Supercharging Means Driven By Engine Exhaust Actuated Motor Patents (Class 60/605.1)
  • Patent number: 9027344
    Abstract: Rotational speed of an electric turbocharger controlled so that the actual temperature of the motor does exceed the allowable level even over a long time span. A speed control device for the turbocharger, includes a temperature sensor, a speed limitation device which limits the speed of the motor in response to the temperature level detected by the temperature sensor wherein the speed limitation device is provided with a limit control start temperature correction device which decreases the limit control start temperature when the increase rate of the detected temperature exceeds a threshold. A speed limitation setting device sets a speed limit based on the temperature difference between the limit control start temperature and the detected temperature T on a rate of increase of the detected temperature.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 12, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Yamashita, Noriyuki Hayashi
  • Patent number: 9027343
    Abstract: A method for supplying vacuum in an engine is disclosed. The method includes controlling a throttle valve positioned upstream of a supercharger arranged in series with and upstream of a turbocharger to draw a fluid from a vacuum line positioned intermediate the throttle valve and a supercharger inlet.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Publication number: 20150121863
    Abstract: An assembly for a turbocharger can include a turbine housing that defines an exhaust inflow chamber that includes a wastegate valve seat and that defines an exhaust outflow chamber; and a wastegate valve plug that includes a seal surface where, in a closed state, the seal surface seats against the wastegate valve seat and where, in an open state, the wastegate valve plug extends into the exhaust inflow chamber. Various other examples of devices, assemblies, systems, methods, etc., are also disclosed.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: Honeywell International Inc.
    Inventors: Vit Micanek, Lukas Rusek, Stanislav Hahn, Aurobbindo Lingegowda, Raghavendra Gattu, Mahidhar Ratnaakaram Raju, Krishnamurthy Vaidyanathan
  • Patent number: 9021803
    Abstract: In a turbine for an exhaust gas turbocharger having a turbine housing with a turbine rotor rotatable supported therein and including spiral channels for directing exhaust gas onto the turbine wheel, at least one annular blocking element is supported between the spiral channels and the turbine wheel so as to be rotatable in the peripheral direction of the turbine wheel and additionally movable in the axial direction of the turbine wheel for a controlling the exhaust gas flow to the turbine wheel between impulse turbine mode when extended into the space between the turbine wheel and the spiral chamber and an accumulation made when retracted, with the gas flow through the turbine wheel or by-passing the turbine wheel being adjustable by rotation of the blocking element.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: May 5, 2015
    Assignee: Daimler AG
    Inventors: Thorsten Hirth, Siegfried Sumser, Siegfried Weber
  • Publication number: 20150113983
    Abstract: Provided are a control device and a control method for an internal combustion engine, which enable a throttle-valve upstream pressure through simple calculation processing without being affected by a state of an opening degree of a wastegate valve (WGV). When a wastegate (WG) command value to a WGV driving section (212) for driving a WGV (33a) provided in a bypass passage (33) which bypasses a turbocharger (32) is to control supercharging to be weakened to the lowest level, the throttle-valve upstream pressure is estimated from an exhaust-gas amount. Otherwise, a value obtained by adding a preset value to an intake-manifold pressure is used as a throttle-valve upstream pressure estimate value. As a result, the throttle-valve upstream pressure is estimated with high accuracy by an inexpensive configuration without mounting a throttle-valve upstream pressure sensor, and then engine control is performed.
    Type: Application
    Filed: April 11, 2014
    Publication date: April 30, 2015
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Michihisa YOKONO, Hideki HAGARI
  • Publication number: 20150113984
    Abstract: A motorcycle has a crankcase containing a crank shaft and a balancer shaft, and a cylinder and a cylinder head positioned above the crankcase, and an exhaust pipe extends from the cylinder head. The balancer shaft is positioned in front of the crank shaft, and the crankcase has a balancer shaft housing supporting the balancer shaft thereinside, and has a recessed part depressed rearward in a front end center part of the balancer shaft housing. The balancer shaft has balancer shaft weights apart from each other in one side and in the other side in an axis direction.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 30, 2015
    Applicant: SUZUKI MOTOR CORPORATION
    Inventors: Ken SHIBANO, Kunihiko HIRAOKA, Takenori MURAMATSU, Hidekuni OTA
  • Publication number: 20150113982
    Abstract: A turbocharger including a turbine wheel having a hub-to-tip ratio of no more than 60% and blades with a high turning angle and a curved leading edge, a turbine housing forming an inwardly spiraling primary-scroll passageway that significantly converges to produce highly accelerated airflow into the turbine at high circumferential angles, and a two-sided parallel compressor. The compressor and turbine each produce substantially no axial force, allowing the use of minimal axial thrust bearings.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Vaclav Kares
  • Publication number: 20150107242
    Abstract: An exhaust system with post-operation cooling for a vehicle is provided. The vehicle generally has a heat generating device that generates exhaust gas. The exhaust system includes an exhaust gas conduit through which at least a portion of the exhaust gas is flowable and dischargeable, and at least one exhaust gas component in fluid communication with the exhaust gas conduit. The exhaust system also includes an air intake conduit through which outside air is flowable, and an air pump in fluid communication with the air intake conduit. The air intake conduit is in fluid communication with the exhaust gas conduit upstream of the at least one exhaust gas component. The air pump is configured to draw the outside air into the air intake conduit such that the outside air is supplied to the exhaust gas conduit to cool the at least one exhaust gas component.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael G. Long, Gerald M. Simon, Kulbir S. Dhuga
  • Publication number: 20150110608
    Abstract: A variable geometry turbocharger includes a vane pack having rotatable vanes constrained by a pair of vane rings held together by a plurality of pins. A first end of each pin can be configured with a head. Each pin is received in a pair of aligned apertures in the vane rings such that the head of each pin engages one of the vane rings. A second end of each pin is deformed (e.g., by orbital riveting) such that it engages the other vane ring. Thus, a clamp load is applied to the vane rings, which can control the parallelism and distance between the vane rings so that the vanes can rotate with a minimum clearance without jamming. Also, the pins can maintain vane axle apertures in the vane rings in the correct angular position relative to each other. Such a vane pack configuration can reduce process time and cost.
    Type: Application
    Filed: March 22, 2013
    Publication date: April 23, 2015
    Applicant: BorgWarner Inc.
    Inventor: Rajendra Vemula
  • Patent number: 9010111
    Abstract: The invention relates to the operation of a supercharged internal combustion engine (2) of a vehicle, wherein an air/volumetric flow current is adjusted by means of an adjustable swirl generator (8) arranged upstream of a supercharge system, taking into consideration an adjustable valve overlap of a cylinder of the internal combustion engine (2). The invention also relates to a vehicle drive comprising a supercharged internal combustion engine (2), a supercharge system of the internal combustion engine (2), an adjustable, variable valve train of the internal combustion engine (2), a control device and an adjustable swirl generator (8).
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: April 21, 2015
    Assignee: FEV GmbH
    Inventor: Michael Wittler
  • Patent number: 9010116
    Abstract: A vacuum source arbitration system is disclosed. In one example, vacuum is supplied to a vacuum reservoir via an ejector during a first condition, and vacuum is supplied to the vacuum reservoir via an engine intake manifold during a second condition. The approach may provide a desired level of vacuum in a reservoir while reducing engine fuel consumption.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: April 21, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Moses Alexander Fridman, Todd Anthony Rumpsa, Mansour Beshay, Clifford E. Maki, Ross Dykstra Pursifull
  • Patent number: 9010114
    Abstract: An air charge system for an internal combustion engine may include a charge path having a charge inlet configured to receive air, and a charge outlet configured to convey air to an intake of the internal combustion engine; a first compressor in the charge path, the first compressor being driven by a motor and configured to receive the air from the charge inlet and increase temperature, pressure and volumetric flow rate of the air in the charge path; a first valve in the charge path downstream of the first compressor configured to divert at least a portion of the air leaving the first compressor from exiting the charge path through the charge outlet; and a controller configured to modulate at least one of the first valve and a speed of the motor to adjust a volumetric flow rate of air leaving the charge outlet.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 21, 2015
    Assignee: The Boeing Company
    Inventors: David S. Krug, Travis A. Reynolds, Ian Whiteside, Christopher J. Thompson, Phil McGovern, Steve Higginson, Vladimir Anton
  • Patent number: 9010115
    Abstract: A vacuum source including an ejector is disclosed. In one example, vacuum is supplied via the ejector when a turbocharger has excess boost capacity. The approach can prioritize how excess boost may be used to provide vacuum.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 21, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Joseph Norman Ulrey
  • Publication number: 20150101329
    Abstract: A crash-tolerant system arrangement in an engine compartment situated in the front end region of a motor vehicle includes an exhaust emission control system having an essentially cylindrical first catalytic converter housing situated in front of the exhaust gas turbocharger in the travel direction. The exhaust gas turbocharger is mechanically connected to an exhaust gas manifold via a first fastening device, and to an engine block via a second fastening device, the first and the second fastening devices being designed in such a way that a detachment of the connection of the exhaust gas turbocharger to the exhaust gas manifold and/or a detachment of the connection of the exhaust gas turbocharger to the engine block take(s) place within a predefined upper value range for the pressure force.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 16, 2015
    Applicant: Daimler AG
    Inventors: Gerd Tiefenbacher, Roland Huss, Stefan Schaible, Peter Raitschev, Johannes Kipp, Georg Georgs, Gerd Duerr
  • Publication number: 20150101875
    Abstract: An engine; an air cleaner which filtrates fuel air; a turbocharger which compresses intake fuel air; an intake pipe which connects the air cleaner and the turbocharger; and an intake passage which induces the fuel air taken from an intake port at an end part to the air cleaner, are included. The turbocharger is located at a front side lower part of the engine, and the air cleaner is located under a crankcase. The intake passage extends rearward from a rear part of the air cleaner, and thereafter, bends upward.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 16, 2015
    Applicant: SUZUKI MOTOR CORPORATION
    Inventors: Yoshisato INAYAMA, Shinya OTANI
  • Patent number: 8997486
    Abstract: A compressor wheel for use with turbochargers or superchargers for forced air induction of internal combustion engines includes a base having a hub portion, and a plurality of blades extending from the base, each blade having a length defined by the distance between opposite axial extremities of the blade, the plurality of blades including at least three different types of blades, each having a substantially different length.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 7, 2015
    Assignee: Bullseye Power LLC
    Inventor: David M. Hall
  • Patent number: 8997488
    Abstract: The present invention relates to a turbocharged reciprocating piston engine, and to a method for operating said engine. The combustion chamber includes at least one inlet valve (10), one outlet valve (13) and at least one additional charging valve (11), for the additional feed of compressed air to bridge the turbo lag, that are each operatively connected to the crankshaft via a camshaft and the operative connection of the charging valves to the crankshaft can be deactivated, with the result that the at least one charging valve (11) remains closed. An approximately stoichiometric combustion mixture is achieved by a turbocharger (4) and a throttle valve (8). By displacement of the opening instant of the charging valves (11), air can be pumped from the cylindrical combustion chambers into the compressed air tank (14). An additional compressor (24) can likewise deliver air into the compressed air tank (14).
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 7, 2015
    Assignee: ETH Zürich
    Inventors: Lino Guzzella, Christian Dönitz, Christopher H. Onder, Christoph Voser
  • Patent number: 8997462
    Abstract: An engine system comprising: an exhaust gas system for removing exhaust gas from the engine; a turbocharger comprising a compressor for inducing air towards the engine and a turbine provided along the exhaust gas system and driven by removed exhaust gas for powering the compressor; a hydrogen delivery apparatus adapted to deliver hydrogen to the exhaust gas system such that the hydrogen can combust and expand, thereby increasing the speed of the turbine. The increased speed of the turbine operation decreases turbo lag and increases engine responsiveness.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: April 7, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Jonathan Edward Caine
  • Patent number: 8991175
    Abstract: A turbocharger for an internal combustion engine includes a bearing housing with a bearing bore and a thrust wall. The bearing housing includes a journal bearing disposed within the bore. The turbocharger also includes a shaft supported by the journal bearing for rotation about an axis within the bore. The turbocharger also includes a turbine wheel fixed to the shaft and configured to be rotated about the axis by the engine's post-combustion gasses. The turbocharger additionally includes a compressor wheel fixed to the shaft and configured to pressurize an ambient airflow. Furthermore, the turbocharger includes a thrust bearing assembly pressed onto the shaft and configured to transmit thrust forces developed by the turbine wheel to the thrust wall. Pressing the thrust bearing assembly onto the shaft minimizes radial motion between the thrust bearing assembly and the shaft. An internal combustion engine employing such a turbocharger is also disclosed.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Carl Eric Fonville, Louis P. Begin
  • Patent number: 8991176
    Abstract: A turbocharger for an internal combustion engine includes a shaft, a first turbine wheel, a compressor wheel, and a second turbine wheel. The shaft includes a first end and a second end and is supported for rotation about an axis. The first turbine wheel is mounted on the shaft proximate to the first end and configured to be rotated about the axis by post-combustion gasses emitted by the engine. The compressor wheel is mounted on the shaft between the first and second ends and configured to pressurize an airflow being received from the ambient for delivery to the engine. The second turbine wheel is mounted on the shaft proximate to the second end and configured to be rotated about the axis by a pressurized fluid. An internal combustion engine employing such a turbocharger is also disclosed.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Louis P. Begin, Carnell E. Williams
  • Patent number: 8991174
    Abstract: A turbine for an exhaust turbocharger, in particular for a motor vehicle, has a turbine flap which controls an exhaust volume flowing through the turbine. A wastegate valve directs exhaust past the turbine and a wastegate flap controls an exhaust volume flowing through the wastegate valve. We also provide for an exhaust turbocharger, a motor vehicle having such an exhaust turbocharger, and for a method for operating such an exhaust turbocharger.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 31, 2015
    Assignee: Continental Automotive GmbH
    Inventors: Ralf Böning, Roland Herfurth, Achim Koch, Christoph Sparrer
  • Publication number: 20150082789
    Abstract: A two-stage turbocharger system for an internal combustion engine is disclosed. The turbocharger system includes a high pressure turbine coupled to an exhaust manifold of the internal combustion engine, and a low pressure turbine having an inlet coupled to the high pressure turbine and an outlet coupled to an exhaust system of the engine. The turbocharger further includes a low pressure compressor having an inlet coupled to environment and an outlet coupled to a high pressure compressor. The high pressure compressor is coupled to an intake manifold of the internal combustion engine. The high pressure turbine is provided with a high pressure by-pass line having a high pressure controlled by-pass valve. The low pressure turbine is provided with a low pressure by-pass line having a low pressure controlled by-pass valve. A controlled valve is provided between the high pressure turbine and the low pressure turbine.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Inventors: Hans DRANGEL, Riccardo Franz TURCATO
  • Publication number: 20150075160
    Abstract: A structure for operating a system for utilizing exhaust heat of a vehicle may include a high-temperature part with an exhaust pipe and a bypass passage installed in the exhaust pipe, a thermoelectric element attached to an exterior of the exhaust pipe for generating electricity, a low-temperature part attached to an exterior of the thermoelectric element for flowing a coolant, a first exhaust gas passage installed in the low-temperature part and having both ends connected to the exhaust pipe, a first valve to selectively open or close the first exhaust gas passage, a second exhaust gas passage formed in a space between the inner circumferential surface of the exhaust pipe and an outer circumferential surface of the bypass passage, a second valve disposed at a rear end of the bypass passage, coupled to a valve shaft and rotatable on the basis of the valve shaft, and an operating unit.
    Type: Application
    Filed: December 17, 2013
    Publication date: March 19, 2015
    Applicant: Hyundai Motor Company
    Inventors: Ho-Chan An, Jong-Ho Seon
  • Publication number: 20150075161
    Abstract: An apparatus for the actuation of a throttle valve, in particular a throttle valve arranged in an intake system of an internal combustion engine, uses a servomotor, in which apparatus at least one device for thermal decoupling is arranged between the throttle valve and servomotor. A shaft of the servomotor is coupled to a shaft of the throttle valve via a torque-transmitting coupling element with a definedly low heat transfer capability.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventors: Torsten KAUFMANN, Mathias BOEGERSHAUSEN
  • Patent number: 8978378
    Abstract: An approach for controlling a turbocharger bypass valve is disclosed. In one example, the turbocharger bypass valve is opened during engine cold start conditions to reduce turbocharger speed. The approach may reduce noise produced by the turbocharger during engine start and warm-up.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 17, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Andrew Wade, Fadi Maroun Naddaf, Joseph P. Whitehead, Jason Eugene Devries
  • Patent number: 8973361
    Abstract: Provided is a seal air supply system including: a seal air compressor 73 provided separately from an exhaust gas turbine turbocharger 27 to generate compressed air; a seal air supply passage 77 through which the compressed air is supplied to a seal air supply part 79 as seal air of the exhaust gas turbine turbocharger 27; and a surplus air inlet passage 81 bifurcating from the seal air supply passage 77 and guiding surplus air of the seal air to an outlet side of an intake gas compressor 27a of the exhaust gas turbine turbocharger.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 10, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yuuichi Shimizu, Hajime Suzuki, Hideki Nishio
  • Publication number: 20150059340
    Abstract: An engine is disclosed. The engine may have an air box. The engine may further have an opening into the air box. The engine may additionally have a baffle positioned adjacent the opening. The engine may also have a cylinder defining an intake port, with the intake port positioned in the air box. The baffle may be configured to deflect air that passes through the opening to direct the air away from the intake port of the cylinder.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: Electro-Motive Diesel, Inc.
    Inventors: Deep Bandyopadhyay, Farhan Devani
  • Publication number: 20150059339
    Abstract: An integrated exhaust manifold for use with an internal combustion engine and dual scroll turbocharger. The integrated exhaust manifold includes a first exhaust passageway fluidly connected between a first pair of piston cylinders and the dual scroll turbocharger for transporting exhaust gas from the first pair of piston cylinders to a first input of dual scroll turbocharger. The integrated exhaust manifold includes a second exhaust passageway fluidly connected between a second pair of piston cylinders and the dual scroll turbocharger for transporting exhaust gas from the second pair of piston cylinders to a second input of the dual scroll turbocharger. The second exhaust passageway is fluidly independent from the first exhaust passageway and the first and second exhaust passageways are positioned to define a septum area therebetween. A cooling system having a septum cooling jacket is use to cool the septum area between the first and second exhaust passageways.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Akram R. Zahdeh, Colin Blacklock Bosman, Kenneth M. Eastman, Robert S. Mcalpine
  • Patent number: 8966897
    Abstract: An internal combustion engine having an air intake section (2) which has an air intake line (3), having an exhaust section (4) which has an exhaust line (5), and having at least one exhaust-gas turbocharger (6) which has a compressor (7) in the air intake line (3) and a turbine (8) arranged in the exhaust line (5), characterized by a controllable bypass arrangement (9) which has an air supply line (10) which, as viewed in the flow direction (R) of the intake air, opens into the air intake line (3) down-stream of the compressor (7).
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: March 3, 2015
    Assignee: BorgWarner Inc.
    Inventor: Thomas Hahn
  • Publication number: 20150052891
    Abstract: A turbocharging device of an engine for a vehicle is provided. The turbocharging device includes a turbocharger for turbocharging intake air, an introduction passage connected to an introducing section of a compressor of the turbocharger, a discharge passage connected to a discharging section of the compressor of the turbocharger, a bypass passage connecting the introduction passage to the discharge passage and bypassing the compressor, and a bypass valve for opening and closing the bypass passage. A throttle part throttling a flow passage area of the introduction passage is formed in an inner circumferential surface of a part of the introduction passage, upstream of a connection part of the introduction passage with the bypass passage.
    Type: Application
    Filed: August 18, 2014
    Publication date: February 26, 2015
    Inventors: Yoshiyuki Uehane, Junji Umemura, Atsuhiro Hatabu
  • Patent number: 8959913
    Abstract: Various apparatuses and systems are provided for a turbocharger. In one example, the turbocharger system includes a first turbine having an exhaust flow outlet and a second turbine having an exhaust flow inlet. The turbocharger system further includes a transition conduit fluidically coupling the outlet of the first turbine to the inlet of the second turbine, the transition conduit including an expansion region upstream of a first bend, and a bypass which routes exhaust flow around the first turbine, the bypass having an exhaust flow outlet fluidically coupled to the transition conduit downstream of the expansion region.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Jonathan Nagurney, Daniel Loringer, Kendall Swenson, Lukas Johnson, Rodrigo Rodriguez Erdmenger, Amit Sharma, Swaminathan Gopalakrishnan
  • Publication number: 20150047344
    Abstract: The present invention provides an engine control method, for each duty cycle of the engine, said method comprises: receiving a boost pressure of an engine turbocharger; receiving an engine speed; looking up a static control parameter lookup table according to the engine speed and boost pressure so as to select a control parameter indicating the air flow requirement; and sending the selected control parameter to an engine control unit so as to control the engine using the air flow requirement indicated by said control parameter.
    Type: Application
    Filed: January 23, 2014
    Publication date: February 19, 2015
    Applicant: Honeywell International Inc.
    Inventors: Dezhi Shao, Ronglei Gu, James Wang
  • Publication number: 20150040538
    Abstract: An apparatus is disclosed that includes a gas turbine engine including a first rotor blade axially adjacent a second rotor blade and an aperture formed in one of the first rotor blade and the second rotor blade and structured to emit a fluid therefrom. A fluid source is in flow communication with the aperture and configured to flow the fluid through the aperture.
    Type: Application
    Filed: December 30, 2013
    Publication date: February 12, 2015
    Applicant: ROLLS-ROYCE CORPORATION
    Inventor: Michael Abraham KARAM
  • Publication number: 20150040562
    Abstract: A gaseous fuel mixer for an internal combustion engine includes a check valve. The check valve includes a check valve member that induces mixing of a gaseous fuel flow and an intake air flow as the gaseous fuel flow and intake air flow move or pass from an upstream side of the check valve to a downstream side of the check valve.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: CUMMINS INC.
    Inventors: Alan C. ANDERSON, David P. RICHTER, Matthew Keith SEASE, Philip M. MEDALIE
  • Publication number: 20150033734
    Abstract: A coupling for routing and distributing exhaust gas flow from an internal combustion engine is disclosed. The coupling includes an upstream duct having a first end and a second end, and a gas flow distribution device arranged between the first and second ends of the upstream duct. The coupling also includes a downstream duct having a first end and a second end, and a flexible portion arranged between the first and second ends of the downstream duct. The upstream duct is fixed to the downstream duct to generate a continuous, sealed passage for the gas flow between the first end of the upstream duct and the second end of the downstream duct. A vehicle is also disclosed having an engine employing an exhaust after-treatment device and the coupling for routing and distributing the gas flow from the engine to the after-treatment device.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Gary J. Hazelton
  • Publication number: 20150027117
    Abstract: A lubricant delivery system for an oil consumption-type engine utilizes an atomizer to atomize lubricant obtained from a lubricant reservoir of the engine. The lubricant from the reservoir may be used to lubricate auxiliary components prior to being atomized and consumed in the combustion chamber of the engine. The atomizer can be a turbocharging device.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Inventor: Steven Ronald Benson
  • Publication number: 20150027116
    Abstract: The invention relates to a volume-controlled four-stroke reciprocating internal combustion engine comprising a first cylinder, in which a first piston that is operationally connected to a crankshaft via a first connecting rod, is arranged so as to be displaceable in a reciprocating motion, and at least one second cylinder, in which a second piston that is operationally connected to the crankshaft via a second connecting rod is arranged so as to be displaceable in a reciprocating motion. The engine further includes a fresh air tract for the second cylinder, in which an expansion/compression machine is arranged in the direction of flow of fresh air before a gas exchange inlet valve of the second cylinder, wherein the expansion/compression machine is the first cylinder. The volume-controlled internal combustion engine as per the invention has great potential for saving fuel and thereby for reducing CO2.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Inventor: Hubert FISCHER
  • Publication number: 20150020525
    Abstract: An exhaust gas distributor for an exhaust gas system of a motor vehicle internal combustion engine includes a distributor housing having a first exhaust gas path fluidically connecting a first inlet opening, associated with at least one cylinder of the internal combustion engine, to a first outlet opening associated with a turbine of an exhaust gas turbocharger, a second exhaust gas path fluidically connecting a second inlet opening, associated with at least one cylinder of the internal combustion engine, to a second outlet opening associated with the turbine, and a third exhaust gas path fluidically connecting the second exhaust gas path to a third outlet opening associated with an exhaust gas cooler, and an adjustable control element controlling the distribution of an exhaust gas flow from the second inlet opening to the second outlet opening and the third outlet opening. The control element in its end positions cooperates with stop contours.
    Type: Application
    Filed: January 12, 2013
    Publication date: January 22, 2015
    Applicant: Daimler AG
    Inventor: Thomas Laufer
  • Publication number: 20150020524
    Abstract: An engine system having a flowpath between a junction upstream of a turbocharger and an intake manifold that includes an ejector and an aspirator connected in parallel relative to one another within the flowpath is disclosed. The motive flow through the ejector is in the opposite direction relative to the direction of the motive flow through the aspirator, and both the ejector and the aspirator have a suction port fluidly coupled to a device requiring vacuum. The engine system also includes a first check valve disposed in control of the motive flow through the ejector and a second check valve disposed in control of the motive flow through the aspirator and may also include a control valve in fluid communication within the flowpath upstream or downstream of the ejector and the aspirator that controls the flow into and/or out of both thereof.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Applicant: DAYCO IP HOLDINGS, LLC
    Inventors: David E. Fletcher, Brian M. Graichen, Matt Gilmer, Andrew Niedert, Steve Long
  • Publication number: 20150013330
    Abstract: An internal combustion engine comprising a dual flow turbocharger includes an annular support with at least one tongue-like end wherein the annular support is adjustable in a translational fashion along the turbines axis of rotation. Moving the annular support influences the degree of separation behavior of turbine channels by varying a tongue spacing to the rotor.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 15, 2015
    Inventors: Helmut Matthias Kindl, Norbert Andreas Schorn, Vanco Smiljanovski, Franz Arnd Sommerhoff, Andreas Kuske, Joerg Kemmerling
  • Patent number: 8931272
    Abstract: A method for operating a turbocharged engine is disclosed. In one example, during a first condition an engine operation is adjusted in response to a turbocharger expansion ratio exceeding a first limit and during a second condition an engine operation is adjusted in response to the turbocharger expansion ratio exceeding a second limit that differs from the first limit. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: January 13, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Brien Lloyd Fulton, Gopal Krishna Chamarthi, Dean Pennala, David Ives, David Robert Nader, Paul Martin Niessen, Jason Ronald Smith
  • Patent number: 8935024
    Abstract: According to one implementation of an engine system, a power device is selectively actuated to provide energy to a storage device. Energy from the storage device is selectively provided to a boost assist device to supplement the normal energy supply to a boost device and enable an increased power output of the engine in at least certain engine or vehicle operating conditions. In one form, the power device may be a source of electrical energy and the storage device is capable of storing an electrical charge. In another form, the power device is a fluid pump and the storage device is capable of storing pressurized fluid. Various methods may be employed to control operation of the power device and energy storage in the storage device.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: January 13, 2015
    Assignee: BorgWarner Inc.
    Inventors: John Shutty, David B. Roth, Volker Joergl, Robert Czarnowski
  • Publication number: 20150007560
    Abstract: Internal combustion engine system. The system includes a single cylinder engine having an engine volume, the single cylinder engine having an intake manifold for introducing air into the engine and an exhaust manifold for discharge of exhaust gases. A turbocharger communicates with the exhaust manifold to receive exhaust gases to power the turbocharger. The turbocharger includes a compressor section communicating with the intake manifold to pressurize ambient air. An air capacitor is arranged to receive the pressurized ambient air from the turbocharger and to deliver the pressurized air to the engine during an intake stroke.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 8, 2015
    Inventor: Amos Greene Winter
  • Patent number: 8925528
    Abstract: An engine is provided. The engine includes a piston operable to reciprocate in a cylinder, a crankshaft rotatably coupled to the piston, and a supercharger rotatably coupled to the crankshaft. The supercharger has an unequal distribution of mass along a longitudinal plane of the supercharger to provide a rotational counterbalance to reduce engine imbalance.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 6, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ray Alan Kach, Michael Bruno Magnan, Robert Andrew Wade, Vince Paul Solferino, David E. Masser, Jeffrey Eliot Chottiner
  • Publication number: 20150000273
    Abstract: A turbocharger includes a turbine wheel mounted within a turbine housing and connected to a compressor wheel by a shaft. The turbine housing defines an exhaust gas inlet connected to a volute that surrounds the turbine wheel, and an axial bore through which exhaust gas that has passed through the turbine wheel is discharged from the turbine housing. The turbine housing further defines an annular bypass passage surrounding the bore and arranged to allow exhaust gas to bypass the turbine wheel. An annular bypass valve is disposed in the bypass passage. The bypass valve comprises a fixed annular valve seat and a rotary annular valve member arranged coaxially with the valve seat. A catalyst is disposed in the annular bypass passage. The catalyst is formed of spaced-apart, undulating metal fins coated with a catalyst material and contained in a generally annular cage.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 1, 2015
    Inventors: Paolo Di Martino, Pavel Toufar, Alain Lombard, Petr Chobola, Ludek Pohorelsky
  • Publication number: 20150000272
    Abstract: A turbocharger pressurizes an airflow for delivery to an internal combustion engine having a cylinder block, a cylinder head, and an oil supply passage formed in at least one of the cylinder block and the cylinder head. The turbocharger includes a bearing housing having a mounting flange for direct mounting to one of the cylinder block and the cylinder head to thereby establish fluid communication with the oil supply passage. The bearing housing also includes a journal bearing, a thrust bearing assembly, and a rotating assembly. The mounting flange defines an oil feed opening configured to correspond to an oil supply passage in one of the cylinder block and the cylinder head and to direct oil to the journal bearing and the thrust bearing assembly when the mounting flange is attached to the engine. An internal combustion engine employing such a turbocharger is also disclosed.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: Richard Lee Balsley, II
  • Patent number: 8919118
    Abstract: A motor vehicle is provided having a combustion engine, an automatic transmission, a turbocharger with variable geometry pre-compressing combustion air for the combustion engine and a turbocharger control unit for varying the turbocharger geometry, the turbocharger control unit is equipped before a downshifting of the automatic transmission to vary the geometry in the turbocharger in the direction of a reduction of the rotational speed of the turbocharger.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Martin Gentile, Gernot Becker, Thomas Stock
  • Patent number: 8919120
    Abstract: A wastegate control system and a method for the wastegate control system is disclosed. The wastegate control system includes an ambient pressure sensor, a throttle angle sensor, an ignition timing sensor, a knock sensor, an intake charge temperature sensor and an intake charge humidity sensor. A wastegate is controlled according to information received from these sensors.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: December 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: James S. Robinson
  • Publication number: 20140373531
    Abstract: An internal combustion engine that can operate with 100% liquid fuel, 100% gaseous fuel and any combination in between includes a pressure expansion device used to reduce gaseous fuel pressure from the storage tank pressure to gaseous fuel injection pressure, and to extract energy from the expansion process. In one embodiment, the pressure expansion device is an air compressor that compresses intake air to an elevated pressure. In another embodiment, the pressure expansion device is a turbine, connecting to an alternator by a coupling, to generate electricity to charge the battery. The temperature of the pressure expansion device is controlled by a circuit of engine coolant or ambient air to avoid excessive deviation from room temperature. The cooled ambient air is used to cool the cabin temperature. In a further embodiment, the pressure expansion device is a turbocharger that comprises of a turbine and a compression fan.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventor: Jim Wong
  • Publication number: 20140373533
    Abstract: An energy recovery and cooling system for a hybrid machine is disclosed. The energy recovery and cooling system can include at least one circuit including at least one pump, at least one condenser, and at least one turbine, as well as a first flow path and a second flow path. The first flow path can be connected in fluid communication with the at least one pump, the at least one condenser, and the at least one turbine. The first flow path can additionally be in thermal communication with at least one internal combustion energy system component of the hybrid machine. The second flow path can be connected in fluid communication with the at least one pump, the at least one condenser, and the at least one turbine. The second flow path can additionally be in thermal communication with at least one electrical energy system component of the hybrid machine.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Jeffrey E. Jensen, William R. Tinker