Motive Fluid Is Vaporized Liquid Patents (Class 60/618)
  • Publication number: 20150033737
    Abstract: The invention relates to a method and a device for utilizing waste heat of an internal combustion engine, particularly for utilizing the waste heat of a vehicle engine, comprising at least one heat exchanger to transfer the waste heat from an internal combustion engine to a working medium; at least one turbine connected to a generator for generating mechanical or electrical energy, wherein said turbine is driven by said working medium; at least one cooler for cooling the working medium; at least one compressor for compressing the working medium; and at least one working medium circuit with pipes for the working medium, which is characterized in that the working medium, preferably carbon dioxide, propane, methanol or ethanol or a mixture of these fluids, is at least partially in a supercritical state.
    Type: Application
    Filed: November 30, 2012
    Publication date: February 5, 2015
    Inventors: Mikhael MITRI, Alena VON LAVANTE
  • Patent number: 8938964
    Abstract: A Rankine circuit (40) includes, as a plurality of heat exchangers, an EGR cooler (36) of an EGR circuit and an exhaust gas heat exchanger (41) associated with an exhaust passage. The EGR cooler and the exhaust gas heat exchanger are arranged such that the EGR cooler is located upstream of the exhaust gas heat exchanger as viewed in the flowing direction of a working fluid in the Rankine circuit. The amount of heat transferred from EGR gas to the working fluid in the EGR cooler is controlled by a control unit (60) so that the temperature of the EGR gas detected by an EGR gas temperature detector (39) may fall within a predetermined temperature range (e.g., 150° C. to 200° C.).
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: January 27, 2015
    Assignee: Sanden Corporation
    Inventors: Yasuaki Kanou, Junichiro Kasuya
  • Publication number: 20150013335
    Abstract: A heat exchange device having a first media channel for a first medium and a second media channel for a second medium is further refined in that, in at least one section of the heat exchange device, a third media channel for a transfer medium is arranged between the first media channel and the second media channel, so that the heat transfer from the first medium to the second medium takes place via the transfer medium.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Inventors: Asmus CARSTENSEN, Artur SEMKE, Thomas SCHULENBURG, Andreas HERR, Jörg FRITZSCHE, Marcus DALLMANN, Christoph KÄPPNER, Jörg VOLKMANN, Thomas MAISCHIK
  • Publication number: 20150013333
    Abstract: A heat recovery system for an internal combustion engine may include a heat transfer device flowed through by a fluidic heat carrier for transferring the heat from a combustion exhaust gas of the internal combustion engine to the heat carrier, a heat power machine flowed through by the heat carrier for converting the heat transferred to the heat carrier into mechanical work, a substantially cyclically closed duct system for connecting the heat transfer device with the heat power machine, at least one displacement pump for conveying the heat carrier through the duct system in a predetermined flow direction, and a pump drive for driving the displacement pump. A reduced wear may result when the heat recovery system is supplemented by an impermeable separating membrane for the fluid-tight separation of the heat carrier from the pump drive.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventors: Jochen Eggler, Alfred Elsaesser, Christian Maisch, Sascha Senjic
  • Patent number: 8931275
    Abstract: A waste heat recovery system that efficiently converts waste heat from an engine coolant and an engine exhaust in a vehicle. The system includes a coolant heat exchanger that receives heat from the engine coolant, an exhaust heat exchanger that receives heat from the engine exhaust and an economizer heat exchanger. A plurality of valves control the flow of the fluid in different modes as determined by a power ratio between the heat provided by the exhaust heat exchanger and the heat provided by the coolant heat exchanger, including an economizer heat exchanger after coolant heat exchanger mode at low power ratios, where the fluid from the pump flows to the economizer heat exchanger after the coolant heat exchanger and an economizer heat exchanger before coolant heat exchanger mode at high power ratios, where the fluid from the pump flows to the economizer heat exchanger before the coolant heat exchanger.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: January 13, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Stephen B. Glover, John R. Bucknell, Norman K. Bucknor, Dongsuk Kum
  • Patent number: 8931545
    Abstract: A heat exchanger arrangement is provided for an internal-combustion engine having a heat engine, which converts hot steam of a working medium by way of an expansion device to kinetic energy. The working medium, that can be delivered by a pump, can be heated in a first heat exchanger by a coolant and in a second heat exchanger by an exhaust gas of the internal-combustion engine. In the delivery direction, the working medium first flows through the first heat exchanger and, subsequently, through the second heat exchanger. The exhaust gas can flow through the first heat exchanger.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 13, 2015
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Raymond Freymann, Wolfgang Strobl, Walter Huebner, Andreas Obieglo, Peter Doemeland, Norbert Kraus, Juergen Becker, Michael Hoetger, Christian Goebel, Goeran Gensicke
  • Publication number: 20150007569
    Abstract: A volumetric expander (20) configured to transfer a working fluid and generate useful work includes a housing. The housing includes an inlet port (24) configured to admit relatively high-pressure working fluid and an outlet port (26) configured to discharge to a relatively low-pressure working fluid. The expander also includes first and second twisted meshed rotors (30,32) rotatably disposed in the housing and configured to exp/and the relatively high-pressure working fluid into the relatively low-pressure working fluid. Each rotor has a plurality of lobes, and when one lobe of the first rotor is leading with respect to the inlet port, one lobe of the second rotor is trailing with respect to the inlet port. The expander additionally includes an output shaft (38) rotated by the relatively high-pressure working fluid as the fluid undergoes expansion. A system for generating work using the expander in a Rankine cycle is also disclosed.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 8, 2015
    Inventor: William Nicholas Eybergen
  • Patent number: 8925318
    Abstract: A waste heat retrieval system of a vehicle may include a reservoir disposed in a lower side of a exhaust gas boiler and in which a predetermined space is formed, a retrieval line that connects the exhaust gas boiler with the reservoir, a retrieval supply control valve disposed to open or close the retrieval line, and a control portion that controls the retrieval supply control valve to open the retrieval line such that working fluid of the exhaust gas boiler is returned to the reservoir if a retrieval condition is satisfied. Accordingly, the working fluid of the exhaust gas boiler in a waste heat retrieval system may be retrieved to the reservoir and therefore the freezing problem of the working fluid can be substantially resolved.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: January 6, 2015
    Assignee: Hyundai Motor Company
    Inventor: Jungmin Seo
  • Patent number: 8919123
    Abstract: A waste heat recovery apparatus for use with an internal combustion engine includes a working fluid circuit having a first heating line and a second heating line parallel to the first heating line, a first heat exchanger in the first heating line operatively connected to transfer heat energy to the working fluid from a waste exhaust flow of an internal combustion engine, a second heat exchanger in the second heating line operatively connected to transfer heat energy to the working fluid from recirculating exhaust gas the internal combustion engine, and a recuperative heat exchanger operatively connected to transfer heat energy to the working fluid in the first heating line from the working fluid at a junction of an expander outlet and condenser inlet.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 30, 2014
    Assignee: Mack Trucks, Inc.
    Inventors: John Gibble, Arne Andersson
  • Publication number: 20140373534
    Abstract: An energy recovery system for a machine with a cylinder activation and deactivation system is disclosed. The energy recovery system can include a first cylinder group circuit including a first pump, a first condenser, a first turbine, and a first flow path. The first flow path can be connected in fluid communication with the first pump, the first condenser, and the first turbine. The energy recovery system can additionally include a second cylinder group circuit including a second pump, a second condenser, a second turbine, and a second flow path. The second flow path can be connected in fluid communication with the second pump, the second condenser, and the second turbine. The first flow path can be in thermal communication with a first group of cylinders of the machine, and the second flow path can be in thermal communication with a second group of cylinders of the machine.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventor: Jeffrey E. Jensen
  • Publication number: 20140352301
    Abstract: A waste heat recovery system for a motor vehicle is disclosed. Waste heat generated by an internal combustion engine of a motor vehicle is recovered by a waste heat recovery system. The waste heat recovery system includes a feed heat exchanger thermally coupled to the internal combustion engine for warming up a working fluid, and a driven machine which is driven by the heated working fluid. A clutch arrangement optional couples the driven machine to a drive train or the auxiliary unit of the motor vehicle.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 4, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Torsten Mueller
  • Publication number: 20140352302
    Abstract: An apparatus for generating superheated vapor using waste heat recovery. A housing has an inlet tank and an outlet tank at both ends. Exhaust gas is introduced through the inlet tank, and is discharged through the outlet tank. A plurality of wave fin structures are disposed inside the housing so as to be spaced apart from each other at predetermined distances in a top-bottom direction, and include a plurality of peaks and a plurality of valleys which are connected in a transverse direction so as to form wave-like structures in a direction in which the exhaust gas flows. A plurality of working fluid tubes alternate with the plurality of wave fin structures. An inlet pipe through which working fluid is introduced and an outlet pipe through which the working fluid is discharged are disposed on a side surface of the housing.
    Type: Application
    Filed: February 17, 2012
    Publication date: December 4, 2014
    Applicant: KORENS CO., LTD.
    Inventors: Yong Kuk Cho, Tae Jin Kim
  • Publication number: 20140345275
    Abstract: A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Applicant: CUMMINS INTELLECTUAL PROPERTY, INC.
    Inventors: Timothy C. ERNST, Christopher R. NELSON
  • Patent number: 8893495
    Abstract: A waste heat recovery (WHR) system operates in a reverse mode, permitting using the WHR system to transfer heat to the exhaust gas of an internal combustion engine. In another configuration, a WHR system may operate in two modes. The first mode removes heat from exhaust gas of an engine to perform useful work. The second mode transfers heat to the exhaust gas. The benefit of this flexible system is that a WHR system is adaptable to rapidly heat exhaust gas at startup and during other conditions where the temperature of the exhaust gas is less than a predetermined operating range. Because of the ability to rapidly warm engine exhaust gas, an exhaust gas receiving system, such as an EGR or an aftertreatment system, may function to reduce the emissions of the engine more quickly. Because this system is reversible, it retains the capability of a conventional WHR system.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: November 25, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventor: Marten H. Dane
  • Patent number: 8881523
    Abstract: A Rankine cycle (6) of a waste heat utilization device includes a circulation path (7) for circulating a working fluid therethrough, an evaporator (12) for causing heat to transfer from cooling water delivered from an internal combustion engine (2) to the working fluid to evaporate the working fluid, a superheater (10) for causing heat to transfer from the cooling water delivered from an exhaust gas heat exchanger (8) to the working fluid delivered from the evaporator to superheat the working fluid, an expander (22) for expanding the working fluid delivered from the superheater to produce driving force, a condenser (24) for condensing the working fluid delivered from the expander, and a pump (28) for feeding the working fluid delivered from the condenser to the evaporator. The evaporator, the superheater, the expander, the condenser and the pump are successively inserted in the working fluid circulation path.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: November 11, 2014
    Assignee: Sanden Corporation
    Inventors: Junichiro Kasuya, Tetsuya Nakano, Tomohiko Saito, Masaaki Tokuda, Satoshi Ogiwara
  • Publication number: 20140318125
    Abstract: An apparatus for generating superheated vapor using waste heat recovery. The apparatus includes a housing having inlet and outlet tanks at both ends through which exhaust gas is introduced and discharged. A plurality of exhaust gas tubes are disposed inside the housing so as to be spaced apart from each other at predetermined distances in a top-bottom direction. A plurality of working fluid tubes alternate with the plurality of wave fin structures. Inlet and outlet pipes through which working fluid is introduced and discharged are disposed on a side surface of the housing. The inlet pipe and the outlet pipe are connected to the plurality of working fluid tubes so as to communicate each of the plurality of working fluid tubes. An upper surface and a lower surface of each of the plurality of working fluid tubes directly adjoin to the adjacent exhaust gas tubes.
    Type: Application
    Filed: February 17, 2012
    Publication date: October 30, 2014
    Applicant: KROENS CO., LTD.
    Inventors: Yong Kuk Cho, Tae Jin Kim
  • Publication number: 20140318124
    Abstract: This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Timothy C. ERNST, Christopher R. NELSON
  • Patent number: 8857181
    Abstract: A drive train, especially a vehicle drive train, includes: an engine for supplying drive power into the drive train; a cooling circuit in which a cooling medium is revolved in order to cool the engine or an electric generator or another unit; an expansion machine which is driven with fluid or steam as a working medium and by way of which additional drive power can be supplied to the drive train or which drives an electric generator or another unit, the cooling medium of the cooling circuit being simultaneously the working medium of the expansion machine; and a bypass to the expansion machine which is provided through which the working medium of the expansion machine is forced through a switching valve or can be guided past the expansion machine automatically by the prevailing pressure conditions.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 14, 2014
    Assignee: SteamDrive GmbH
    Inventors: Stephan Bartosch, Jürgen Berger
  • Patent number: 8850815
    Abstract: A hybrid engine that uses a primary internal combustion engine portion and a secondary external combustion engine portion. In a preferred arrangement, the secondary external combustion engine portion operates as a reciprocating steam engine. The heated exhaust gases of the internal combustion engine portion are used to generate steam, and the steam is used to power the steam engine portion adding the steam engine's power output to that of the internal combustion engine. The thermal efficiency of the hybrid engine may be higher than the thermal efficiency of an internal combustion engine without use of the exhaust gas heat. The hybrid engine uses a configuration in which steam is generated directly in the steam engine and a mechanical link between the internal combustion engine portion and the steam engine portion with the result that the hybrid engine is simple and inexpensive to construct and maintain.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 7, 2014
    Assignee: 14007 Mining Inc.
    Inventor: Thomas A. Morrison
  • Patent number: 8850814
    Abstract: The present invention provides a waste heat recovery system, comprising: an internal combustion engine for supplying a high grade waste heat thermal resource fluid and a low grade waste heat thermal resource fluid; an intermediate thermal cycle by which an intermediate fluid is vaporized by means of the high grade waste heat thermal resource fluid and is expanded within a first turbine, whereby produce is produced; and an organic thermal cycle by which an organic motive fluid is preheated by means of the low grade waste heat thermal resource fluid and is vaporized by means of the discharge of the intermediate fluid from the first turbine, said vaporized organic motive fluid being expanded in a second turbine, whereby power is produced.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: October 7, 2014
    Assignee: Ormat Technologies, Inc.
    Inventors: Uri Kaplan, Joseph Sinai
  • Patent number: 8850816
    Abstract: The present disclosure includes a method for regenerating power in an information handling system. The method includes circulating a cooling fluid through a fluid flow loop connecting a thermosiphon, a turbine, and a condenser. The method further includes removing heat from a heated component of the information handling system, converting the cooling fluid from a liquid state to a gaseous state in the thermosiphon, and extracting energy from the cooling fluid in the gaseous state in the turbine. The method additionally includes removing thermal energy from the cooling fluid in the condenser, converting the cooling fluid from a gaseous state to a liquid state as the thermal energy is removed from the cooling fluid, and returning the cooling fluid in the liquid state to the thermosiphon. The disclosure also includes associated systems and apparatuses.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: October 7, 2014
    Assignee: Dell Products L.P.
    Inventors: Travis Christian North, Andrew Olen Ingalls, Eric Neil Sendelbach, Manasi Tamhankar, Srinivasan R. Kadathur
  • Publication number: 20140290243
    Abstract: In a waste-heat recovery system, a gear pump and an electric motor share a drive shaft. A pump interior portion and a motor interior portion are partitioned from each other by a shaft seal, and the pump interior portion defines a part of a circulation path of a Rankine cycle circuit. One end of a communication path that is communicated to the motor interior portion is connected to a bottom portion of a housing, and the other end of the communication path is connected to the circulation path at a position between an expander and a condenser in the Rankine cycle circuit.
    Type: Application
    Filed: July 12, 2012
    Publication date: October 2, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Fuminobu Enokijima, Masao Iguchi, Hidefumi Mori, Fumihiko Ishiguro
  • Patent number: 8839620
    Abstract: A sliding vane rotary expander is used in a waste heat recovery system for a power plant. One example rotary expander has multiple stages with the vane assemblies disposed in bearing supported rings. Another example rotary expander has multiple stages with the vane assemblies disposed in an elliptical cavity. A balance valve equalizes the flow within the stages. Single stage rotary expanders may also be used.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: September 23, 2014
    Assignee: AVL Powertrain Engineering, Inc.
    Inventors: Ho Teng, Gerhard Regner
  • Patent number: 8826662
    Abstract: A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Patent number: 8826663
    Abstract: A heat exchanger is provided that includes plate pairs stacked one above the other. A first flow chamber is formed between the two plates of a plate pair by conducting a first fluid therethrough, a second flow chamber for conducting a second fluid therethrough, wherein the second flow chamber is formed between two adjacent plate pairs, an inlet opening for introducing the first fluid, and an outlet opening for discharging the first fluid. The plates have at least one expansion opening, in particular at least one expansion slit, for reducing stress in the plates. The heat exchanger can withstand high thermal and mechanical loads even over a long time period, such as 10 years.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: September 9, 2014
    Assignee: Behr GmbH & Co. KG
    Inventor: Klaus Irmler
  • Patent number: 8800285
    Abstract: This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: August 12, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Patent number: 8800283
    Abstract: A shape memory alloy (SMA) heat engine includes a first rotatable pulley, a second rotatable pulley, and an SMA material disposed about the first and second rotatable pulleys and between a hot region and a cold region. A method of starting and operating the SMA heat engine includes detecting a thermal energy gradient between the hot region and the cold region using a controller, decoupling an electrical generator from one of the first and second rotatable pulleys, monitoring a speed of the SMA material about the first and second rotatable pulleys, and re-engaging the driven component if the monitored speed of the SMA material exceeds a threshold. The SMA material may selectively change crystallographic phase between martensite and austenite and between the hot region and the cold region to convert the thermal gradient into mechanical energy.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: August 12, 2014
    Assignees: GM Global Technology Operations LLC, Dynalloy Inc., The Regents of the University of Michigan
    Inventors: Alan L. Browne, Nancy L. Johnson, Nilesh D. Mankame, Paul W. Alexander, John Andrew Shaw, Christopher Burton Churchill, Andrew C. Keefe, Guillermo A. Herrera, Jeffrey W Brown, Richard J. Skurkis
  • Patent number: 8793993
    Abstract: An energy harvesting system includes a heat engine and a component configured to be driven by operation of the heat engine. The heat engine includes a first member, a second member, a shape memory alloy material, and a tensioner. The second member is spaced from the first member. The shape memory alloy material operatively interconnects the first member and the second member. The shape memory alloy material is configured to selectively change crystallographic phase from martensite to austenite and thereby contract in response to exposure to a first temperature. The shape memory alloy material is also configured to selectively change crystallographic phase from austenite to martensite and thereby expand in response to exposure to a second temperature. The tensioner is configured to apply tension to the shape memory alloy material as the shape memory alloy material selectively expands and contracts such that the shape memory alloy material is taut.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul W. Alexander, Alan L. Browne, Nancy L. Johnson, Nilesh D. Mankame, Xiujie Gao, Geoffrey P. McKnight, Andrew C. Keefe, Christopher P. Henry
  • Patent number: 8789370
    Abstract: A device for utilizing the waste heat of an internal combustion includes a single-stage or multi-stage supercharging device, which is designed as an exhaust-gas turbocharger in particular. The single-stage or multi-stage supercharging device is assigned an additional supercharging device including an expansion machine acted upon by an auxiliary circuit, in particular a steam circuit.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: July 29, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Juergen Stegmaier, Martin Cichon, Manfred Schmitt, Bernd Banzhaf, Achim Schmidt
  • Patent number: 8783032
    Abstract: In a method for recovering energy from the heat dissipated by an internal combustion engine and to an internal combustion engine wherein the pressure and temperature of a liquid working medium are increased from a lower process pressure and a first temperature to an upper process pressure at which the working fluid is heated to a second temperature whereby it is converted to a gaseous phase; the working medium is then expanded back to the lower process pressure whereby mechanical power is generated and the working medium is converted back to a liquid phase, the upper process pressure being adjusted in such a way that the working medium is expanded into the wet steam area close to the saturated steam limit.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: July 22, 2014
    Assignee: Daimler AG
    Inventors: Jan Gärtner, Thomas Koch, Andreas Zygan, Jozsef Mercz, Piroska Merczne
  • Patent number: 8769947
    Abstract: An exhaust system configured for converting thermal energy to mechanical energy includes a source of thermal energy provided by a temperature difference between an exhaust gas having a first temperature and a heat sink having a second temperature that is lower than the first temperature. The exhaust system also includes a conduit configured for conveying the exhaust gas, a heat engine disposed in thermal relationship with the conduit and configured for converting thermal energy to mechanical energy, and a member disposed in contact with the conduit and configured for conducting thermal energy from the conduit to the heat engine. The heat engine includes a first element formed from a first shape memory alloy having a crystallographic phase changeable between austenite and martensite at a first transformation temperature in response to the temperature difference between the exhaust gas and the heat sink.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 8, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul W. Alexander, Alan L. Browne, Nancy L. Johnson, Patrick B. Usoro, Nilesh D. Mankame, Xiujie Gao, Geoffrey P. Mc Knight, Marten Wittorf, John A. Cafeo, Christopher P. Henry
  • Patent number: 8769946
    Abstract: A cooling system configured for converting thermal energy to mechanical energy includes a source of thermal energy provided by a temperature difference between a heat source having a first temperature and a coolant having a second temperature that is lower than the first temperature. The cooling system includes a cooling circuit configured for conveying the coolant to and from the heat source. The cooling circuit includes a conduit and a pump in fluid communication with the conduit and configured for delivering the coolant to the heat source. The cooling system also includes a heat engine disposed in thermal relationship with the conduit and configured for converting thermal to mechanical energy. The heat engine includes a first element formed from a first shape memory alloy having a crystallographic phase changeable between austenite and martensite at a first transformation temperature in response to the temperature difference between the heat source and coolant.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 8, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul W. Alexander, Alan L. Browne, Nancy L. Johnson, Patrick B. Usoro, Nilesh D. Mankame, Xiujie Gao, Geoffrey P. McKnight, John A. Cafeo, Christopher P. Henry
  • Publication number: 20140165562
    Abstract: An engine-waste-heat utilization device includes a Rankine cycle which includes a heat exchanger through which cooling water coming out from an engine flows to recover waste-heat of the engine to refrigerant, an expander which generates power using the refrigerant coming out from the heat exchanger, a condenser which condenses the refrigerant coming out from the expander and a refrigerant pump which supplies the refrigerant coming out from the condenser to the heat exchanger, and a cooling water passage in which the cooling water having a higher temperature flows when the Rankine cycle is operated than when the Rankine cycle is not operated.
    Type: Application
    Filed: August 6, 2012
    Publication date: June 19, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Nagai, Shinichiro Mizoguchi, Takayuki Ishikawa
  • Patent number: 8752378
    Abstract: The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: June 17, 2014
    Assignee: Cummins Intellectual Properties, Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Patent number: 8739531
    Abstract: A hybrid power plant includes a waste heat recovery (WHR) system having an expander driven by waste heat from an internal combustion engine. The expander, which is rotary in one example, rotationally drives a first pump and alternator with which the expander may be packaged as a single unit. The first pump circulates a working fluid when the WHR system is in use to charge an electrical storage device. A second pump is employed to circulate the working fluid when the first pump is not in use, for example. The expander can be bypassed to divert the working fluid to a heater core used to heat engine coolant during cold start conditions, for example.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: June 3, 2014
    Assignee: AVL Powertrain Engineering, Inc.
    Inventors: Ho Teng, Gerhard Regner
  • Patent number: 8739532
    Abstract: An exhaust heat regeneration system includes: an evaporator for cooling engine cooling water; an expansion device for expanding the refrigerant heated through the evaporator so as to generate a driving force; a condenser for cooling the refrigerant passing through the expansion device to condense the refrigerant; and a pump for pressure-feeding the refrigerant cooled through the condenser to the evaporator, in which: the expansion device is coupled to the pump by a shaft, and the expansion device and the pump are housed within the same casing to constitute a pump-integrated type expansion device; and the pump includes a high-pressure chamber through which the refrigerant to be discharged to the evaporator flows, the high-pressure chamber being provided on the expansion device side, or a low-pressure chamber through which the refrigerant flowing from the condenser flows, the low-pressure chamber being provided on the expansion device side.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiko Kawajiri, Minoru Sato, Kazunori Tsuchino
  • Publication number: 20140137554
    Abstract: A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicants: PACCAR, INC., CUMMINS INC.
    Inventors: Timothy C. ERNST, Christopher R. NELSON
  • Patent number: 8726661
    Abstract: An exhaust aftertreatment system for treating an exhaust gas feedstream of an internal combustion engine includes a catalytic converter, a fluidic circuit and a Stirling engine. The Stirling engine is configured to transform thermal energy from a working fluid heat exchanger to mechanical power that is transferable to an electric motor/generator to generate electric power. The Stirling engine is configured to transform mechanical power from the electric motor/generator to thermal energy transferable to the working fluid heat exchanger.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: John Patrick Spicer, Kerem Koprubasi
  • Patent number: 8720202
    Abstract: An internal combustion engine having an exhaust gas recirculation device for recirculating exhaust gas of the internal combustion engine to a fresh-air side of the internal combustion engine. For this purpose, it is provided that the exhaust gas recirculation device has at least one compressor for compressing the exhaust gas supplied to the fresh-air side of the internal combustion engine.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: May 13, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Juergen Stegmaier, Martin Cichon, Manfred Schmitt, Bernd Banzhaf, Achim Schmidt
  • Patent number: 8713939
    Abstract: In a case of a refrigerant amount being short when a Rankine cycle starts operating, because the pressure difference does not occur across a refrigerant pump, refrigerant cannot be injected from a bypass circuit to the Rankine cycle, and therefore super-cooling degree cannot be controlled. An exhaust heat recovery system is provided that can adjust the super-cooling degree even in the case of the pressure difference not occurring across the refrigerant pump. The system includes a refrigerant tank, for storing refrigerant, which is connected by pipes to the low-pressure circuit side and the high-pressure circuit side of the Rankine cycle through a low-pressure-side valve and a high-pressure-side valve, respectively, and a temperature adjuster for adjusting internal temperature of the refrigerant tank.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: May 6, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazunori Tsuchino, Kazuhiko Kawajiri, Minoru Sato
  • Patent number: 8707914
    Abstract: A waste heat recovery system connects a working fluid into passages formed within an internal combustion engine. The fluid passages transport the working fluid to high temperature areas of the engine, raising the temperature of the working fluid near the phase change point or above the phase change point. The heated working fluid drives an energy conversion portion located downstream from the engine. The heat absorbed by the working fluid decreases the load on an engine cooling system as well as driving an energy conversion portion, improving fuel efficiency.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 29, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventor: David M. Barnes
  • Patent number: 8689554
    Abstract: An engine arrangement of the type including an internal combustion engine having an EGR line, wherein at least one turbine is located on an exhaust line, is provided. The arrangement includes a water vapor generating arrangement using exhaust gases energy to transform liquid water into water vapor. The water vapor is injected in the exhaust line upstream of the turbine. The EGR line is branched off the exhaust line upstream of the turbine and the water vapor generating arrangement includes at least one EGR/water heat exchanger for exchanging heat between the EGR line and the water to be vaporized.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: April 8, 2014
    Assignee: Renault Trucks
    Inventor: Nicolas Espinosa
  • Patent number: 8683801
    Abstract: The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.
    Type: Grant
    Filed: August 13, 2011
    Date of Patent: April 1, 2014
    Assignee: Cummins Intellectual Properties, Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson, James A. Zigan
  • Patent number: 8671684
    Abstract: A method and device to optimize the cumulative beneficial effect of harvesting all available forms of lost energy, including energy that is lost while a vehicle is in motion (e.g., kinetic, inertia, friction, thermodynamic, and aerodynamic losses). The cumulative energy that is recovered is converted to electrical energy which powers the on-board electrolyzer to produce more hydrogen and oxygen while the system is in operation and stationary. Stationary, passive means of energy, solar, wind, hydro, etc. will also be available to power the electrolyzer. The system also contemplates utilizing passive means of energy to power a non-mobile system which incorporates an internal or external combustion engine in place of a fuel cell.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 18, 2014
    Inventor: Donald Moriarty
  • Patent number: 8635871
    Abstract: A waste heat recovery system for use with an engine. The waste heat recovery system receives heat input from both an exhaust gas recovery system and exhaust gas streams. The system includes a first loop and a second loop. The first loop is configured to receive heat from both the exhaust gas recovery system and the exhaust system as necessary. The second loop receives heat from the first loop and the exhaust gas recovery system. The second loop converts the heat energy into electrical energy through the use of a turbine.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: January 28, 2014
    Assignee: Cummins Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Patent number: 8635870
    Abstract: A waste heat utilization device recovering waste heat produced by an internal combustion engine from a heat medium includes a Rankine cycle circuit including an evaporator, an expander, a condenser and a pump serially arranged in a circulation line along which a combustible working fluid circulates. A casing air-tightly encloses the Rankine cycle circuit to chemically inactivate the Rankine cycle circuit.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: January 28, 2014
    Assignee: Sanden Corporation
    Inventors: Junichiro Kasuya, Yasuaki Kanou
  • Publication number: 20140013743
    Abstract: A waste heat recovery (WHR) system operates in a reverse mode, permitting using the WHR system to transfer heat to the exhaust gas of an internal combustion engine. In another configuration, a WHR system may operate in two modes. The first mode removes heat from exhaust gas of an engine to perform useful work. The second mode transfers heat to the exhaust gas. The benefit of this flexible system is that a WHR system is adaptable to rapidly heat exhaust gas at startup and during other conditions where the temperature of the exhaust gas is less than a predetermined operating range. Because of the ability to rapidly warm engine exhaust gas, an exhaust gas receiving system, such as an EGR or an aftertreatment system, may function to reduce the emissions of the engine more quickly. Because this system is reversible, it retains the capability of a conventional WHR system.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: CUMMINS INTELLECTUAL PROPERTY, INC.
    Inventor: Marten H. DANE
  • Patent number: 8627663
    Abstract: An energy recovery system and method using an organic rankine cycle is provided for recovering waste heat from an internal combustion engine, which effectively controls condenser pressure to prevent unwanted cavitation within the fluid circulation pump. A coolant system may be provided with a bypass conduit around the condenser and a bypass valve selectively and variably controlling the flow of coolant to the condenser and the bypass. A subcooler may be provided integral with the receiver for immersion in the accumulated fluid or downstream of the receiver to effectively subcool the fluid near the inlet to the fluid pump.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: January 14, 2014
    Assignee: Cummins Intellectual Properties, Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson, James A. Zigan
  • Patent number: 8628025
    Abstract: A vehicle waste heat recovery system may include a first pump, an internal combustion engine, a waste heat recovery device and a condenser. The first pump may be in fluid communication with a fluid. The internal combustion engine may be operable to power rotation of a drive axle of a vehicle and may define an engine coolant passage having an inlet in fluid communication with an outlet of the first pump. The waste heat recovery device may have an inlet in fluid communication with an outlet of the engine coolant passage. The condenser may have an inlet in fluid communication with an outlet of the waste heat recovery device and an outlet in fluid communication with an inlet of the first pump.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: John R. Bucknell
  • Publication number: 20140007575
    Abstract: A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion positioned in a downstream direction of forced cooling air from the first cooling core portion, and an engine cooling loop including an engine coolant return line fluidly connected to an inlet of the second cooling core portion, and an engine coolant feed line connected to an outlet of the second cooling core portion. A condenser of an RC has a cooling loop including a condenser coolant return line fluidly connected to an inlet of the first cooling core portion and a condenser coolant feed line fluidly connected an outlet of the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop.
    Type: Application
    Filed: August 11, 2011
    Publication date: January 9, 2014
    Applicant: CUMMINS INTELLECTUAL PROPERTY, INC.
    Inventors: Timothy C. Ernst, Christopher R. Nelson