Process Of Power Production Or System Operation Patents (Class 60/645)
  • Publication number: 20140298812
    Abstract: An ORC heat engine including a working fluid circuit having an evaporator for heating and evaporating a working fluid, a condenser for cooling and condensing the working fluid, and a positive displacement expander-generator having an inlet in fluid communication with the evaporator and an outlet in fluid communication with the condenser. The ORC heat engine further includes a control system coupled to the positive displacement expander-generator having a switch and driving means, the switch being switchable between a first state and a second state, wherein in the first state the switch is coupled to the driving means, and the positive displacement expander-generator is drivable by the driving means, and in the second state the switch is not coupled to the driving means or the driving means is switched off, and the positive displacement expander-generator is not drivable by the driving means.
    Type: Application
    Filed: September 19, 2012
    Publication date: October 9, 2014
    Inventors: John Joseph Bannister, Timothy Nathan Bannister, Neil Stafford Bright
  • Patent number: 8850816
    Abstract: The present disclosure includes a method for regenerating power in an information handling system. The method includes circulating a cooling fluid through a fluid flow loop connecting a thermosiphon, a turbine, and a condenser. The method further includes removing heat from a heated component of the information handling system, converting the cooling fluid from a liquid state to a gaseous state in the thermosiphon, and extracting energy from the cooling fluid in the gaseous state in the turbine. The method additionally includes removing thermal energy from the cooling fluid in the condenser, converting the cooling fluid from a gaseous state to a liquid state as the thermal energy is removed from the cooling fluid, and returning the cooling fluid in the liquid state to the thermosiphon. The disclosure also includes associated systems and apparatuses.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: October 7, 2014
    Assignee: Dell Products L.P.
    Inventors: Travis Christian North, Andrew Olen Ingalls, Eric Neil Sendelbach, Manasi Tamhankar, Srinivasan R. Kadathur
  • Patent number: 8844287
    Abstract: The present invention is directed at the thermodynamic property amplification of a given thermal supply, provided by hydrocarbon combustion or in the preferred application heat provided by low-grade geothermal energy from the earth, for a vapor power cycle. The present invention achieves the desired objectives by segregating the compressible supercritical energy stream from the heat exchanger (boiler) into hot and cool fractions using a vortex tube, where the hot temperature is elevated above the heat exchanger temperature; and adding back heat (enthalpy) to the cool stream increasing the cool temperature to that of the geothermal heat exchanger.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: September 30, 2014
    Inventor: William David Hardgrave
  • Patent number: 8839622
    Abstract: Some embodiments of a fluid expansion system can be used with the working fluid in a Rankine cycle. For example, the fluid expansion system can be used in a Rankine cycle to recover heat from one of a number of commercial applications and to convert that heat energy into electrical energy. In particular embodiments, the fluid expansion system may include a turbine generator apparatus to generate electrical energy and a liquid separator arranged upstream of the turbine generator apparatus.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: September 23, 2014
    Assignee: General Electric Company
    Inventors: Scott R. Myers, Robert Miller
  • Patent number: 8843240
    Abstract: Systems and methods for loading a steam turbine are provided. A method may include: receiving a turbine loading factor; receiving a current steam turbine exhaust temperature; determining a steam flow ramping rate parameter and a steam temperature ramping rate parameter based at least in part on the turbine loading factor and the current steam turbine exhaust temperature, wherein the steam flow ramping rate parameter and the steam temperature ramping rate parameter are determined based at least in part on an inverse relationship between the steam flow ramping rate parameter and the steam temperature ramping rate parameter. The method may further include controlling at least one of: (a) steam flow to the steam turbine based at least in part on the steam flow ramping rate parameter; or (b) steam temperature to the steam turbine based at least in part on the steam temperature ramping rate parameter.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: September 23, 2014
    Assignee: General Electric Company
    Inventors: John Piccirillo, Steven Di Palma, Dileep Sathyanarayana
  • Publication number: 20140260250
    Abstract: The present invention relates to apparatus, systems, and methods of managing large quantities of low-grade waste heat energy by 1) generating excess electric power via an ORC process driven by the removal and recovery of waste heat under favorable operating conditions, and 2) utilizing the same apparatus to provide waste heat removal via a refrigeration process that consumes electric power when environmental conditions do not permit operation in the ORC mode. The mode of operation of the system is principally determined by the thermal energy of the waste heat stream and the availability, or lack thereof, of adequate cooling resources. Such resources are often subject to local environmental conditions, particularly ambient temperature which varies on a diurnal and annual basis.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: ElectraTherm, Inc.
    Inventors: Andrew Oxner, Hans Wain, August Brautigam
  • Publication number: 20140260286
    Abstract: A heat recovery steam generator (HRSG) (10) including: an economizer (12) configured to heat a working fluid by extracting heat from a flow of flue gas (20). The HRSG includes a diluting fluid injector arrangement (60) configured to inject a diluting fluid (50) effective to dilute a concentration of a gaseous corrosive when compared to an undiluted concentration of the gaseous corrosive in the flow of flue gas. The HRSG also includes a preheater (18) configured to preheat the diluting fluid prior to injection.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Zaher El Zahab, Gerald J. Feller
  • Publication number: 20140260249
    Abstract: A means to effect a trip response regardless of the electro-mechanical actuator type used for improving electro-hydraulic and electro-mechanical integrated control systems for a steam turbine. To achieve this goal, electro-mechanical actuators can be equipped with multiple coils or multiple motors (usually a primary and a secondary). In a dual-coil configuration, the primary is energized according to an output of a PID controller, whereas the secondary coil is regulated by a separate control element. The entire system is powered by means of Uninterruptable Power Supply (UPS) with AC output which can provide sufficient time for trip response using primary coil or motor. At the same time, secondary coil or motor is powered by independent power from a UPS and/or separate battery backup. Whenever trip response is required, and there is a complete main power interruption secondary coil or motor is quickly energized to provide adequate trip response.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: STATISTICS & CONTROL, INC.
    Inventors: Vadim Shapiro, Pusin Boris
  • Patent number: 8833081
    Abstract: Systems for regenerating an absorbent solution include steam produced by a boiler; a set of pressure turbines fluidly coupled to the boiler for receiving the steam, wherein the set of pressure turbines comprises a high pressure turbine, a medium pressure turbine and a low pressure turbine; and a regenerating system comprising a regenerator for regenerating a rich and/or semi-rich absorbent solution to form a lean absorbent solution in fluid communication with a reboiler, the regenerating system fluidly coupled to the set of pressure turbines, wherein steam from the low pressure turbine provides a heat source for preheating the rich or the semi-rich absorbent solution fed to the regenerator. Also disclosed are processes of use.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 16, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Daniel Nicolaus Secundus Mattstedt, Joseph P. Naumovitz, Sanjay Kumar Dube
  • Patent number: 8833078
    Abstract: The present invention is directed generally to a system and method which employ a compressed gas-driven device with a passive thermodynamic composition. Certain embodiments provide a compressed gas-driven (e.g., CO2-driven) device implementation that includes a passive thermodynamic composition which allows for extended use of the device without freezing and without requiring a persistently-maintained, active (e.g., electrically-powered) heating. Further, certain embodiments provide a compressed gas-driven (e.g., CO2-driven) device implementation that includes a passive thermodynamic composition which allows for extended use of the device without freezing and without requiring an ignition heat source (e.g., electrically-powered or pyrotechnic as generator) for heating the device.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: September 16, 2014
    Assignee: D2BG LLC
    Inventors: Daniel Galloway, Darrell Bevelhymer
  • Patent number: 8813497
    Abstract: Embodiments of the invention generally provide a heat engine system, a mass management system (MMS), and a method for regulating pressure in the heat engine system while generating electricity. In one embodiment, the MMS contains a tank fluidly coupled to a pump, a turbine, a heat exchanger, an offload terminal, and a working fluid contained in the tank at a storage pressure. The working fluid may be at a system pressure proximal an outlet of the heat exchanger, at a low-side pressure proximal a pump inlet, and at a high-side pressure proximal a pump outlet. The MMS contains a controller communicably coupled to a valve between the tank and the heat exchanger outlet, a valve between the tank and the pump inlet, a valve between the tank and the pump outlet, and a valve between the tank and the offload terminal.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: August 26, 2014
    Assignee: Echogen Power Systems, LLC
    Inventors: Katherine Hart, Timothy James Held
  • Publication number: 20140230437
    Abstract: A method including obtaining biogas, treated water and oxygen from sewage and various wastes; feeding a boiler: in a first step, with biogas and oxygen, and in a second step, with treated water supplied at a very high pressure to the injectors of the boiler, while maintaining an input of biogas; producing superheated steam at a temperature above 650° C. and low humidity in a heat exchanger heated by the boiler; driving, by the produced steam, a steam turbine connected to an electric generator; and condensing the steam from the turbine and recirculating it to the heat exchanger.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 21, 2014
    Inventor: Juan Berlanga Jimenez
  • Publication number: 20140223907
    Abstract: Provided is a power generating apparatus including an evaporator configured to evaporate a working medium with a heating medium supplied from the outside of a working medium flow path, an expander to which a driven machine is connected and which is configured to convert expansion force of the evaporated working medium into rotational force to drive the driven machine, a condensing mechanism configured to condense the working medium discharged from the expander with a cooling medium supplied from the outside of the working medium flow path, the condensing mechanism having at least one heat exchanger pipe through which the working medium flows, a cooling water sprayer configured to spray cooling water as the cooling medium over the surface of one or a plurality of heat exchanger pipes of the at least one heat exchanger pipe, and a cooling fan configured to blow ambient air over the one or a plurality of heat exchanger pipes to evaporate cooling water attached to the surface of the one or a plurality of heat exc
    Type: Application
    Filed: February 10, 2014
    Publication date: August 14, 2014
    Applicant: ANEST IWATA CORPORATION
    Inventors: Tamotsu FUJIOKA, Atsushi UNAMI, Takaaki IZUMI
  • Publication number: 20140223908
    Abstract: A system and method of integrated waste management having a source of a combustible waste material, a separator for separating the combustible waste material from a recyclable material, an airless drier for drying the combustible waste material to generate a pyrolysis feedstock, and a pyrolyser for pyrolysing the pyrolysis feedstock to form char and pyrogas. The system and method for power generation may also use an oxidiser for the high-temperature oxidation of syngas generated from the pyrolysis feedstock to generate heat for power production.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Inventor: John Gerard Sweeney
  • Patent number: 8794001
    Abstract: A power generation apparatus that suppress cavitation includes a first on/off valve provided between a steam generator and an expander in a circulating channel; a bypass channel connected between an area between the steam generator and the first on/off valve and an area between the expander and a condenser; a second on/off valve provided in the bypass channel; a third on/off valve provided between a pump and the steam generator; and a controller. When stopping the pump, the controller outputs a control signal that stops the pump, a control signal that closes the first on/off valve, a control signal that opens the second on/off valve, and a control signal that closes the third on/off valve. In the case where a predetermined condition has been met, the controller outputs a control signal that closes the second on/off valve.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: August 5, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Noboru Tsuboi, Masayoshi Matsumura
  • Patent number: 8794003
    Abstract: A plant for the producing of cold, heat and/or work. The plant includes at least one modified Carnot machine having a first assembly that includes an evaporator Evap combined with a heat source, a condenser Cond combined with a heat sink, a device DPD for pressurizing or expanding a working fluid GT, a means for transferring said working fluid GT between the condenser Cond and DPD, and between the evaporator Evap and DPD; a second assembly that includes two transfer vessels CT and CT? that contain a transfer liquid LT and the working fluid GT in the form of liquid and/or vapor; a means for selectively transferring the working fluid GT between the condenser Cond and each of the transfer vessels CT and CT?, as well as between the evaporator Evap and each of the transfer enclosures CT and CT?; and a means for selectively transferring the liquid LT between the transfer vessels CT and CT? and the compression or expansion device DPD, said means including at eat hydraulic converter.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Sylvain Mauran, Nathalie Mazet, Pierre Neveu, Driss Stitou
  • Publication number: 20140208749
    Abstract: According to one embodiment, a carbon-dioxide-recovery-type steam power generation system comprises a boiler that produces steam and generates an exhaust gas, a first turbine that is rotationally driven by the steam, an absorption tower allows carbon dioxide contained in the exhaust gas to be absorbed into an absorption liquid, a regeneration tower that discharges the carbon dioxide gas from the absorption liquid supplied from the absorption tower, a condenser that removes moisture from the carbon dioxide gas, discharged from the regeneration tower, by condensing the carbon dioxide gas using cooling water, a compressor that compresses the carbon dioxide gas from which the moisture is removed by the condenser, and a second turbine that drives the compressor. The steam produced by the cooling water recovering the heat from the carbon dioxide gas in the condenser is supplied to the first turbine or the second turbine.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuya MURAKAMI, Nobuo OKITA, Takeo TAKAHASHI, Mikio TAKAYANAGI, Takeo SUGA, Takeshi SASANUMA, Toshihisa KIYOKUNI, Hideo KITAMURA
  • Publication number: 20140208747
    Abstract: A steam circuit is defined in a multi-section single shaft turbine. A hot reheat steam is input to a section of the multi-section turbine. A first flow path flows the hot reheat steam from an upstream side through the section of the multi-section turbine to a downstream side to create work. A second flow path directs a portion of the flow back toward the upstream side in the section of the multi-section turbine between an outer shell and an inner shell of the turbine. The effective shell cooling provides for increased main and reheat steam temperatures to improve performance. The system reduces the extraction steam flow required to meet the design final feedwater temperatures and allows more steam to expand through the low pressure section.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Akshay Arvind Datye
  • Publication number: 20140208748
    Abstract: A system and a method for controlling operation of a power plant system. The system has at least a gasifier, a boiler, an induced draft fan, and a baghouse. A controller in communication with the system is configured to implement a first stage and/or a second stage sequences after detecting loss of flame in the boiler using a temperature measurement device. The method includes automatically bypassing the baghouse and controlled (e.g., decreasing) the speed of the induced draft fan in the system to relight the boiler. The input feed to the gasifier can be limited and devices operated for a predetermined amount of time before reigniting the boiler.
    Type: Application
    Filed: February 22, 2013
    Publication date: July 31, 2014
    Applicant: MIDDLEBURY COLLEGE
    Inventor: Michael William Moser
  • Patent number: 8789371
    Abstract: A power generation apparatus including a boiler feedwater pump turbine control system is disclosed. In one embodiment, a power generation apparatus is disclosed, including: a boiler feedwater pump turbine having a low pressure steam inlet and a high pressure steam inlet; a high pressure control valve for controlling admission of high pressure steam to the high pressure steam inlet; a low pressure control valve for controlling admission of low pressure steam to the low pressure steam inlet; and a control system operably coupled to the high pressure control valve and the low pressure control valve, the control system configured to close the low pressure control valve and prevent flow of the low pressure steam to the boiler feedwater pump turbine in response to a request for increased power output from a power grid.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventor: Charles Henry Kleine
  • Patent number: 8776520
    Abstract: A method for operating a steam power station is provided. The steam turbine power station includes at least one steam turbine and a process steam consumer, wherein a steam mass flow is subdivided into a first partial mass flow and a second partial mass. In a first operating state, the first partial mass flow is supplied to the steam turbine and the second partial mass flow is supplied to the process steam consumer. In a second operating state, at least part of the second partial mass flow is supplied to the steam turbine at least after the first turbine stages. A steam power station is also provided.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 15, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ulrich Beul, Stefan Glos, Matthias Heue, Thomas Hofbauer, Ralf Hoffacker, Nils Lückemeyer, Norbert Pieper, Roland Sievert
  • Patent number: 8776517
    Abstract: The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: July 15, 2014
    Assignee: Cummins Intellectual Properties, Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Publication number: 20140183866
    Abstract: A method and system for generating electrical power is provided in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Inventors: Brian R. Kromer, Michael M. Litwin, Sean M. Kelly
  • Publication number: 20140182291
    Abstract: A power recovery system using the Rankine power cycle incorporating a two-phase liquid-vapor expander with an electric generator which further consists of a heat sink, a heat source, a working fluid to transport heat and pressure energy, a feed pump and a two-phase liquid-vapor expander for the working fluid mounted together with an electric generator on one rotating shaft, a first heat exchanger to transport heat from the working fluid to the heat sink, a second heat exchanger to transport heat from the heat source to the working fluid.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 3, 2014
    Applicant: Ebara International Corporation
    Inventor: Joel V. Madison
  • Publication number: 20140174095
    Abstract: A heating medium supply system is provided which, even when a temperature fluctuation of a heating medium occurs continuously, is capable of relieving a bad thermal influence upon a heat exchanging device due to the temperature fluctuation. The heating medium supply system includes: a heating system configured to heat a liquid heating medium by sunlight; a heat exchanging device configured to heat feedwater; heating medium supply piping for circulating the heating medium; a heating medium temperature detecting device, a heating medium flow rate detecting device and a first heating medium flow control valve; and a control device capable of calculating a value of supply thermal energy from results of detections by the heating medium temperature detecting device and the heating medium flow rate detecting device and controlling an operation of the heating medium flow control valve based on the value of supply thermal energy thus calculated.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Masahiko Koketsu, Hideaki Ota
  • Publication number: 20140174082
    Abstract: Disclosed in the present invention is a method of generating a high-speed gas flow, utilizing a device comprised of a gas pipe, a circulating pipe and a starting and controlling system. The starting and controlling system is comprised of one or a combination of any two or more of a refrigerator, a circulating pump and a heat exchanger. The method comprises the following operation steps: filling the device with a working medium; activating the starting and controlling system; after having been pressurized under liquid state, the working medium absorbing heat and being gasified, entering the gas pipe, and generating the high-speed gas flow. The method may utilize a low quality heat source to convert a low-speed gas flow into a high-speed or extremely high-speed gas flow with relatively high use value. Thus, thermal energy carried by the fluid in the nature may be converted into mechanical energy efficiently.
    Type: Application
    Filed: May 8, 2012
    Publication date: June 26, 2014
    Applicant: ZIBO NATERGY CHEMICAL INDUSTRY CO., LTD.
    Inventor: Angfeng Liu
  • Patent number: 8752382
    Abstract: A rankine cycle system includes a heater configured to circulate a working fluid in heat exchange relationship with a hot fluid to vaporize the working fluid. A hot system is coupled to the heater. The hot system includes a first heat exchanger configured to circulate a first vaporized stream of the working fluid from the heater in heat exchange relationship with a first condensed stream of the working fluid to heat the first condensed stream of the working fluid. A cold system is coupled to the heater and the hot system. The cold system includes a second heat exchanger configured to circulate a second vaporized stream of the working fluid from the hot system in heat exchange relationship with a second condensed stream of the working fluid to heat the second condensed stream of the working fluid before being fed to the heater.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventor: Matthew Alexander Lehar
  • Publication number: 20140150427
    Abstract: A geothermal system is provided. The geothermal system may include a superstructure with at least one geothermal concrete layer, a geothermal source, a heat exchange system, a transfer medium, a distribution system having at least one pump, and a plurality of in-feed piping circuitously connected to a plurality of return piping, both embedded within the geothermal concrete layers. The heat exchange system may bring the transfer medium into contact with the geothermal source so as to convey its heat to the transfer medium. The at least one pump may pump the transfer medium throughout the distribution system, wherein the temperature of the superstructure may be regulated. A user may operate the distribution system to provide sufficient transfer medium to cure the geothermal concrete layer at a near ideal heat of hydration.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 5, 2014
    Inventor: Emad FAROUZ
  • Publication number: 20140150419
    Abstract: An engine is configured to generate power by extracting energy from a low temperature or pressure differential. A plurality of movable masses (e.g., fluid contained in and movable between vessels) is coupled to and arranged about a shaft. When subject to a pressure differential, mass moves to a higher vessel thereby increasing its potential energy and producing a gravitational moment that encourages rotation of the plurality of masses in the first direction. The pressure differential can be created by an increase in pressure that can be generated by exposing a substance (e.g., a volatile material) to heat.
    Type: Application
    Filed: May 14, 2012
    Publication date: June 5, 2014
    Applicant: DYVERGA ENERGY CORPORATION
    Inventor: Harold Emerson Godwin
  • Patent number: 8739538
    Abstract: An apparatus includes an electric generator having a stator and a rotor. A first turbine wheel is coupled to a first end of the rotor to rotate at the same speed as the rotor. A second turbine wheel is coupled to a second end of the rotor opposite the first end, and configured to rotate at the same speed as the rotor. The first and second turbine wheels may rotate in response to expansion of a working fluid flowing from an inlet side to an outlet side of the turbine wheels.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventors: Scott R. Myers, David J. Huber
  • Publication number: 20140142327
    Abstract: Disclosed is a process for producing a dry, purified carboxylic acid product comprising furan-2,5-dicarboxylic acid (FDCA). Also disclosed is a method for treating an oxidation off-gas stream from such a process. The method features solvent as well as energy recovery from the off-gas stream.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: Eastman Chemical Company
    Inventors: Ashfaq Shahanawaz Shaikh, Kenny Randolph Parker, Mesfin Ejerssa Janka, Lee Reynolds Partin
  • Publication number: 20140130498
    Abstract: A system comprises an injection well in communication with an underground reservoir containing a native methane-containing solution at a first temperature, a production well in communication with the reservoir, a supply system providing a non-water based working fluid to the injection well at a second temperature lower than the first temperature, wherein exposure of the working fluid to the native fluid causes a portion of methane to come out of solution to form a production fluid of at least a portion of the working fluid and the portion of methane, and exposure to the first temperatures heats the production fluid to a third temperature higher than the second temperature, wherein the heated production fluid enters the production well, and an energy recovery apparatus in communication with the productions well for converting energy in the production fluid to electricity, heat, or a combination thereof.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 15, 2014
    Inventor: Jimmy Bryan Randolph
  • Publication number: 20140123622
    Abstract: A combined cycle power plant utilizes an absorption heat transformer to improve plant efficiency. A heat recovery steam generator receives exhaust from a gas turbine and generates steam for input to a steam turbine. The heat recovery steam generator includes a low pressure economizer, an intermediate pressure economizer and a high pressure economizer. The absorption heat transformer is in fluid communication with the low pressure economizer. The absorption heat transformer includes a feed water circuit that draws exhaust water from the low pressure economizer for heating by the absorption heat transformer and directs heated water to at least one of the intermediate pressure economizer and the high pressure economizer.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hua Zhang, Jatila Ranasinghe, Barrett Gardiner
  • Patent number: 8713939
    Abstract: In a case of a refrigerant amount being short when a Rankine cycle starts operating, because the pressure difference does not occur across a refrigerant pump, refrigerant cannot be injected from a bypass circuit to the Rankine cycle, and therefore super-cooling degree cannot be controlled. An exhaust heat recovery system is provided that can adjust the super-cooling degree even in the case of the pressure difference not occurring across the refrigerant pump. The system includes a refrigerant tank, for storing refrigerant, which is connected by pipes to the low-pressure circuit side and the high-pressure circuit side of the Rankine cycle through a low-pressure-side valve and a high-pressure-side valve, respectively, and a temperature adjuster for adjusting internal temperature of the refrigerant tank.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: May 6, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazunori Tsuchino, Kazuhiko Kawajiri, Minoru Sato
  • Publication number: 20140116049
    Abstract: A system includes a first steam generator configured to generate a first boiler feedwater, a second steam generator configured to generate a second boiler feedwater, a common boiler feedwater configured to combine the first boiler feedwater and the second boiler feedwater to produce a common boiler feedwater, and a heater configured to receive the common boiler feedwater to heat a gas.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Caleb Wilson, Leroy Omar Tomlinson, George Frederick Frey
  • Patent number: 8707699
    Abstract: The present invention relates to a natural draft cooling tower that employs an air cooled condenser. The aforementioned cooling tower operates by natural draft and achieves the exchange of heat between two fluids such as atmospheric air, ordinarily, and another fluid which is usually steam. The aforementioned cooling tower utilizes a central steam duct riser supplying steam to perimeter ducting via radial ducting.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 29, 2014
    Assignee: SPX Cooling Technologies, Inc.
    Inventors: Francis Badin, Benoit Thiry, Marc Cornelis, Michel Vouche
  • Publication number: 20140109575
    Abstract: Plants, devices, and methods are presented which economically and effectively reduce carbon dioxide (CO2) emissions from flue gases by converting heat derived from one or more sources of flue gas to drive a heat engine, which generates power, energy, and/or work that is utilized by a CO2 capture unit coupled to the stream of flue gas. CO2 captured from the flue gas stream may be sequestered and/or utilized for commercial purposes.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: FLUOR TECHNOLOGIES CORPORATION
    Inventor: Sander Balkenende
  • Patent number: 8701412
    Abstract: Systems for recovering heat from a biomass gasifier are provided. One gasification system includes a gasifier having an inlet section configured to receive a biomass feedstock and air, and a reactor section configured to gasify a mixture of the biomass feedstock and the air to generate a producer gas. The gasifier also has an outlet section configured to output the producer gas from the reactor section. The gasification system also includes a heat exchanger system coupled to the gasifier. The heat exchanger system is configured to recover heat from the gasifier by transferring heat to a fluid to create a heated fluid.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: April 22, 2014
    Assignee: General Electric Company
    Inventors: Jinmesh Pranav Majmudar, Omprakash Mall, Lakshmanan Subramanian, Avish Ivan Dsouza
  • Publication number: 20140102097
    Abstract: Disclosed is an approach that uses an overload valve to operate a steam turbine reheat section. In one embodiment, the steam turbine reheat section receives a supply of reheated steam from a reheater at a first steam admission location via a reheat valve. The steam turbine reheat section is further adapted to receive a diverted portion of the reheated steam from the reheater at a second steam admission location via the overload valve.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: General Electric Company
    Inventors: Daniel Richard Cornell, Raymond Pang
  • Publication number: 20140102098
    Abstract: Aspects of the invention disclosed herein generally provide heat engine systems and methods for recovering energy, such as by generating electricity from thermal energy. Generally, the heat engine system has a working fluid circuit containing a working fluid (e.g., sc-CO2) for absorbing thermal energy from the heat source stream via a heat exchanger. In one aspect, the method includes controlling a power turbine by modulating a turbo pump throttle valve and a power turbine bypass valve to adjust the flowrate of the working fluid entering the power turbine while monitoring and controlling process operation parameters of the heat engine system to synchronize the frequency of the power generator to the frequency of the electrical grid during a synchronization process.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 17, 2014
    Inventors: Brett A. Bowan, Mike Vermeersch
  • Publication number: 20140102099
    Abstract: A power generation plant including a solar radiation receiver for heating a medium stream and a turbine assembly being arranged to receive the heated medium stream from the solar radiation receiver, said turbine assembly being coupled to an electric power generator, wherein a combustor is positioned downstream of the solar radiation receiver and upstream of the turbine assembly, an air compressor unit having a compressed air outlet is arranged to supply compressed combustion air to the combustor, and a steam generator is arranged to extract heat from an outlet flow from the turbine assembly, and to produce steam to be transmitted to a medium stream inlet of the solar radiation receiver and subsequently to combustor. The invention also related to a method.
    Type: Application
    Filed: June 13, 2012
    Publication date: April 17, 2014
    Applicant: EUROTURBINE AB
    Inventors: Hans-Erik Hansson, Leif Nilsson
  • Patent number: 8683802
    Abstract: The present invention relates to an installation and a process implementing the installation for converting thermal energy available in a given environment into useful energy. The installation and process use pressure differentials between a hot and a cold column of a pressurized fluid to create a continuous flow in a fluid. The flow drives in rotation elements the rotational energy of which is converted to a useful energy.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 1, 2014
    Inventor: Yoav Cohen
  • Publication number: 20140083108
    Abstract: A gas turbine cooling system of the present invention includes a cooler that cools compressed air extracted from an air compressor to make cooling air, a cooling air compressor that supplies the cooling air to a combustion liner of a combustor, and an IGV that regulates a flow rate of the cooling air. The control device of the gas turbine cooling system includes a target value setting part that determines a target value with respect to a flow rate equivalent value of the cooling air according to detected temperature of the cooling air, a correction driving amount calculation part that obtains a correction driving amount which reduces a deviation of detected flow rate equivalent value of the cooling air with respect to the target value, and a drive command output part that outputs a drive command corresponding to the correction driving amount to the IGV.
    Type: Application
    Filed: February 22, 2013
    Publication date: March 27, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Akihito Kunihiro
  • Publication number: 20140083094
    Abstract: A method and apparatus are provided for implementing microscale thermoacoustic heat and power control for processors and three dimensional (3D) chip stacks. A thermoacoustic heat engine is integrated with a 3D chip-stack and high power processors. The thermoacoustic heat engine is used in cooperation with a heat sink associated with the 3D chip-stack. Predefined connecting layers connect the 3D chip-stack to a cooling end of a thermoacoustic stack of the thermoacoustic heat engine, allowing the cooled end of the resonator to maintain temperature within the 3D chip-stack and to increase the efficiency of the heat sink.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bret P. Elison, Phillip V. Mann, Arvind K. Sinha
  • Patent number: 8667799
    Abstract: The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of: serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 11, 2014
    Assignee: Ormat Technologies Inc.
    Inventor: Dany Batscha
  • Publication number: 20140060044
    Abstract: A system includes a heat exchanger and a fluid flow control module. The heat exchanger includes a substrate, a catalyst applied to the substrate, and fluid passages. Exhaust gas from an engine flows through the heat exchanger and a working fluid in the fluid passages absorbs heat from the exhaust gas. The fluid flow control module controls fluid flow from the heat exchanger based on a temperature of the catalyst.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Stuart R. Smith, Norman K. Bucknor
  • Publication number: 20140060053
    Abstract: A steam power plant with a steam turbine with a high pressure stage and a low pressure stage is provided. A first steam source provides a motive steam, and a second steam source provides a heating steam, wherein the motive steam and the heating steam have different qualities. A reheater is arranged between the high pressure stage and the low pressure stage. The motive steam is supplied to the high pressure stage and is reheated by the reheater after leaving the high pressure stage, wherein the reheater is operated with the heating steam. Further, a method of operating a steam power plant is provided.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Inventor: THORSTEN WOLF
  • Publication number: 20140060047
    Abstract: The present application provides a steam cycle system. The steam cycle system may include a source of steam, a steam turbine, a condenser, a steam turbine bypass system such that steam from the source of steam may bypass the steam turbine and be routed to the condenser, and one or more thermoelectric generators positioned about the steam turbine bypass system.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kihyung Kim, Seyfettin Can Gulen
  • Publication number: 20140053556
    Abstract: Method and Apparatus for Combining a Heat Pump Cycle With A Power Cycle. The working fluid for the heat pump cycle will be different than that for the power cycle.
    Type: Application
    Filed: June 17, 2013
    Publication date: February 27, 2014
    Inventor: George Mahl, III
  • Patent number: 8656720
    Abstract: The present invention includes systems and methods to recover heat from a lower quality heat source and convert that heat represented by its temperature differential range into a different form of extractable energy. In various illustrative examples, the system may include a heat recovery heat exchanger, a conventional counter-flow vortex tube, a power producing turbine, a condenser heat exchanger, and a liquid circulating pump. The system further comprises a condenser heat exchanger that is adapted to receive the turbine exhaust vapor, wherein the temperature of the exhaust vapor is reduced via heat transfer rejecting the waste heat to the surrounding atmosphere at atmospheric temperatures; wherein the compressible working vapor is converted to a saturated liquid and returned to the first heat exchanger by pumping means for further cycling.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: February 25, 2014
    Inventor: William David Hardgrave