (10) during execution of fuel cut.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 14, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Sano, Takaaki Itou, Kimikazu Yoda, Kazuhiro Wakao
  • Patent number: 8629781
    Abstract: A method of assessing overall efficiency of a selective-catalytic-reduction catalyst includes monitoring instantaneous efficiency of the catalyst. The method also includes determining the overall efficiency by summing instantaneous efficiency values weighted by a first set of coefficients if the most recent instantaneous efficiency value is above an instantaneous efficiency threshold. The method additionally includes determining the overall efficiency by summing instantaneous efficiency values weighted by a second set of coefficients if the most recent instantaneous efficiency value is equal to or below the instantaneous efficiency threshold. Furthermore, the method includes determining whether the overall efficiency has dropped below an overall efficiency threshold and reporting when the overall efficiency has dropped below the overall efficiency threshold.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E. Kowalkowski, Stephen Paul Levijoki, John F. Van Gilder
  • Patent number: 8621849
    Abstract: A method and a control system are provided for diagnosing a diesel combustion catalyst that is located in an exhaust line within a diesel engine system. The method comprising providing an unburned fuel mass flow through the diesel oxidation catalyst, determining the oxidation heat release rate which is related to the exothermic oxidation reactions of the unburned fuel into the diesel oxidation catalyst, integrating the determined oxidation heat release rate on a time interval, integrating the unburned fuel mass flow on the same time interval, dividing the integrated value of oxidation heat release rate and the integrated value of unburned fuel mass flow for determining an efficiency index (DOI) of the diesel oxidation catalyst.
    Type: Grant
    Filed: March 27, 2010
    Date of Patent: January 7, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Roberto Vernassa, Francesco Cianflone
  • Patent number: 8621851
    Abstract: A particle filter arrangement for filtering exhaust gases of an internal combustion engine such as a diesel internal combustion engine, includes an inlet and an outlet and at least one particle filter arranged in the flow path of the exhaust gases between the inlet and outlet. The exhaust gases are conducted in a line, with the line having a first segment in which the exhaust gases are conducted substantially in the direction of the outlet. The line has a second segment in which the exhaust gases are conducted substantially in the direction of the inlet. An operating temperature of the arrangement sufficiently high to prevent full loading of the filter is generated particularly quickly in that the line also includes a third segment in which the exhaust gases are conducted substantially in the direction of the outlet.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: January 7, 2014
    Assignee: Ark-Holding AG
    Inventor: Herbert Stieglbauer
  • Patent number: 8617498
    Abstract: Systems and methods are disclosed that include an exhaust gas stream produced by an engine and an aftertreatment system including an SCR catalyst element receiving at least a portion of the exhaust gas stream. An exhaust outlet flow path has an inlet fluidly coupled to the exhaust gas stream at a position downstream of at least a portion of the SCR catalyst element that bypasses at least a portion of exhaust gas stream to provide for compositional measurement of the exhaust gas with a compositional sensor located downstream of a diagnostic catalyst positioned in the exhaust outlet flow path.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 31, 2013
    Assignee: Cummins Inc.
    Inventors: Mert Geveci, Aleksey Yezerets
  • Patent number: 8569659
    Abstract: A heater-integrated canister unit may include a canister, a temperature controller integrally coupled with the canister to indirectly heat a charcoal inside the canister by increasing a temperature of a space in the canister, and an electronic control unit controlling the current supplied to the temperature controller. The temperature controller may be disposed at the opposite side of the evaporation gas intake port in the canister and support the charcoal or may be coupled to the outside of the canister by a seating slot formed in the canister. The temperature controller may include a heater plate transmitting the current by forming a positive electrode and a negative electrode, a connector supplying the current to the heater plate and a heater generating heat on the heater plate.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: October 29, 2013
    Assignee: Hyundai Motor Company
    Inventor: Myeonghwan Kim
  • Patent number: 8567180
    Abstract: A diesel engine having an inlet side and an outlet side provided with at least one inlet valve and one outlet valve per cylinder, comprises a reformer catalyst unit comprising a catalyst located downstream of the outlet valve(s) and located such that a proportion of the hot exhaust passes through the catalyst while the remainder of the hot exhaust passes to a turbocharger and/or to exhaust gas aftertreatment, wherein the catalyst unit is provided with diesel fuel supply means, preferably in the form of a diesel fuel injector, such that diesel fuel may be injected to provide heat to the reformer catalyst to raise it to an effective reforming temperature. The output from the reformer unit may be fed to the inlet side of the engine, and/or may be admixed with the remainder of the exhaust gases prior to catalytic aftertreatment. Improvements in emission control are possible.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: October 29, 2013
    Assignee: Johnson Matthey Public Limited Company
    Inventor: John Frederick Pignon
  • Patent number: 8534055
    Abstract: An auxiliary filter arrangement for an exhaust aftertreatment system, such as a diesel particulate filter (DPF) system. The DPF communicates with an exhaust line to receive a flow of exhaust gases therethrough. An auxiliary filter is positioned in an auxiliary line or tube that connects an air supply, a pressure sensor, and/or any other aftertreatment system component to the exhaust line. The auxiliary filter can be a wire mesh filter operable to trap particulate or soot, thereby preventing the soot from traveling further up the auxiliary line toward the components of the air supply system, the pressure sensor, and/or the components of any other aftertreatment system communicating with the exhaust line through the auxiliary line.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: September 17, 2013
    Assignee: Thermo King Corporation
    Inventor: Erich A. Lucht
  • Patent number: 8534048
    Abstract: An exhaust purification system of an internal combustion engine provided with an NOx storage reduction catalyst an oxidation catalyst which is arranged downstream of the NOx storage reduction catalyst an exhaust gas tank which is connected to the engine exhaust passage between the NOx storage reduction catalyst and the oxidation catalyst, and a switching valve which closes the engine exhaust passage toward the oxidation catalyst and makes the exhaust gas flow into the tank. When making the air-fuel ratio of the exhaust gas which flows into the NOx storage reduction catalyst rich, the engine exhaust passage toward the oxidation catalyst is shut and the flow path is switched so that the exhaust gas flows to the tank to thereby store the exhaust gas in the tank.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: September 17, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Mikio Inoue
  • Patent number: 8528327
    Abstract: In one exemplary embodiment of an exhaust system, the system includes an exhaust manifold in fluid communication with an internal combustion engine and a forced induction device in fluid communication with the exhaust manifold, the forced induction device including a housing. The system further includes a flow control device to control fluid communication between the forced induction device and a catalyst substrate and to control fluid communication between the exhaust manifold and the catalyst substrate.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: September 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: John R. Bucknell, Dominique T. Lester, Rodney E. Baker
  • Patent number: 8516801
    Abstract: An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine which can properly purge at least NOx of unpurified components contained in exhaust gas while considering characteristics of NOx desorbed from an adsorbent. A bypass passage 18 bypassing a main exhaust passage 12 of the internal combustion engine 10 is provided. A HC/NOx adsorbent 22 having a function of adsorbing HC and NOx is provided in the bypass passage 18. A second underfloor catalyst 30 is provided downstream of the adsorbent 22. A purge passage 26 branching off from the bypass passage 18 while connecting to an intake passage is provided. An exhaust switching valve 20 and a purge control valve 28 are provided as a flow path switching means that is capable of switching a flow target into which the exhaust gas flows between the main exhaust passage 12 and the bypass passage 18. If the purging operations are executed, the intake purging operation is first executed.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 27, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Sano, Takaaki Itou, Kimikazu Yoda, Kazuhiro Wakao
  • Patent number: 8510020
    Abstract: Controlling a vehicle responsive to reductant conditions is provided. The method for controlling a vehicle having an engine with an exhaust, the exhaust having a reductant injection system including a reductant storage vessel, the engine further having a fuel system including a fuel storage vessel, may include under degraded reductant conditions, restricting vehicle motion in response to a fuel refill of the fuel storage vessel.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: August 13, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: John Paul Bogema, Bret Alan Zimmerman, Michiel J. Van Nieuwstadt, Ed Kulik, James Edwin Blatchford
  • Patent number: 8475754
    Abstract: An engine exhaust gas purification device comprising control unit having successively arranged switching device (1), counter-current heat exchanger (3) and at least one exhaust gas purification component (2). The switching device (1) has a first position where a flow path (6) of the exhaust gas to the exhaust gas purification component (2) is opened and a second position where a flow path (6) of the exhaust gas to the exhaust gas purification component (2) is blocked and the exhaust gas flows along a further flow path (7) where the exhaust gas is heated and conveyed, via a flow path (20) of the exhaust gas purification component (2), and exits the exhaust gas purification unit (5) through outlet channels (4) of the counter-current heat exchanger (3). The switching device, the exhaust gas purification component, the counter-current heat exchanger and the flow paths are integrated in a compact exhaust gas treatment unit.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Universitaet Stuttgart Institut fuer Chemische
    Inventors: Gerhart Eigenberger, Ulrich Nieken, Matthias Rink, Stefan Matschke
  • Patent number: 8468805
    Abstract: A moisture adsorbent (32) for adsorbing moisture in exhaust gas and an NOx adsorbent (34) for adsorbing NOx are disposed in a bypass passage (30) for bypassing an exhaust passage (16) of an internal combustion engine (10). When an adsorption operation to the NOx adsorbent (34) is executed, inflow of the exhaust gas to the bypass passage (30) is allowed until the moisture amount that flows into the water adsorbent (32) reaches an allowable moisture inflow amount. The allowable moisture inflow amount is determined based on a residual moisture amount before the starting of the adsorption operation in the moisture adsorbent (32). The residual moisture amount in the water adsorbent (32) can be determined based on the temperature of the moisture adsorbent (32) at the immediately preceding execution of the purge operation.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Wakao, Takaaki Itou, Keisuke Sano, Kimikazu Yoda
  • Patent number: 8468806
    Abstract: A system and a method are provided for operating an exhaust aftertreatment system of an engine in which one or more constituents of the exhaust gas are oxidized in an oxidation catalyst and one or more constituents of the exhaust gas are deoxidized by means of a group of possible chemical reactions of different type between the one or more constituents of the exhaust gas and catalytic material arranged in a selective-catalytic-reduction catalyst, wherein the exhaust gas flows from the oxidation catalyst to the selective-catalytic-reduction catalyst, wherein the steps are performed: (a) adjusting at least one desired ratio among one or more pairs of the one or more constituents by varying a space velocity of the exhaust gas in at least the oxidation catalyst; (b) varying the space velocity of the exhaust gas by varying one or more operation parameters of the engine; and (c) establishing the ratio to a value at least approaching the desired ratio among the one or more pairs of the one or more constituents at th
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: June 25, 2013
    Assignee: Volvo Lastvagnar AB
    Inventors: Lennart Andersson, Jonas Edvardsson, Jonas Jansson, Carl-Johan Karlsson, Lucas Megas, Anders Tuomivaara
  • Patent number: 8468804
    Abstract: An exhaust line of an internal-combustion engine contains a catalyst and a bypass pipe bypassing the catalyst. The bypass pipe can be shut-off by way of a shut-off valve. The shut-off valve has a diagnostic device for diagnosing a tightness of the shut-off valve.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 25, 2013
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Hubert Graf
  • Patent number: 8464517
    Abstract: Method to reduce NOx contained in an exhaust gas by including an oxidation catalyst device and a selective reduction type NOx catalyst device, which are arranged in this order from an upstream side, and a NOx purification system. Whether a volume of NO2 adsorbed in the oxidation catalyst device increases or decreases is estimated, and a flow rate of exhaust gas which bypasses the oxidation catalyst device on a basis of the increase or decrease in the estimated volume of adsorbed NO2 is controlled. This avoids incorrect supply of ammonia.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: June 18, 2013
    Assignee: Isuzu Motors Limited
    Inventor: Tetsuya Fujita
  • Publication number: 20130125530
    Abstract: A bypass HC-NOx system includes a NOx conversion control module that generates a signal indicating whether a close coupled catalyst is active. The system further includes a bypass valve control module that, in response to the signal, opens a bypass valve located in an active HC-NOx adsorber assembly to purge hydrocarbons from an HC adsorber, wherein the bypass valve is located upstream from the HC adsorber and a NOx adsorber. The bypass valve control module also determines a temperature of a three way catalyst and closes the bypass valve to purge nitrogen dioxide from the NOx adsorber if the temperature of the three way catalyst is greater than a predetermined temperature threshold.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Halim G. Santoso
  • Publication number: 20130118150
    Abstract: In an exemplary embodiment of the invention an exhaust gas after treatment system for an internal combustion engine comprises an exhaust gas conduit configured to transport exhaust gas from the internal combustion engine to exhaust treatment devices of the exhaust gas treatment system. A controller in signal communication with the exhaust gas aftertreatment system is configured to monitor the temperature of a selective catalytic reduction device, wherein the controller is operable to move a valve assembly to an open position when the selective catalytic reduction device is at or above an operating temperature and to move the valve assembly to a closed position when the selective catalytic reduction device is below the operating temperature for entrainment of NOx constituents from the exhaust gas.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, JR., Joshua Clifford Bedford
  • Publication number: 20130111879
    Abstract: A safety device for an exhaust gas aftertreatment system provides an alternative exhaust route in case of high temperatures or pressures within the regenerating particulate filter of the exhaust gas aftertreatment system that may cause damage to the particulate filter. The safety device comprises a valve that redirects the flow of exhaust gas from the regenerating particulate filter when specified temperature or pressure thresholds are met or exceeded.
    Type: Application
    Filed: October 24, 2012
    Publication date: May 9, 2013
    Applicant: Boshart Automotive Testing Services, Inc.
    Inventor: Boshart Automotive Testing Services, Inc.
  • Patent number: 8434297
    Abstract: An electronic control unit executing an algorithm so as to operate an exhaust purification system of an engine. The algorithm (1) commences a regeneration treatment by causing an amount of fuel supplied to a combustion process of the engine to increase so as to change an air-fuel ratio of exhaust gas of the engine from a first lean air-fuel ratio to a set rich air-fuel ratio and (2) causes uncombusted fuel to be supplied to a NOx catalyst device during at least one of: a first period in which an air-fuel ratio of the exhaust gas within the NOx catalyst device changes from the first lean air-fuel ratio to the set rich air-fuel ratio when the regeneration treatment is started; and a second period after an air-fuel ratio of the exhaust gas within the NOx catalyst device becomes a ratio indicating completion of the regeneration treatment.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: May 7, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takamitsu Asanuma, Kohei Yoshida, Hiromasa Nishioka, Daichi Imai, Kazuhiro Umemoto
  • Patent number: 8429896
    Abstract: A variety of embodiments of exhaust systems for engines including small off-road engines, and related methods of operation, are disclosed. In at least some embodiments, the exhaust system includes a first conduit that receives exhaust emissions from a first engine cylinder, and a second conduit that communicates air to a first port on the first conduit. The air mixes with the exhaust emissions within the first conduit so as to produce a chemical reaction, and a level of at least one undesirable component of the exhaust emissions is reduced. Further, the exhaust system does not include any catalytic converter. In some embodiments, the exhaust system further comprises a crankcase ventilation system.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: April 30, 2013
    Assignee: Kohler Co.
    Inventors: Eric Pekrul, Eric Hudak
  • Patent number: 8429901
    Abstract: An exhaust gas purification device 1 is equipped with a plurality of branch exhaust passages 2 and 3; a junction exhaust passage 110; a shutoff valve 4 switching between allowing and shutting off the flow of exhaust gas to the respective branch exhaust passages 2 and 3; a nitrogen oxide adsorbing material 5 temporarily adsorbing nitrogen oxides in an excess air atmosphere and detaching the adsorbed nitrogen oxides in a reducing atmosphere and reducing the nitrogen oxides in the reducing atmosphere to produce ammonia; a first combustion device 6, disposed on the exhaust upstream side of the nitrogen oxide adsorbing material 5 and having an air supply unit, changing the air supplied from the air supply unit into the reducing atmosphere; and a selective reduction catalyst 19, provided inside the junction exhaust passage 110, selectively reducing the nitrogen oxides by using ammonia as a reducing agent.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: April 30, 2013
    Assignee: Yanmar Co., Ltd.
    Inventors: Taisuke Ono, Toshihisa Kanda
  • Patent number: 8418445
    Abstract: An exhaust system for an internal combustion engine, having a first exhaust tract assigned to a first group of cylinders of the internal combustion engine, and having a second exhaust tract assigned to a second group of cylinders of the internal combustion engine, each exhaust tract comprising an exhaust gas purification device, a first silencer arranged on the outlet side of the respective exhaust gas purification device, and a second silencer arranged on the outlet side of the respective first silencer. Each exhaust tract includes a bypass line, it being possible for exhaust gas to be diverted via each bypass line, starting from the respective first silencer, bypassing the second silencers, and the bypass lines and hence the first silencers of both exhaust tracts being connected to one another by a mixing line.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 16, 2013
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Thomas Laube, Bernd Müller, Michael Wessels
  • Patent number: 8420036
    Abstract: Methods and systems for treating NOx-containing exhaust from an internal combustion engine. An exhaust aftertreatment system has at least a primary oxidation catalyst, a particulate filter, and a selective reduction catalyst (SCR). A bypass line diverts a portion of the exhaust from the exhaust line from a point downstream the particulate filter to a point upstream the SCR. A secondary oxidation catalyst on the bypass line is used to generate NO or NO2 to be returned to the exhaust line upstream the SCR.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 16, 2013
    Assignee: Southwest Research Institute
    Inventor: Jason T. Miwa
  • Patent number: 8413428
    Abstract: The invention relates to an exhaust component in a gas exhaust line for gases produced by the combustion of a fuel in a heat engine. In the gas flow direction, there is a first connection to an upstream pipe carrying gases from the engine. There is also a first exhaust tube and a second exhaust tube, these two tubes being parallel and being connected to the first connection. There is a second connection to a downstream gas discharge pipe, connected to the parallel exhaust tubes. The component is characterized in that, firstly the first tube has a depolluting component, and the second tube has a silencer. The second connection is a three-way valve.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 9, 2013
    Assignee: Faurecia Systemes d'Echappement, Société Par Actions Simplifiée
    Inventor: Stéphane Devismes
  • Patent number: 8412442
    Abstract: An engine starting method is disclosed. In one example, engine operation is adjusted to reduce catalyst light off time. Exhaust temperatures may be increased until a threshold engine temperature is reached.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 2, 2013
    Assignee: Ford Global Technologies, LLC
    Inventor: Eric Kurtz
  • Patent number: 8407987
    Abstract: The invention relates to a system and a control method for an exhaust aftertreatment system (10) of an engine (12) in which one or more constituents of the exhaust gas are oxidized in an oxidation catalyst (20) and one or more constituents of the exhaust gas are deoxidized in a selective-catalytic-reduction catalyst (70), wherein the exhaust gas flows from the oxidation catalyst (20) to the selective-catalytic-reduction catalyst (70). It is.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 2, 2013
    Assignee: Volvo Lastvagnar AB
    Inventors: Lennart Andersson, Lennart Cider
  • Publication number: 20130067887
    Abstract: Various methods and systems are provided for a system for an engine. In one example, the system includes an exhaust passage through which exhaust gas is configured to flow from the engine. The system further includes an aftertreatment system disposed in the exhaust passage, the aftertreatment system including an aftertreatment device and a bypass with a bypass control element, the bypass control element adjustable to reduce exhaust gas flow through the aftertreatment device during tunneling operation.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Inventors: Lawrence Hoey Heverley III, Shashi Kiran, Stephen Mark Geyer
  • Patent number: 8371108
    Abstract: Exhaust temperatures in emission control devices may be directly controlled by an intake air throttle, fuel injection timing, and exhaust pressure when an emission control device is placed between two variable geometry turbocharger exhaust turbines and coupled to a combustion engine. Such an approach may substantially raise the temperature of the exhaust aftertreatment devices in an emission control device during non-warmed exhaust conditions, leading to faster catalytic light-off.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: February 12, 2013
    Assignee: Ford Global Technologies, LLC
    Inventor: Timothy Sung Jae Chyo
  • Publication number: 20130031889
    Abstract: A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Bryan Nathaniel Roos, Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn
  • Patent number: 8341937
    Abstract: An apparatus for an exhaust gas system includes a main exhaust passage, a main catalytic converter disposed in the main exhaust passage, a bypass exhaust passage, a bypass catalytic converter disposed in the bypass exhaust passage, and a valve configured to open or close a section of the main exhaust passage. The bypass exhaust passage bypasses the main exhaust passage between a branch point of the bypass exhaust passage out of the main exhaust passage and a junction with the main exhaust passage at a upstream side of the main catalytic converter. A first sensor indicates a first air-fuel ratio of exhaust gas in the bypass exhaust passage. A second sensor indicates a second air-fuel ratio of exhaust gas flowing into the main catalytic converter. A controller determines whether the valve in the closed configuration leaks exhaust gas based on the first and second air-fuel ratios of exhaust gas.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: January 1, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Sunki I, Kenichi Sato, Motoharu Akaba, Kimiyoshi Nishizawa, Kengo Kubo
  • Patent number: 8341951
    Abstract: An apparatus is provided for a vehicle with an engine that includes an exhaust system through which exhaust gas is discharged from the engine. A heat exchanger is positioned at least partially within the exhaust system. Coolant flow passages are provided in thermal communication with the engine and with the heat exchanger. A bypass valve is operable in a first mode to direct the exhaust gas across the heat exchanger along a first flow path to transfer exhaust heat to the coolant flow passages, and is further operable in a second mode to direct at least a portion of the exhaust gas across the heat exchanger along a second flow path to transfer exhaust heat to the coolant flow passages in a second coolant heating mode. The second flow path is restricted relative to the first flow path. A method of managing exhaust heat recovery is also provided.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: January 1, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory P. Prior, Daniel B. Glassford
  • Patent number: 8336302
    Abstract: A flammable-gas led-out pipe (5) has a terminal end portion (5a) disposed in an exhaust-gas route (7) and a metal cylinder (10) is arranged at the terminal end portion (5a) of the flammable-gas led-out pipe (5). An oxidation catalyst (8) is disposed within the metal cylinder (10). On an upstream side of the oxidation catalyst (8), an air-supply passage (12) is opened to provide an outlet (12a) and the flammable gas (4) merges with supplied air (13). The flammable gas (4) is burnt with the oxidation catalyst (8) to produce catalyst-combustion heat, which is radiated from an outer peripheral surface of the metal cylinder (10) into the exhaust gas (9) in the exhaust-gas route (7) and the exhaust gas (9) heated by this heat-radiation is mixed with the flammable gas (4) that has passed through the oxidation catalyst (8).
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: December 25, 2012
    Assignee: Kubota Corporation
    Inventor: Toshio Nakahira
  • Patent number: 8333063
    Abstract: Systems, methods, and computer readable storage media are described in which exhaust gas is routed to a hydrocarbon retaining device during starting, and purged to the engine intake manifold. Various alternative approaches are described for controlling operation and diagnosing degradation. Further, various interrelated configurations are described.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 18, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Shane Elwart, Michael James Uhrich, James Michael Kerns, Jason Aaron Lupescu
  • Patent number: 8327622
    Abstract: An exhaust gas purifying apparatus for an internal combustion engine is provided to desorb predetermined components contained in exhaust gas from an adsorption device for adsorbing the components and to purify the desorbed components, even during the stop of the internal combustion engine. A main exhaust passage and a bypass passage bypassing the main exhaust passage are provided. An exhaust switching valve is capable of switching a flow target into the exhaust gas flows between the main exhaust passage and the bypass passage. An adsorbent for adsorbing the predetermined components is provided in the bypass passage. An underfloor catalyst including a catalyst with a heater is provided at a downstream side of the bypass passage in the main exhaust passage. A pump and a heater are provided in an air supply passage which branches from the bypass passage at an upstream portion of the adsorbent.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: December 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Sano, Takaaki Itou, Kimikazu Yoda, Kazuhiro Wakao
  • Patent number: 8312708
    Abstract: A closely-coupled exhaust aftertreatment system includes a first exhaust conduit comprising a first valve operable between a first position promoting an exhaust flow within the first exhaust conduit to an inlet of a first oxidation catalyst and a second position promoting the exhaust gas flow within a second exhaust conduit. It also includes a third exhaust conduit fluidly coupled to an outlet of the OC and comprising a second valve operable between a first position promoting an exhaust flow within the third exhaust conduit to an inlet of a particulate filter (PF) and a second position promoting the exhaust gas flow through a fourth exhaust conduit to an inlet in the second exhaust conduit. It further includes a turbocharger fluidly coupled to the second exhaust conduit downstream of the inlet and a selective catalyst reduction (SCR) catalyst that is located downstream of the turbocharger and upstream of the PF.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: November 20, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: David Bennet, Brian G. Cooper, Huntly W. Thomas, Nick Winder
  • Patent number: 8307631
    Abstract: A control system may include an adsorber bypass evaluation module, an adsorber bypass control module and an engine operation control module. The adsorber bypass evaluation module may evaluate a bypass closing criterion of a hydrocarbon adsorber bypass passage in an engine exhaust gas treatment device after an engine key-on condition. The adsorber bypass control module may be in communication with the adsorber bypass evaluation module and may close the hydrocarbon adsorber bypass passage after the key-on condition when the bypass closing criterion meets a predetermined condition. The engine operation control module may be in communication with the adsorber bypass control module and may start the engine after the closing.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: November 13, 2012
    Inventors: Halim G. Santoso, Kevin J. Storch
  • Patent number: 8302387
    Abstract: A diesel exhaust after-treatment system (110, 210) for a vehicle includes a precious metal primary diesel oxidation catalyst (DOC1) and a precious metal secondary diesel oxidation catalyst (DOC2). The primary diesel oxidation catalyst (DOC1) is located on an exhaust pipe (116, 250) and in fluid communication with and between an engine (12) and an exhaust gas outlet (126, 226). The secondary diesel oxidation catalyst (DOC2) is disposed in fluid communication with the primary diesel oxidation catalyst (DOC1) on a second exhaust pipe (130, 230, 232) and in fluid communication with the engine (12). At least one valve (128, 228, 246) is disposed on the exhaust pipe (116, 216) for selectively permitting the continuous, positive flow of exhaust gas through the secondary diesel oxidation catalyst (DOC2).
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: November 6, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Shyam Santhanam, Brad Adelman