Process Of Power Production Or System Operation Patents (Class 60/645)
  • Publication number: 20150121892
    Abstract: The invention pertains to a power plant including a gas turbine, a heat recovery boiler arrangement with at least a boiler inlet, and an outlet side with a first exit connected to a stack and a second exit connected to a flue gas recirculation, which connects the second exit to the compressor inlet of the gas turbine. The heat recovery boiler arrangement includes a first boiler flue gas path from the boiler inlet to the first boiler exit, and a separate second boiler flue gas path from the boiler inlet to the second boiler exit. Additionally, a supplementary firing and a subsequent catalytic NOx converter are arranged in the first boiler flue gas path. Besides the power plant a method to operate such a power plant is an object of the invention.
    Type: Application
    Filed: January 7, 2015
    Publication date: May 7, 2015
    Inventors: Eribert BENZ, Klaus DÖBBELING, Michael HOEVEL
  • Publication number: 20150121870
    Abstract: Systems and processes provide for a thermal process to transform sludge (and a variety of other natural waste materials) into electricity. Dewatered sludge and other materials containing a high amount of latent energy are dried into a powdered biofuel using a drying gas produced in the system. The drying gas is recirculated and is heated by the biofuel produced in the system, waste heat (from turbines or internal combustion engines), gas (including natural gas or digester gas) and/or oil. The biofuel is combusted in a boiler system that utilizes a burner operable to burn biofuel and produce heat utilized in a series of heat exchangers that heat the recirculating drying air and steam that powers the turbines for electricity production.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Applicant: GATE 5 ENERGY PARTNERS, INC.
    Inventors: Steven DELSON, Lawrence E. DEES, JR.
  • Patent number: 9021807
    Abstract: In a waste heat utilization arrangement for an internal combustion engine of a motor vehicle including a waste heat utilization circuit in which a working medium is circulated, a pumping device for pressurizing the working medium, an evaporator for vaporizing the working medium by waste heat of the internal combustion engine, an expansion machine for expanding the working medium while extracting mechanical energy therefrom and a condenser for condensing the working medium in a resting state, the waste heat utilization circuit is in communication with a pressure store capable of maintaining a pressure for setting and ensuring a predetermined adjustable minimum pressure of the working medium in the waste heat utilization circuit.
    Type: Grant
    Filed: June 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Daimler AG
    Inventors: Jan Gaertner, Thomas Koch
  • Publication number: 20150107249
    Abstract: A system includes a gas compressor system and a thermal cycle. The gas compressor system includes a compressor housing defining an interior compressor chamber. A gas compressor is in the interior compressor chamber to compress gas received into interior compressor chamber. A heat exchange fluid passage is provided adjacent to a surface that contacts the gas being compressed by the gas compressor. The thermal cycle includes a working fluid heated using the heat exchange fluid passage of the compressor housing. The working fluid is expanded by the thermal cycle to generate electricity.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: Access Energy LLC
    Inventors: Herman Artinian, Parsa Mirmobin
  • Publication number: 20150107247
    Abstract: A method of operating an electricity production system having at least one oxy-combustion boiler unit and a turbine for electricity generation at least includes the steps of: determining a power demand for an air separation unit that supplies oxygen gas to the boiler unit and a gas processing unit that treats flows of fluid for CO2 capture; determining a total power demand for electricity production that includes the determined power demand for the air separation unit and the gas processing unit; and coordinating operation of the air separation unit, gas processing unit, the boiler unit, and the turbine such that power generated by the plant provides power that meets the determined total power demand and also controls steam pressure of the turbine to a pre-specified level.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Inventors: Xinsheng LOU, Shizhong YANG
  • Publication number: 20150107248
    Abstract: An electricity production system configured to operate in accordance with a method of operating an electricity production system that at least includes the steps of: determining an oxygen distribution between oxygen gas to be separated by an air separation unit (“ASU”) and oxygen gas stored in a storage tank of the ASU to be fed to the boiler unit, determining a carbon capture value for a gas processing unit, determining a power consumption value for the gas processing unit and the ASU, determining a total power demand value based on the power consumption value of the gas processing unit and the ASU, and on a determined electricity demand, and controlling the boiler unit, the turbine, the ASU, and the gas processing unit based on the determined total power demand along with correcting signals generated from a coordinated Model Predictive Control.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: ALSTOM Technology Ltd.
    Inventors: Xinsheng LOU, Shizhong Yang
  • Patent number: 9003795
    Abstract: The disclosed subject matter relates to methods and systems for operating a solar steam system in response to a detected or predicted reduced insolation condition (for example, sunset or a cloud condition). In some embodiments, for a period of time, enthalpy stored within a solid material of a conduit via which steam travels en route to a steam turbine is used to heat the steam to drive the turbine. In some embodiments, a net migration of heliostats away from the steam superheater is carried out in response to the detected or predicted reduced insolation condition.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 14, 2015
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Sami Katz, Israel Kroizer
  • Publication number: 20150096300
    Abstract: An integral combined cycle electric power generation system capable of generating electricity in any environment in which a fluid, such as air, moves relative to the system. Preferably this system is integrated with a hybrid airplane, though it is applicable in a number of other scenarios including, but not limited to, integration with: locomotives, ships, automobiles, trucks, and wind turbines. An exterior surface of the machine in which the system is thermally integrated is a condenser in a closed loop Rankine or Brayton cycle.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Inventor: Michael H. Gurin
  • Patent number: 8997489
    Abstract: The disclosure relates to a method to produce electricity in a cement clinker production utilizing a kiln and/or a precalciner as combustion chambers to generate electricity, the method including: a. supplying fuel to the precalciner and/or the kiln in a quantity corresponding to at least 110% of a heat value requirement for clinker production operation of the precalciner and/or the rotary kiln per unit weight of clinker, respectively; b. bypassing a portion of hot flue gases from at least one of (i) the kiln and/or (ii) the precalciner; c. leading hot flue gases to a heat recovery steam generator producing steam; d. producing electricity with a power island including a steam turbine equipped with an electrical generator.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 7, 2015
    Assignee: Cemex Research Group AG
    Inventors: Raul Fuentes Samaniego, Luis Ramon Martinez Farias, Antonio Higinio Noyola De Garagorri, Luis Trevino Villareal
  • Publication number: 20150089944
    Abstract: A back-up boiler system for a solar thermal power plant (201) for transferring solar energy into electricity, said back-up boiler system comprising a combustion chamber (70) and a convection section (80) in fluid connection with said combustion chamber (70), wherein in the convection section (80) at least a first heat exchanger (92) is provided for heating a molten salts mixture of the solar thermal power plant and a second heat exchanger (90) for pre-heating boiler feed water of the solar thermal power plant, wherein the back-up boiler system (25) is configured to allow selection between only providing heat to the first heat exchanger (92), only providing heat to the second heat exchanger (90) and providing heat to both heat exchangers (90, 92), preferably dependent on availability of solar radiation and/or dependent on demand of power generation.
    Type: Application
    Filed: March 19, 2013
    Publication date: April 2, 2015
    Inventors: Gaetano Iaquaniello, Daniela Capoferri, Adriano Barsi, Fabrizio Fabrizi, Walter Gaggioli, Alberto Giaconia, Luca Rinaldi
  • Publication number: 20150089948
    Abstract: Systems and methods for operating a hydraulically actuated device/system are described herein. For example, systems and methods for the compression and/or expansion of gas can include at least one pressure vessel defining an interior region for retaining at least one of a volume of liquid or a volume of gas and an actuator coupled to and in fluid communication with the pressure vessel. The actuator can have a first mode of operation in which a volume of liquid disposed within the pressure vessel is moved to compress and move gas out of the pressure vessel. The actuator can have a second mode of operation in which a volume of liquid disposed within the pressure vessel is moved by an expanding gas entering the pressure vessel. The system can further include a heat transfer device configured to transfer heat to or from the at least one of a volume of liquid or a volume of gas retained by the pressure vessel.
    Type: Application
    Filed: September 4, 2014
    Publication date: April 2, 2015
    Inventors: Eric D. Ingersoll, Justin A. Aborn
  • Publication number: 20150089947
    Abstract: The present invention provides a method and apparatus of processing material having an organic content. The method comprises heating a batch of the material (“E”) in a batch processing apparatus (16) having a reduced oxygen atmosphere to gasify at least some of the organic content to produce syngas, The temperature of the syngas is then elevated and maintained at the elevated temperature in a thermal treatment: apparatus (18) for a residence time sufficient to thermally break down any long chain hydrocarbons or volatile organic compounds therein. The calorific value of the syngas produced is monitored by sensors (26) and, when the calorific value of the syngas is below a predefined threshold, the syngas having a low calorific value is diverted to a burner of a boiler (22) to produce steam to drive a steam turbine (36) to produce electricity (“H”).
    Type: Application
    Filed: April 30, 2013
    Publication date: April 2, 2015
    Applicant: Chinook End-Stage Recycling Limited
    Inventors: Rifat Al Chalabi, Ophneil Henry Perry, Ke Li
  • Publication number: 20150082792
    Abstract: A turbine driven from renewable or waste energy sources has a working fluid in a two stage heating process using a first heating apparatus using a renewable or waste energy source and a second heating apparatus comprising a graphite body containing an embedded heat exchanger heated by concentrated solar energy where the graphite body releases stored heat to heat the working fluid to provide a continuous stream of the working fluid heated to a working temperature for input to the turbine. A relationship exists between an outer surface area of the embedded heat exchanger tube and a mass of graphite in the graphite body whereby there is from 0.60 m2 to 20 m2 of outer surface area of embedded heat exchanger tube per tonne of graphite in the graphite body.
    Type: Application
    Filed: March 7, 2013
    Publication date: March 26, 2015
    Inventors: Nicholas Jordan Bain, Paul Soo-Hock Khoo, David John Reynolds
  • Publication number: 20150082803
    Abstract: The invention relates to a method for operation of a combined-cycle power plant with cogeneration, in which method combustion air is inducted in at least one gas turbine, and in which method the exhaust gas emerging from the at least one turbine is passed through a heat recovery steam generator (HRSG) in order to generate steam. The electricity production can be decoupled from the steam production in order to restrict the electricity production while the heat provided by steam extraction remains at a constant level. A portion of the inducted combustion air can be passed through at least one turbine to the HRSG without being involved in the combustion of the fuel in the gas turbine. This portion of the combustion air can be used to operate at least one supplementary firing in the heat recovery steam generator.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Applicant: ALSTOM Technology Ltd
    Inventors: Francois DROUX, Dario Ugo BRESCHI, Karl REYSER, Stefan ROFKA, Johannes WICK
  • Publication number: 20150075164
    Abstract: The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of: serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicant: ORMAT TECHNOLOGIES, Inc.
    Inventors: Dany BATSCHA, Rachel Huberman
  • Patent number: 8974701
    Abstract: An integrated process for the partial oxidation of whole crude oil mixed with a low cost finely divided solid ash-producing material in a membrane wall gasification reactor produces a syngas and, optionally, a more hydrogen-rich product stream by subjecting the syngas to a water-gas shift reaction. Process steam and electricity are produced by recovering the sensible heat values from the hot syngas.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 10, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Jean Pierre Ballaguet
  • Publication number: 20150059333
    Abstract: Methods and apparatus (10) for providing mechanical energy. The apparatus (10) for providing mechanical energy comprises a motor (11) for providing mechanical energy. The motor (11) comprises a chamber (17, 117, 217, 317, 417) for receiving a fluid to be heated. An amplified stimulated emission radiation source (e.g. a laser and/or a maser) (36, 436) is provided for supplying radiation to the chamber (17, 117, 217, 317, 417).
    Type: Application
    Filed: April 30, 2013
    Publication date: March 5, 2015
    Inventor: Richard McMahon
  • Patent number: 8966901
    Abstract: Embodiments provide a heat engine system containing working fluid (e.g., sc-CO2) within high and low pressure sides of a working fluid circuit and a heat exchanger configured to transfer thermal energy from a heat source to the working fluid. The heat engine system further contains an expander for converting a pressure drop in the working fluid to mechanical energy, a shaft coupled to the expander and configured to drive a device (e.g., generator or pump) with the mechanical energy, a recuperator for transferring thermal energy between the high and low pressure sides, and a cooler for removing thermal energy from the working fluid in the low pressure side. The heat engine system also contains a pump for circulating the working fluid, a mass management system (MMS) fluidly connected to the working fluid circuit, and a supply tank fluidly connected to the MMS by a supply line.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: March 3, 2015
    Assignee: Dresser-Rand Company
    Inventors: Timothy J. Held, Jason D. Miller
  • Publication number: 20150052895
    Abstract: A heat exchanger is provided. The heat exchanger comprises an evaporator, a vapor-liquid separator, a liquid level sensor and a controller. The evaporator is used for heating a working fluid up to a vapor-liquid state, and has a working fluid inlet pipe and a working fluid outlet pipe. The vapor-liquid separator is connected to the working fluid outlet pipe for separating the working fluid into a vapor working fluid and a liquid working fluid. The liquid level sensor detects a level of the liquid working fluid inside the vapor-liquid separator and outputs a liquid level signal. The controller receives the liquid level signal and controls the vapor quality of the working fluid inside the evaporator.
    Type: Application
    Filed: November 27, 2013
    Publication date: February 26, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Sung-Wei Hsu, Chi-Ron Kuo
  • Patent number: 8955321
    Abstract: A method is provided for primary control of a steam turbine installation in network operation, which provides at least two pressure stages, these being a high-pressure and a low-pressure steam turbine stage, in which for storing reserve power a live steam valve along an operating-steam feed line to at least one pressure stage of the steam turbine is operated in a throttled manner, the live steam valve, in the case of a reducing network frequency and network frequency boosting which is necessary as a result of this, is transferred to an at least less throttled state. At least some of the partially expanded operating steam which issues from the high-pressure steam turbine stage is introduced directly without reheating, into the low-pressure steam turbine stage for further expansion.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: February 17, 2015
    Assignee: Alstom Technology Ltd.
    Inventors: Olaf Berke, Franz-Josef Höly, Karsten Müller, Reinhard Johannes Severin Cloppenburg
  • Patent number: 8950196
    Abstract: Contemplated power plants and LNG regasification facilities employ a combination of ambient air and non-ambient air as continuous heat sources to regasify LNG and to optimize power production. Most preferably, contemplated plants and methods are operable without the need for supplemental heat sources under varying temperature conditions.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 10, 2015
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8950392
    Abstract: A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 10, 2015
    Assignee: The Regents of the University of California
    Inventors: K. Peter C. Vollhardt, Rachel A. Segalman, Arunava Majumdar, Steven Meier
  • Publication number: 20150027121
    Abstract: A system is disclosed that incorporates a regenerative Rankine cycle integrated with a conventional combined cycle. An added duct firing array, typically located after the combustion turbine exhaust and before the conventionally designed Heat Recovery Steam Generator (HRSG), is used to boost enthalpy of said exhaust. An added heating element downstream of the firing array provides sufficient heating for sensible heating, evaporation and superheating of feedwater that has been previously heated by feedwater heaters as part of a regenerative Rankine cycle. In practice, the condensate stream from the condenser is bifurcated such that a dedicated feedwater flow is directed to feedwater heaters. After further heating in the added heating element, the superheated steam, at the same pressure and temperature as the main steam, is now mixed with the main steam prior to turbine entry. The condensate is directed to the HRSG to be heated in conventional fashion.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Inventors: Mark Joseph Skowronski, Ronald Farris Kincaid
  • Publication number: 20150013338
    Abstract: The present invention relates to a device for controlling a working fluid with low freezing point circulating in a closed loop (10) working on a Rankine cycle, said loop comprising a compression/circulation pump (12) for the fluid in liquid form, a heat exchanger (18) swept by a hot source (24) for evaporation of said fluid, expansion means (30) for the fluid in vapour form, a cooling exchanger (42) swept by a cold source (F) for condensation of the working fluid, a working fluid tank (48) and working fluid circulation lines (52, 54, 56, 58, 60, 62). According to the invention, tank (48) is connected to a depression generator (50).
    Type: Application
    Filed: December 14, 2012
    Publication date: January 15, 2015
    Inventors: Pascal Smague, Pierre Leduc, Richard Levesque
  • Publication number: 20150007567
    Abstract: A plant (10, 110) for the production of electric energy comprises a fuel boiler (11) in which a fluid is heated in order to produce steam, a turbine (15) which is connected to an electric generator (16) and to which said steam is conveyed, and a condenser unit (19) which re-condenses the fluid output from the turbine so that it may be conveyed back to the steam generator. The return fluid along the path from the condenser unit (19) to the boiler passes through a preheating unit (22) which receives heat from the turbine steam bleed-offs (23) and from a thermodynamic solar field (25). By making suitable use of the heat produced by the solar field (25) and contained in the heat-carrier fluid which passes through it, it is possible to increase the overall efficiency of the plant (10, 110).
    Type: Application
    Filed: February 4, 2013
    Publication date: January 8, 2015
    Applicant: Falck Renewables Spa
    Inventors: Piero Manzoni, Di Persico Lorenzo, Michele Scapolo
  • Publication number: 20150007568
    Abstract: A power generation apparatus, a power generation method, a decomposition-gas boiler, and a decomposition-gas turbine with which nitrous oxide may be used as an environmentally friendly energy source. A fuel gas including nitrous oxide (N2O) is supplied to a decomposition reactor (22) in which a catalyst (21) for decomposing nitrous oxide is disposed. Steam is generated by a decomposition-gas boiler by heat recovery from decomposition gas (N2, O2) generated by decomposing the nitrous oxide, the steam generated by the decomposition-gas boiler is used to drive the rotation of a steam turbine to obtain motive power, and the motive power is subsequently used to drive a generator to obtain electrical power. Alternatively, the decomposition gas (N2, O2) generated by decomposing the nitrous oxide is used to drive the rotation of a decomposition-gas turbine to obtain motive power.
    Type: Application
    Filed: February 23, 2012
    Publication date: January 8, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Shigehiro Chaen, Junichiro Kawaguchi, Hiroto Habu, Yoshitsugu Sone
  • Publication number: 20150000276
    Abstract: An auxiliary steam generator system for a power plant, comprising a water-steam circuit, which has a condensate line and a feed-water line, wherein a condensate pump is connected in the condensate line and a feed-water pump is connected in the feed-water line, and wherein a pressure accumulating vessel is connected between the condensate pump and the feed-water pump, and wherein a feed-water take-off line is connected to the water-steam circuit at a branch-off point after the pressure accumulating vessel is provided. The feed-water take-off line is connected to the pressure accumulating vessel and a heating device is connected in the feed-water take-off line.
    Type: Application
    Filed: December 4, 2012
    Publication date: January 1, 2015
    Inventors: Heiner Edelmann, Mark Reissig, Marc Sattelberger, Andre Schrief
  • Publication number: 20140373527
    Abstract: The present invention provides a compressor powered by a pressurized gas, whether steam or another working fluid, and a system for extracting work using such as compressor. The pressurized gas may comprise a heated working fluid in a gaseous state, to displace a piston in an input circuit, which in turn displaces a piston in an output circuit, thereby compressing a compressible fluid or displacing an incompressible fluid. A purpose of the compressor is to convert waste heat, heat generated by the combustion of biomass or other fuels, or heat resulting from the concentration of solar energy into useful power, whether configured to produce compressed air or pump water, which can displace the electricity otherwise used for this purpose, or to produce electricity or motive force directly, through a hydraulic circuit. The system for extracting work does so by an output fluid which is compressed or pumped by a pressurized gas powered compressor.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 25, 2014
    Applicant: NOVOPOWER LTD.
    Inventors: Valeri STROGANOV, Philip RAPHALS
  • Publication number: 20140373539
    Abstract: A multifunction domestic station includes a reaction chamber connected to a source of a pressurised mixture of water and air, to a first source of a first fuel capable of endothermically reacting with the mixture and to a second source of a second fuel. The station also includes heating devices capable of heating the first fuel to a combustion temperature in order to prime the reaction between the fuel and the mixture; and devices for utilising the thermal energy generated by the reaction, in order to make the station operate as an electric power generator, a heat generator and a device for the disposal of domestic wastes. A device for powering the station with the second fuel and a method of operating the station are also provided.
    Type: Application
    Filed: September 17, 2012
    Publication date: December 25, 2014
    Inventor: Guido U. PARISI
  • Publication number: 20140373538
    Abstract: Methods and systems relate to an oxy-boiler used to generate steam injected into a well for assisting recovery of hydrocarbons. Operating conditions of a burner for the oxy-boiler limits oxygen contamination in a resulting flue gas for carbon dioxide recovery and limits size of the oxy-boiler, which may thus be located proximate the well rather at a central processing facility. In contrast to a direct steam generation approach where resulting carbon dioxide is mixed with steam, the oxy-boiler also enables selection of a desired level of carbon dioxide injection, which may be provided with the flue gas that may be exhausted from the oxy-boiler at an injection pressure.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventors: Scott MACADAM, James SEABA
  • Publication number: 20140366537
    Abstract: In a system for effecting pressure control in a thermal power plant operated at low load connected fluidly in series, a relief conduit is disclosed herein. The relief conduit selectively transfers steam from a cold reheat conduit to the second extraction conduit. The plant further includes a boiler, a high-pressure turbine, an intermediate pressure turbine, a low pressure turbine, a main steam conduit for feeding steam from the boiler to an inlet of the high pressure turbine, a cold reheat conduit for feeding steam from an outlet of the high-pressure turbine through a reheat flow path in the boiler, and a first and second high pressure heaters. A first extraction conduit connects the cold reheat conduit to a first high pressure heater to transfer heat, and a second extraction conduit connects the intermediate pressure turbine to the second high pressure heater, to transfer heat.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Stephan HELLWEG, Volker Schüle, Manfred BAUER
  • Publication number: 20140360189
    Abstract: A fluid processing system and method are provided for separating a liquid portion from a multiphase fluid. The system and method may include a steam turbine assembly coupled with a rotary shaft, and a separator coupled with the rotary shaft and positioned upstream of the steam turbine assembly. The separator may include an inlet end configured to receive a multiphase fluid, an outlet end fluidly coupled with the steam turbine assembly, and a separation chamber extending from the inlet end to the outlet end. The separation chamber may be configured to separate a liquid portion from the multiphase fluid to thereby provide a substantially gaseous fluid to the steam turbine assembly.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 11, 2014
    Applicant: DRESSER-RAND COMPANY
    Inventors: Harry F. Miller, Pascal Lardy, Michael S. Cormier, William C. Maier
  • Publication number: 20140352305
    Abstract: A novel Rankine cycle system configured to convert waste heat into mechanical and/or electrical energy is provided. In one aspect, the system provided by the present invention comprises a novel configuration of the components of a conventional Rankine cycle system; conduits, ducts, heaters, expanders, heat exchangers, condensers and pumps to provide more efficient energy recovery from a waste heat source. In one aspect, the Rankine cycle system is configured such that an initial waste heat-containing stream is employed to vaporize a first working fluid stream, and a resultant heat depleted waste heat-containing stream and a first portion of an expanded second vaporized working fluid stream are employed to augment heat provided by an expanded first vaporized working fluid stream in the production of a second vaporized working fluid stream. The Rankine cycle system is adapted for the use of supercritical carbon dioxide as the working fluid.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Applicant: General Electric Company
    Inventors: Pierre Sebastien Huck, Matthew Alexander Lehar, Christian Vogel
  • Publication number: 20140352304
    Abstract: A concentrating solar power plant utilizes two heat transfer fluids. A first heat transfer fluid is heated in a field of concentrating solar collectors. A second heat transfer fluid is heated through a heat exchanger using heat imparted from the first heat transfer fluid. The second heat transfer fluid is then further heated, for example in a second field of concentrating solar collectors, and power is generated utilizing thermal energy extracted from the second heat transfer fluid. The second heat transfer fluid may be a solar salt, and may thus have a higher working temperature than the first heat transfer fluid. The power plant may realize the power generation efficiency improvements offered by utilizing a high temperature working fluid, while at least some of the plant does not require backup heating to protect against freezing events.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 4, 2014
    Applicant: Abengoa Solor LLC
    Inventors: Diego Arias, Cristina Prieto Rios, Raul Mateos Dominguez, Brian Luptowski, William Seidel
  • Publication number: 20140352307
    Abstract: A Rankine cycle system useful for the conversion of waste heat into mechanical and/or electrical energy is provided. The system features a novel configuration in which a first closed loop thermal energy recovery cycle comprising a first working fluid stream and a second closed loop thermal energy recovery cycle comprising a second working fluid stream interact but do not mix. The two thermal energy recovery cycles interact thermally via heat exchangers, a first heat exchanger configured to transfer heat from the first working fluid stream to the second working fluid stream, and a second heat exchanger configured to transfer heat from the second working fluid stream to the first working fluid stream. In one or more embodiments, the Rankine cycle system is adapted for the use of supercritical carbon dioxide as the working fluid.
    Type: Application
    Filed: July 26, 2013
    Publication date: December 4, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Matteo Dall'Ara
  • Publication number: 20140352306
    Abstract: A novel Rankine cycle system configured to convert waste heat into mechanical and/or electrical energy is provided. The system provided by the present invention comprises a novel configuration of the components of a conventional Rankine cycle system; conduits, ducts, heaters, expanders, heat exchangers, condensers and pumps to provide more efficient energy recovery from a waste heat source. In one aspect, the Rankine cycle system is configured such that three distinct condensed working fluid streams are employed at various stages in the waste heat recovery cycle. A first condensed working fluid stream is vaporized by an expanded first vaporized working fluid stream, a second condensed working fluid stream absorbs heat from an expanded second vaporized working fluid stream, and a third condensed working fluid stream removes heat directly from a waste heat-containing stream. The Rankine cycle system is adapted for the use of supercritical carbon dioxide as the working fluid.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventor: Matthew Alexander Lehar
  • Publication number: 20140345278
    Abstract: A method for operating a gas and steam turbine system having a gas turbine, a steam turbine and a waste heat steam generator is provided herein, wherein steam for the steam turbine can be generated in the exchange of heat with exhaust gas from the gas turbine. Absorption capacity of the steam turbine can be increased and pressure in the waste heat steam generator can be lowered to utilize storage reserves in the waste heat steam generator for increased generation of steam to assist the frequency in the power system starting from a steady-state operating mode. Thermal energy is fed to the waste heat steam generator wherein a power profile of the gas and steam turbine system is greater than or equal to a preceding power level of the steady-state operating mode to increase the absorption capacity of the steam turbine and reduce pressure in the waste heat steam generator.
    Type: Application
    Filed: October 30, 2012
    Publication date: November 27, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Andreas Pickard, Erich Schmid
  • Publication number: 20140345279
    Abstract: A method for converting thermal energy into mechanical energy in a thermodynamic cycle includes placing a thermal energy source in thermal communication with a heat exchanger arranged in a working fluid circuit containing a working fluid (e.g., sc-CO2) and having a high pressure side and a low pressure side. The method also includes regulating an amount of working fluid within the working fluid circuit via a mass management system having a working fluid vessel, pumping the working fluid through the working fluid circuit, and expanding the working fluid to generate mechanical energy. The method further includes directing the working fluid away from the expander through the working fluid circuit, controlling a flow of the working fluid in a supercritical state from the high pressure side to the working fluid vessel, and controlling a flow of the working fluid from the working fluid vessel to the low pressure side.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 27, 2014
    Applicant: ECHOGEN POWER SYSTEMS, LLC
    Inventors: Timothy James Held, Stephen Hostler, Jason D. Miller, Brian F. Hume
  • Patent number: 8893498
    Abstract: [Problem] To provide a waste combustion method enabling to utilize efficiently heat energy of a large amount of a wet gas generated from a high temperature gas, which is discharged from a waste combustion furnace so as to be cooled and washed [Means for Solving Problem] A method of power generation by waste combustion comprising supplying the waste into a combustion furnace 1 for combustion, feeding a combustion gas from the combustion furnace 1 into a quenching vessel 4 containing a cooling/dissolving water and bringing the combustion exhaust gas into direct contact with the cooling/dissolving water and thus generating a wet gas wherein this wet gas G is supplied directly into a power generation system 10 employing a working medium, or a heat recovery medium, which has been exchanged with the wet gas G, is supplied into the power generation system 10, so that the power generation system is operated.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: November 25, 2014
    Assignee: Tsukishima Kankyo Engineering Ltd.
    Inventors: Minoru Morita, Jun Hidari, Yoshinobu Sato, Mai Matsuda
  • Patent number: 8887505
    Abstract: Provided are high-pressure, medium-pressure, and low-pressure turbines; a boiler to generate steam for driving the turbines; a carbon dioxide recovery unit including an absorber that reduces carbon dioxide in combustion flue gas from the boiler by a carbon dioxide absorbent and a regenerator that regenerates an absorbent; a first auxiliary turbine that extracts steam from an inlet of the low-pressure turbine and recovers power by the steam thus extracted; a first steam delivery line to supply discharged steam from the first auxiliary turbine to a reboiler of the regenerator as a heat source; and a controller that controls driving of the first auxiliary turbine while keeping pressure of the discharged steam to be supplied to the reboiler within a tolerance range for the reboiler's optimum pressure corresponding to a fluctuation in an operation load of the boiler.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 18, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masaki Iijima, Tetsuya Imai, Keiji Fujikawa, Tatsuya Tsujiuchi, Tsuyoshi Oishi, Hiroshi Tanaka
  • Publication number: 20140331671
    Abstract: A water/steam cycle includes a steam generator, a steam turbine, a water cooled condenser and a feedwater pump. The condenser includes within a condenser shell at least one tube bundle with an internal air cooler, which is connected to an external ejector/vacuum pump by means of a suction line. In order to reduce the condenser evacuation time at the start-up of the water/steam cycle without using auxiliary steam, an additional evacuation line with a motorized isolating valve connects the external ejector/vacuum pump with the condenser shell. The action of the isolating valve is controlled by means of a control.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventor: Hans-Ulrich LENHERR
  • Patent number: 8881526
    Abstract: A steam turbine system uses a laser to instantaneously vaporize water in a nozzle within a turbine. This steam is then used to rotate the turbine. Thus, the turbine system does not require an external boiler. The steam turbine system may be used in either an open system, where the steam passing through the turbine is not condensed and reused, or a closed system, where the steam passing through the turbine is condensed and reused.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 11, 2014
    Assignee: Bastian Family Holdings, Inc.
    Inventors: William A. Bastian, II, Elizabeth Sobota
  • Patent number: 8875515
    Abstract: An expansion system is presented. One embodiment of the expansion system that includes a pump configured to pressurize a condensed working fluid received from a condenser. The expansion system further includes a heat exchanger coupled to the pump and configured to vaporize the condensed working fluid received from the pump. The expansion system also includes an expander coupled to the heat exchanger and configured to expand the vaporized working fluid flowing from an inlet side of the expander to an outlet side of the expander. In addition, the expansion system includes a generator coupled to the expander and configured to generate energy in response to the expansion of the vaporized working fluid. Further, the expansion system includes an integrated cooling unit configured to convey at least a portion of the condensed working fluid from an inlet side of the generator to an outlet side of the generator to dissipate heat generated by the generator.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: November 4, 2014
    Assignee: General Electric Company
    Inventors: Gabor Ast, Herbert Kopecek, Sebastian Walter Freund, Pierre Sebastien Huck
  • Publication number: 20140311145
    Abstract: The invention relates to heat power engineering, in particular, to methods that use a working medium for producing useful work from heat of an external source. The method comprises interaction of the working medium with an energy source and interaction of the working medium with an additional low-temperature energy source in the form of the positron state of the Dirac's matter by means of bringing the working medium into quantum-mechanical resonance with said state. The quantum-mechanical resonance is initiated by changing at least one of the thermodynamic parameters of the working medium, while the value of spontaneous fluctuations of the variable parameter in the vicinity of the line of absolute instability in the state diagram of the working medium is predetermined, and the change step for the thermodynamic parameter is set to be lower than the predetermined value of said fluctuations.
    Type: Application
    Filed: August 28, 2012
    Publication date: October 23, 2014
    Inventors: Georgy Ramasanovich Umarov, Sergey Ivanovich Boychenko, Shiv FKhemka
  • Patent number: 8863518
    Abstract: A process for the production of a synthesis gas containing hydrogen and carbon monoxide utilizes shredded waste tires that are substantially free of metal particles as a feedstream, either alone or in combination with a residual oil feedstream, for gasification in the combustion chamber of a tubular wall membrane partial oxidation gasification reactor in the presence of a predetermined amount of oxygen. Optionally, the product synthesis gas is introduced as the feedstream to a water gas shift reactor to enhance the hydrogen content of the final product stream.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: October 21, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8857183
    Abstract: The steam turbine includes the high-and-intermediate pressure turbine of the single flow type, the intermediate-pressure turbine of the single flow type, and the steam passage that communicates a location on a part way of the steam flow inside the high-and-intermediate pressure turbine, to the steam inlet of the intermediate-pressure turbine. The high-and-intermediate pressure turbine includes the high-pressure part on the steam inlet side and the intermediate-pressure part on the steam outlet side. The steam passage feeds a part of the steam having passed through the high-pressure part, from the location between the high-pressure part and the intermediate-pressure part, to the intermediate-pressure turbine.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Takashi Maruyama
  • Publication number: 20140298806
    Abstract: Rankine Cycle power generation facility having a plurality of thermal inputs and at least one heat sink, where the heat sink includes a thermal chimney or a natural convective cooling tower. In a preferred embodiment, the power facility generates electricity and/or fresh water with a zero carbon footprint, such as by using a combination of solar and geothermal heating to drive a Rankine Cycle heat engine. In one embodiment, a thermal stack is mounted in the base of the thermal chimney, the thermal stack for using waste heat from the plurality of thermal inputs to drive a natural convective flow of air in the thermal chimney, the convective flow having sufficient momentum to drive additional power generation in an air turbine mounted in the chimney and to drive an evaporative cycle for concentratively extracting fresh water from geothermal brines.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 9, 2014
    Inventor: Donald W. Jeter
  • Publication number: 20140298810
    Abstract: A power generation system comprises a first energy conversion device configured to convert a first renewable energy resource into electricity, an electrolysis device configured to use electricity from the first energy conversion device to electrolyze water into hydrogen and oxygen, a hydrogen gas storage tank configured to store hydrogen from the electrolysis device, a fuel cell configured to convert chemical energy in the hydrogen from the hydrogen gas storage tank into electricity, a boiler configured to use electricity from the fuel cell to boil water into steam, and a steam powered turbine generator configured to convert energy in the steam to electricity.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 9, 2014
    Inventor: Geoffrey Robinson
  • Publication number: 20140298811
    Abstract: A device for thermal energy harvesting can use pulsed heat.
    Type: Application
    Filed: January 9, 2014
    Publication date: October 9, 2014
    Inventors: Ian McKay, Evelyn Wang
  • Publication number: 20140298813
    Abstract: A charging circuit for converting electrical energy into thermal energy is provided, having a compression stage, connected via a shaft to an electric motor, a heat exchanger and an expansion stage, which is connected via a shaft to a generator, wherein the compression stage is connected to the expansion stage via a hot-gas line, and the heat exchanger is connected on the primary side into the hot-gas line, wherein the expansion stage is connected via a return line to the compression stage, so that a closed circuit for a working gas is formed. A recuperator is also provided which, on the primary side, is connected into the hot-gas line between the heat exchanger and the expansion stage and, on the secondary side, is connected into the return line, so that heat from the working gas in the hot-gas line can be transferred to the working gas in the return line.
    Type: Application
    Filed: September 7, 2012
    Publication date: October 9, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Christian Brunhuber, Carsten Graeber, Gerhard Zimmermann