Plural Electrodes Carried On Single Support Patents (Class 600/393)
  • Patent number: 8915926
    Abstract: Exemplary loading tools configured to facilitate loading of a pre-curved electrode array onto a stylet include a docking assembly, a channel assembly, and a connecting member configured to connect the channel assembly to the docking assembly and maintain a distance therebetween. The docking assembly is configured to couple to the stylet. The channel assembly includes a channel configured to receive and allow passage therethrough of the pre-curved electrode array. The channel is aligned with the docking assembly such that when the stylet is coupled to the docking assembly, the stylet is located at least partially within the channel.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: December 23, 2014
    Assignee: Advanced Bionics AG
    Inventors: Chuladatta Thenuwara, William G. Orinski, Janusz A. Kuzma, Steve J. Blomquist
  • Publication number: 20140364716
    Abstract: The invention relates to an electrocardiograph sensor mat (100), the mat (100) comprising a multitude of electrodes (104) for acquiring cardiac signals and a plug (200), wherein the electrodes (104) are connected to the plug (200) by electric wires (102), wherein the wires (102) are segmented by switches (202), wherein the switches (202) are switchable between a closed state and an open state, wherein in the closed state the electrodes (104) are electrically connected to the plug (200) and wherein in the open state the electrodes (104) are electrically isolated from the plug (200).
    Type: Application
    Filed: January 2, 2013
    Publication date: December 11, 2014
    Applicant: KONINKLIJE PHILIPS N.V.
    Inventors: Jouke Smink, Steffen Weiss, Sascha Krueger
  • Patent number: 8909316
    Abstract: A catheter apparatus for assessing denervation comprises: an elongated catheter body; a deployable structure coupled to the catheter body, the deployable structure being deployable outwardly from and contractible inwardly toward the longitudinal axis of the catheter body; one or more ablation elements disposed on the deployable structure to move outwardly and inwardly with the deployable structure; one or more stimulation elements spaced from each other and disposed on the deployable structure to move with the deployable structure, the stimulation elements being powered to supply nerve stimulating signals to the vessel; and one or more recording elements spaced from each other and from the stimulation elements, the recording elements being disposed on the deployable structure to move with the deployable structure, the recording elements configured to record response of the vessel to the nerve stimulating signals.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 9, 2014
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Kok-Hwee Ng
  • Patent number: 8900150
    Abstract: A three dimensional physiological mapping system utilizing an intracardiac echo catheter capable of being located in six degrees of freedom by a visualization, navigation, or mapping system. An echocardiography image of the intracardiac echo catheter may be projected within a geometric model of the visualization, navigation, or mapping system where the location of the projected image is adjusted in response to user input identifying a structure present in the echocardiography image and the geometric model.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: December 2, 2014
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: D. Curtis Deno, Anthony D. Hill, Hua Zhong
  • Patent number: 8897851
    Abstract: A releasable liner for a sensor device having adhesive and conductive gel portions includes a flexible sheet having a free end and a fixed end, and a portion of the flexible sheet that is releasably attached to the sensor device, wherein the flexible sheet is folded upon itself so that the fixed end is generally adjacent the free end. Exerting a pulling force on the free end releases the liner in a controlled manner to uncover the adhesive and conductive gel portions of the sensor device.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: November 25, 2014
    Assignee: Verathon Inc.
    Inventors: Matthew Caprio, Andrew Clay, Jeffrey William Ladwig
  • Publication number: 20140343388
    Abstract: A method and system for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure, each of the plurality of mapping electrodes having an electrode location. A vector field map which represents a direction of propagation of the activation signals at each electrode location is generated to identify a signature pattern and a location in the vector field map according to at least one vector field template. A target location of the identified signature pattern is identified according to a corresponding electrode location.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Applicant: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shibaji Shome, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Barun Maskara, Sunipa Saha
  • Publication number: 20140343392
    Abstract: The invention discloses an object, a method and a system for detecting heartbeat or whether an electrode is in good contact. The heartbeat is detected by arranging multiple textile electrodes on the textile, using ECG equipotential line diagram, considering interference caused of human movement, and designing a separating electrode structure, electrode position, area and lead layout in an innovative manner; the dry electrode or capacitive coupling electrode is selected along with the change of environmental state so as to pick up the ECG signals; the contact between the electrode and the human body can be detected whether it is in a good state or not by measuring the noise, body surface impedance, muscle impedance and the like; in addition, the posture and action of human body can be speculated according to the wave mode and noise of the ECG signals.
    Type: Application
    Filed: May 27, 2014
    Publication date: November 20, 2014
    Inventor: Chang-Ming Yang
  • Publication number: 20140343391
    Abstract: A heart activity sensor structure includes a flexible textile substrate, and at least two electrodes with an electric insulation between each of the at least two electrodes. The at least two electrodes are applied on one side of the flexible textile substrate and configured to be placed against a skin of an exerciser in order to measure biosignals related to heart activity. The heart activity sensor also includes an electrostatic discharge shield applied on one side of the flexible textile substrate for protecting the at least two electrodes from static electricity.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 20, 2014
    Applicant: Polar Electro Oy
    Inventors: Seppo Korkala, Elias Pekonen, Juhani Kemppainen, Pekka Rytky
  • Patent number: 8892181
    Abstract: A non-invasive fetal monitoring system includes a plurality of contact elements, each of the contact elements comprising a plurality of electrodes configured in a unique pattern. The plurality of contact elements are configured for attachment to an external skin surface of a pregnant female for detecting fetal and/or maternal electrical activity.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: November 18, 2014
    Assignee: MindChild Medical, Inc.
    Inventors: Adam J. Wolfberg, Jay Ward, James K. Robertson
  • Publication number: 20140336494
    Abstract: An electrode support structure assembly is provided comprising an electrode support structure including a plurality of splines. Each of the plurality of splines can have a proximal end portion and a distal end portion. The assembly further comprises a first element defining an axis and comprising an outer surface. The outer surface comprises a plurality of slots configured to receive the distal end portion of each of the plurality of splines. The first element is configured such that the distal end portion of each of the plurality of splines may move with respect to each slot. In accordance with some embodiments, the distal end portion of each of the plurality of splines comprises a section configured for engagement with the first element, wherein the section comprises a shoulder.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Dale E. Just, Troy T. Tegg, Theodore A. Johnson
  • Patent number: 8886281
    Abstract: The present invention relates generally to a thin, low thickness snap integrated within or built within a heart rate monitor belt or snap and electrode assebly. The snap can be integrated or built directly in to a heart rate monitor belt. Furthermore, the heart rate monitor belt can be integrated within a textile or garment, for example a compression shirt, sports bra or cycling shorts. The snap can be flushly integrated into the belt or garment such the snap does not take away from the general wearability of the heart rate monitor belt or garment.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Suunto Oy
    Inventors: Kimmo Pernu, Tapio Selby, Phillip Lindberg, Jukka Manni, Jorma Liljemark, Tapio Savolainen, Hannu Putkinen, Jari Akkila, Satu Rahkonen, Erik Lindman
  • Patent number: 8880140
    Abstract: The invention relates to large area electrodes suitable for use in a fetal heart rate monitoring systems. The electrode comprises: a cutaneous gel contact (10) for sensing fetal electrocardiogram signals from a human pregnant subject; an electrical conductor (12) electrically connected to the gel contact (10) so as to define a first electrical contact region; a connector (14) in electrical contact with the electrical conductor (12) for connection to a lead wire; and a substructure (16) for attachment to a human pregnant subject. The gel contact (10) and the electrical conductor (12) are arranged on the substructure (16) to allow a contact surface (11) of the gel contact (10) to be in electrical communication with the skin of a human pregnant subject to define a second electrical contact region. The second electrical contact region has an area greater than 370 square millimeters.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: November 4, 2014
    Assignee: Minoca Healthcare Limited
    Inventors: Barrie Robert Hayes-Gill, Carl William Barratt, Jean-Francois Pieri
  • Patent number: 8874186
    Abstract: A system for monitoring a physiological parameter comprises a substrate, a pair of drive electrodes, a pair of detection electrodes, and an RFID apparatus. The substrate is arranged to be removably securable to a biological organism. At least the pair of drive electrodes or the pair of detection electrodes is secured to the substrate. The RFID apparatus is arranged to be in electrical communication with at least the pair of drive electrodes or the pair of detection electrodes. Methods of using the device are also provided.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 28, 2014
    Assignee: Avery Dennison Corporation
    Inventor: Ian J. Forster
  • Patent number: 8870766
    Abstract: Systems and methods for non-invasively determining parameters related to blood glucose are disclosed. Embodiments are disclosed wherein a wearable sensor device comprises non-invasive sensors generating various sensed data which is then utilized to determine a glucose-related parameter.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 28, 2014
    Assignee: BodyMedia, Inc.
    Inventors: John M. Stivoric, Eric Teller, David Andre, Nisarg Vyas, Jonathan Farringdon, Donna Wolf, Christopher Pacione, Suresh Vishnubhatla, Scott Safier, Raymond Pelletier
  • Patent number: 8869390
    Abstract: Methods and systems for manufacturing a swallowable sensor device are disclosed. Such a method includes mechanically coupling a plurality of internal components, wherein the plurality of internal components includes a printed circuit board having a plurality of projections extending radially outward. A cavity is filled with a potting material, and the mechanically coupled components are inserted into the cavity. The cavity may be pre-filled with the potting material, or may be filled after the mechanically coupled components have been inserted therein. A distal end of each projection abuts against a wall of the cavity thereby preventing the potting material from covering each distal end. The cavity is sealed with a cap causing the potting material to harden within the sealed cavity to form a housing of the swallowable sensor device, wherein the distal end of each projection is exposed to an external environment of the swallowable sensor device.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: October 28, 2014
    Assignee: Innurvation, Inc.
    Inventors: Michael R. Arneson, William R. Bandy, Roger A. Davenport, Kevin J. Powell, Michael C. Sloan
  • Patent number: 8868217
    Abstract: Devices and methods of treating a targeted body tissue by stimulating the body tissue with an electric current. In one embodiment, an apparatus includes an electrode carrier configured to be removably coupled to an interior surface of an orthosis. The electrode carrier includes a recess configured to matingly receive a portion of an electrode. The electrode carrier is electrically coupled to the electrode when the portion of the electrode is disposed within the recess. A connection member is electrically coupled to the electrode carrier and is configured to be releasably coupled to a surface of the orthosis. The electrode carrier is electrically coupled to the orthosis when the connection member is coupled to the orthosis. In some embodiments, the electrode carrier is configured to be removably coupled to the interior surface of the orthosis. In some embodiments, at least a portion of the electrode is constructed of an absorptive material.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: October 21, 2014
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Amit Dar, Mark Rubin, Shmuel Springer, Amir Cohen
  • Patent number: 8865288
    Abstract: A micro-needle array having tips disposed along a non-planar surface is formed by shaping the wafer surface into a non-planar surface to define the tips of the micro-needles. A plurality of trenches are cut into the wafer to form a plurality of columns having tops corresponding to the non-planar surface. The columns are rounded and sharpened by etching to form the micro-needles.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: October 21, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Rajmohan Bhandari, Sandeep Negi, Florian Solzbacher, Richard A. Normann
  • Patent number: 8862247
    Abstract: The invention relates to a device for the electrostimulation therapy of the human body, comprising several electrodes (1) that contact the body surface and apparatuses (3-5) for applying voltage to the electrodes (1). According to the invention, the electrodes are arranged in a line and the apparatuses are provided to apply voltage to the electrodes (1) consecutively along the line.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 14, 2014
    Inventors: Erhard Schoendorf, Michael Schoendorf, Thomas Schoendorf
  • Publication number: 20140303471
    Abstract: Implementations disclosed herein provide for a microneedle electrode system comprising a microneedle electrode patch connected to external electronics. The microneedle electrode patch comprises a first flexible substrate having a plurality of conductive pads disposed thereon, a plurality of three-dimensional, individually addressable microneedle electrode arrays where each array has a plurality of microneedles extending from an upper surface thereof and a lower surface adapted to contact a corresponding one of the plurality of conductive pads disposed on the first substrate, and a second flexible substrate having a plurality of openings defined therein dimensioned to accommodate at least a portion of the upper surface of the microneedle electrode array from which the microneedles extend.
    Type: Application
    Filed: March 6, 2014
    Publication date: October 9, 2014
    Inventors: Swaminathan Rajaraman, Julian A. Bragg, James D. Ross, Amanda Preyer
  • Patent number: 8855737
    Abstract: A system and method for electrically shielding a physiological pathway from electrical noise is disclosed. The method includes the operation of implanting at least one signal microelectrode into a patient such that the signal microelectrode is proximate to the physiological pathway. An additional operation includes substantially enclosing the microelectrode and a section of the physiological pathway with an electrical shielding wrap. The electrical shielding wrap includes a plurality of holes that enable fluid communication of physiological fluids between an inside and outside of the wrap.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: October 7, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Gregory Arthur Clark, David James Warren, Noah M. Ledbetter
  • Publication number: 20140296684
    Abstract: A biomedical sensor system is disclosed that includes a high impedance conductive electrode having an electrode impedance of at least about 20 k?/sq-mil, and a dielectric material on a first side of the electrode for receiving a discharge of an electrical signal from the dielectric material responsive to the presence of a time varying signal adjacent a second side of the dielectric material that is opposite the first side.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventors: Kenneth Burnham, Suraj Gorkhali, Andrew Greene
  • Publication number: 20140296686
    Abstract: Embodiments of the present invention provides an apparatus containing a device communicably coupled to two electrodes that may be positioned on a body of a subject for obtaining 12 leads or 18 leads electrocardiogram. The two electrodes may obtain signal parameters such as arm leads (I, II, III, AVR AVL and AVF) and left chest leads (V1, V2, V3, V4, V5, V6) and right chest leads (V1R, V2R, V3R, V4R, V5R, V6R). The signal parameters may be detected and collected by the device for processing thereof and thus obtain 12 leads or 18 leads electrocardiogram that may be transmitted to a health care provider for seeking health assistance based on the transmitted electrocardiogram. Further, a method for obtaining the electrocardiogram using two electrodes is also provided.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 2, 2014
    Inventors: Alon Konchitsky, Yadon Arad
  • Patent number: 8849369
    Abstract: Subdural arrays transmit electrocorticogram recordings wirelessly, across the patient's skull, allowing the craniotomy used for surgical placement of the arrays to be completely closed. In various embodiments, the arrays also respond to commands, applying signal patterns to the patient's brain for diagnostic and treatment purposes.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: September 30, 2014
    Assignee: EIC Laboratories
    Inventors: Stuart F. Cogan, Philip R. Troyk, John S. Ebersole, Vernon L. Towle
  • Patent number: 8849419
    Abstract: A paddle lead assembly for providing electrical stimulation of patient tissue includes a paddle body having a plurality of electrodes. At least one of the plurality of electrodes defines a removed center portion. At least one lead body is coupled to the paddle body. At least one terminal is disposed on each of the at least one lead bodies.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 30, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dongchul Lee
  • Publication number: 20140288407
    Abstract: An electrocardiograph measures an electrocardiac signal by processing electric signals detected by bioelectrode pads. The bioelectrode pads each includes a plurality of sheets of electrodes disposed by being stacked on each other; conductive gel sheets disposed alternately with the sheets of electrodes and interposed between the electrodes; and a dynamic pressure stabilizing plate. The electrocardiograph includes a first differential circuit for obtaining an electrocardiac source signal by taking the difference between signals each obtained from any one of the electrodes of each of two bioelectrode pads; a second differential circuit for obtaining a body motion noise signal by taking the difference between signals obtained from any two of the electrodes of each of said two bioelectrode pads; and a body motion noise removing circuit for removing the low frequency components of the body motion noise signal of each of said two bioelectrode pads from the electrocardiac source signal.
    Type: Application
    Filed: November 2, 2011
    Publication date: September 25, 2014
    Applicants: NIPRO CORPORATION, HARADA ELECTRONICS CO., LTD.
    Inventors: Yoshihiko Sano, Masahide Harada
  • Publication number: 20140275934
    Abstract: A multi-electrode array with individually isolated electrodes each configurable for a target-containing carrier and a method for fabricating the array are disclosed. In an exemplary embodiment, the array includes a substrate; and a plurality of electrodes disposed on the substrate. Each electrode of the plurality of electrodes has a conductive tip-end and an insulated remainder. A first electrode of the plurality of electrodes has a first configuration selected to bring a conductive tip end of the first electrode in proximity to a first target structure, and a second electrode of the plurality of electrodes has a second configuration selected to bring a conductive tip end of the second electrode in proximity to a second target structure. The first configuration and the second configuration are different. A first contact of the plurality of contacts may be electrically coupled to the first electrode through the substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Rahul Saini, John Neal Randall
  • Publication number: 20140275829
    Abstract: The present invention is related to a sleep stage annotation system, said system having a plurality of sensors elements comprising differential electrodes, at least one sensor element comprising a ground electrode, transmitting means to transmit signals generated by the differential electrodes and the at least one ground electrode to a data recording unit, wherein) at least the sensor elements comprising the differential electrodes are arranged on a device capable of serving as a head or face support means, and methods using the same.
    Type: Application
    Filed: May 8, 2012
    Publication date: September 18, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Igor Berezhnyy, Tim Elisabeth Joseph Weysen
  • Patent number: 8838198
    Abstract: An electrode system comprises electrode modules, flexible connectors, and sensors. Each electrode module defines a substantially central opening and has circuitry that includes an amplifier. A conductive ring is exposed in the opening of each electrode module. The flexible connectors include flexible circuitry coupled with the circuitry of the electrode modules. Each sensor includes an electrolytic hydrogel portion that is configured to contact a test subject and outwardly extending tabs that are in communication with the hydrogel portion. The tabs are configured to contact the conductive ring of an electrode module with the sensor is inserted in the opening of the electrode module. The system may thus sense evoked response potentials (ERPs) from the test subject through the electrolytic hydrogel portions, amplify those potentials, and communicate the amplified potentials through the circuitry of the flexible connectors. A control box may initiate ERP testing and store the test results.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 16, 2014
    Assignee: Neuronetrix Solutions, LLC
    Inventor: Kalford C. Fadem
  • Patent number: 8834464
    Abstract: An ablation catheter assembly includes an elongate catheter body having a proximal portion, a distal portion and a lumen therethrough. A helical structure associated with the catheter distal portion carries a plurality of independently operable electrodes and is transformable between a low-profile configuration wherein a straightening element is positioned in the lumen and an expanded configuration wherein the straightening element is at least partially retracted from the spiral structure. When the helical structure is in the expanded configuration, a laterally offset tip portion extends distally therefrom.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 16, 2014
    Inventors: Mark T. Stewart, James Skarda, David E. Francischelli, Rahul Mehra
  • Publication number: 20140257052
    Abstract: A sub-skin-depth (nanoscale metallization) thin film antenna is shown that is monolithically integrated with an array of neural recording electrodes on a flexible polymer substrate. The structure is intended for long-term biometric data and power transfer such as electrocorticographic neural recording in a wireless brain-machine interface system. The system includes a microfabricated thin-film electrode array and a loop antenna patterned in the same microfabrication process, on the same or on separate conductor layers designed to be bonded to an ultra-low power ASIC.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 11, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Rikky Muller, Peter Ledochowitsch
  • Publication number: 20140249398
    Abstract: A system and method to determine pulse transit time using a handheld device. The method includes generating an electrocardiogram (EKG) for a user of the handheld device. Two portions of the user's body are in contact with two contact points of the handheld device. The method also includes de-noising the EKG to identify a start time when a blood pulse leaves a heart of the user. The method further includes de-noising a plurality of video images of the user to identify a pressure wave indicating an arterial site and a time when the pressure wave appears. Additionally, the method includes determining the PTT based on the de-noised EKG and the de-noised video images.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: MICROSOFT CORPORATION
    Inventors: Daniel Morris, T. Scott Saponas, Desney S. Tan, Morgan Dixon, Siddharth Khullar, Harshvardhan Vathsangam
  • Patent number: 8825128
    Abstract: A sensor for measuring biosignals is provided. The sensor comprises at least one electrode comprising: a substrate comprising a flexible non-conductive material; a conductive layer configured to transfer electrical signals; a gel layer configured to transfer electrical signals; and a barrier layer configured to protect the conductive layer and transfer electrical signals, wherein the barrier layer deposited on the substrate, the gel layer is deposited on the barrier layer so that the gel layer covers only a part of the barrier layer, and the conductive layer is deposited over an area of the barrier layer which is outside of an area of the barrier layer on which the gel layer is deposited.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: September 2, 2014
    Assignee: General Electric Company
    Inventors: Antti Kustaa Antipas Ylostalo, Magnus Johannes Kall, Outi Kristiina Savinen
  • Publication number: 20140243610
    Abstract: A Wireless Monitoring Apparatus is used in conjunction with an automated external defibrillator (AED) system for patient rescue in mass-casualty incidents. The rescuer applies the device on each patient. The wireless monitoring apparatus automatically analyzes the patient's heart rhythm and communicates with the AED system. The AED system is therefore is able to display information with regard to each patient, notifies the rescuer on actions to take and can deliver defibrillation therapy if needed.
    Type: Application
    Filed: November 5, 2013
    Publication date: August 28, 2014
    Inventor: Kyle R. Bowers
  • Publication number: 20140243643
    Abstract: An instrument that utilizes body contact electrodes evaluates the quality of the connections made between the electrodes and the body. An electrode contact quality evaluation circuit performs the quality evaluation, such as by determining contact impedances for the electrodes. The corresponding contact quality of each electrode is conveyed to the user.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: Welch Allyn, Inc.
    Inventor: Richard A. Sunderland
  • Patent number: 8818482
    Abstract: An electrode patch monitoring device that enables fast and accurate application is described. According to some embodiments, the electrode patch monitoring device comprises an array of electrodes for monitoring bioelectrical data that are formed on a flexible substrate. The electrode patch monitoring device may be available in a plurality of sizes, and various methods are provided for selecting an appropriate size according to the physiology of a patient. Methods for applying the electrode patch monitoring device to the patient's body are also provided.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: August 26, 2014
    Inventors: Paul David Phillips, Brian McGregor, Wesley James McKean
  • Patent number: 8818483
    Abstract: A method of making an electrical stimulation lead includes coupling electrodes to a carrier. The carrier defines at least one set of perforations. The method further includes coupling the electrodes to conductors; forming a flexible paddle sheath over the carrier leaving a stimulation surface of each of the plurality of electrodes exposed; and, after forming the flexible paddle sheath, breaking the carrier along at least one of the at least one set of perforations.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 26, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel James Romero
  • Patent number: 8818481
    Abstract: An adherent device to monitor a patient for an extended period comprises a breathable tape. The breathable tape comprises a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient. At least one electrode is affixed to the breathable tape and capable of electrically coupling to a skin of the patient. A printed circuit board is connected to the breathable tape to support the printed circuit board with the breathable tape when the tape is adhered to the patient. Electronic components electrically are connected to the printed circuit board and coupled to the at least one electrode to measure physiologic signals of the patient. A breathable cover and/or an electronics housing is disposed over the circuit board and electronic components and connected to at least one of the electronics components, the printed circuit board or the breathable tape.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 26, 2014
    Assignee: Corventis, Inc.
    Inventors: Mark J. Bly, Badri Amurthur, Kristofer J. James, Imad Libbus, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang
  • Patent number: 8818529
    Abstract: A release liner for electrode pads is described which enables the pads to be used with defibrillators requiring the electrodes to be electrically interconnected for self-test prior to use, and with defibrillators which do not require the electrodes to be electrically interconnected. In one example this variation is afforded by folding the release liner one way to electrically connect conductive layers underlying two attached electrodes. In another example this variation is afforded by leaving the conductive layers electrically connected or breaking the connection.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: August 26, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Patrick Hauge, Daniel Powers, Eric Jonsen
  • Patent number: 8818478
    Abstract: The present invention provides a sensor garment including a harness. In one exemplary embodiment, the sensor garment includes a textile portion, a device-retention element coupled to the textile portion, and a stretchable harness coupled to the textile portion. The harness includes a conductive element disposed between layers of film. The conductive element includes a first termination point at the device retention element, configured to connect to a monitor device. The conductive element includes a second termination point configured to connect to a sensor or transceiver.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: August 26, 2014
    Assignee: adidas AG
    Inventors: Kim Scheffler, Melanie M. Maslany
  • Patent number: 8818499
    Abstract: A body fat measurement device includes hand electrodes that contact both hands, back area electrodes that contact the surface of a trunk area of the back, foot electrodes that contact both feet, a trunk area width detection unit for measuring the width and depth of the trunk area, a body impedance measurement unit that measures the body impedance of a body using the multiple electrodes and a body fat mass calculation unit that calculates a body fat mass based on the body impedance and the width and depth of the trunk area. The back area electrodes that make contact with the surface of the back of the trunk area are provided in a fitting unit in an exposed state, as well as the trunk area width detection unit. Accordingly, a body fat measurement device can measure a body fat mass easily and accurately in a household or the like.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 26, 2014
    Assignee: Omron Healthcare Co., Ltd.
    Inventors: Hiromichi Karo, Takehiro Hamaguchi, Kazuhisa Tanabe, Yasuaki Murakawa, Tomoya Ijiri
  • Publication number: 20140235991
    Abstract: Electrode systems for use with neuromuscular monitoring systems are provided herein. An example electrode system for use with a monitoring system can include a flexible substrate, a connector interface, one or more stimulating electrodes, one or more recording electrodes and a plurality of conductive traces carried on the flexible substrate. The connector interface can be configured to communicatively connect the electrode system with the monitoring system. In addition, the one or more stimulating electrodes can be configured to deliver an electrical pulse, and the one or more recording electrodes can be configured to receive an electrical signal. The plurality of conductive traces can electrically connect at least one stimulating electrode or at least one recording electrode with the connector interface. Further, each of the one or more stimulating electrodes can have an elongate shape with a length dimension that is substantially greater than a width dimension.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 21, 2014
    Applicant: T4 Analytics LLC
    Inventor: Peter Donald Gadsby
  • Publication number: 20140228666
    Abstract: The measuring and processing unit (20) of the invention comprises an electrical bioimpedance measuring sub-unit (9) and a processing sub-unit (10) for the discrete processing of measurements including a memory element for storing the measurements. The modular electrical bioimpedance measuring, processing and monitoring system comprises at least one of the aforementioned bioimpedance measuring and processing units (20). The modular system allows transmitting measurements to an external unit (30), such as a computer or PDA, for processing and/or monitoring. The bioimpedance data can be transmitted over the Internet or a GSM network from the external unit (30) to a remote unit for remote monitoring.
    Type: Application
    Filed: August 29, 2012
    Publication date: August 14, 2014
    Applicant: UNIVERSIDAD DE EXTRAMADURA OF SPAIN
    Inventors: Jose Luis Ausin Sanchez, Javier Ramos Maganes, Juan Francisco Duque Carrillo
  • Publication number: 20140221807
    Abstract: Provided is a sensor platform and a method of preparing the same. The sensor platform may include a hydrogel sheet comprising a net structure; an electrolyte applied to the net structure; and a plurality of electrodes disposed on the hydrogel sheet.
    Type: Application
    Filed: October 17, 2013
    Publication date: August 7, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang Yun PARK, Byung Hoon KO, Jong Pal KIM
  • Publication number: 20140221808
    Abstract: A cover sheet (1) used in a body measuring apparatus having electrodes for supplying current to a human body or for measuring a difference in electrical potential between two sites of the body. The cover sheet has electric conductive area portions (2) corresponding to the electrodes of the body measuring apparatus and having a electric conductivity in thickness direction, and insulation area portions (3) spacing adjacent electric conductive area portions (2) and having electrically insulating property at least along a plane direction. The cover sheet is used to prevent cross-infection and can be used safely without slip and prepared cheaply without affecting to impedance, with assuring completely insulation between adjacent electrodes. Conductivity is created with conductive solid (“dry type”) or conductive liquid (“wet type”). The cover sheet is fed automatically by a sheet dispenser.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: TANITA Corporation
    Inventors: Masaaki FURUE, Minoru OGURA, Makoto NIIZATO, Kazuaki NATSUME
  • Patent number: 8798769
    Abstract: This invention provides a percutaneous implantable electrode array that can be deployed or repositioned though a needle insertion site. The deployable electrode apparatus, in one embodiment, is made of a fixed electrode array on a central body of the apparatus and a deployable electrode array. The deployable electrode array is actuated by at least two struts, each of the struts having a first and second end. The central body of the apparatus is configured to retain the first end of the at least two struts. Each of the side arrays are flexurally connected to the second end of each of the strut and the side arrays are connected to at least one stylet, which extends to the proximal end of the apparatus.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: August 5, 2014
    Inventor: Autry J. Parker, Jr.
  • Patent number: 8798706
    Abstract: An apparatus which includes a dual loop structure that carries a plurality of operative elements. A guide with a distal indentation that may be used to reorient a dual loop structure.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 5, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Isaac Kim, Raj Subramaniam, Josef V. Koblish
  • Publication number: 20140213880
    Abstract: The invention provides an electrode and associated electrode holder that are used for physiological measurements, e.g. measurements of signals that can be processed to generate ECG and TBI waveforms. The electrode and electrode holder connect to each other using a magnetic interface. In embodiments, for example, the magnetic interface includes oppositely polled magnets integrated in both the electrode and electrode holder. The magnets are typically rare earth magnets coated with a thin, electrically conductive metal film. This way, when the magnets come in contact with each other, the metal films touch to form both a mechanical and electrical connection. Thus the magnetic interface can replace conventional mechanisms used to connect rivet-based electrodes to leads, which are typically used to secure electrodes for physiological measurements.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 31, 2014
    Applicant: Perminova Inc.
    Inventors: Matt Banet, Susan Pede, Marshal Dhillon, Drew Terry
  • Publication number: 20140213881
    Abstract: The invention provides an electrode and associated electrode holder that are used for physiological measurements, e.g. measurements of signals that can be processed to generate ECG and TBI waveforms. The electrode and electrode holder connect to each other using a magnetic interface. In embodiments, for example, the magnetic interface includes oppositely polled magnets integrated in both the electrode and electrode holder. The magnets are typically rare earth magnets coated with a thin, electrically conductive metal film. This way, when the magnets come in contact with each other, the metal films touch to form both a mechanical and electrical connection. Thus the magnetic interface can replace conventional mechanisms used to connect rivet-based electrodes to leads, which are typically used to secure electrodes for physiological measurements.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 31, 2014
    Applicant: Perminova Inc.
    Inventors: Matt Banet, Susan Pede, Marshal Dhillon, Drew Terry
  • Patent number: 8792957
    Abstract: A biomedical sensor system is disclosed that includes a plurality of electrodes and a contiguous adhesive material that is in contact with each of the plurality of electrodes. In certain embodiments a method is provided that includes the step of applying a first surface of adhesive material to a patient wherein the adhesive material includes at least two electrodes on second surface thereof that is opposite the first surface. The method also includes the step of receiving a time varying signal a first electrode of the at least two electrodes at a first location such that the time varying signal is not received at a second electrode of the at least two electrodes.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: July 29, 2014
    Assignee: FLEXcon Company, Inc.
    Inventors: Andrew Greene, Suraj Gorkhali, Kenneth Burnham
  • Patent number: 8788011
    Abstract: A cardiac navigation system including a mapping catheter, a control system coupled to the mapping catheter, an electrode array, and means for driving an electrical current across the electrode array. The mapping catheter includes means for sensing an electrical field. The control system includes means for receiving sensed signals from the mapping catheter. The cardiac navigation system includes at least one electrode array including means for providing an electrical field across three axes. The three axes are approximately orthogonal with respect to one another. The means for driving an electrical current across the three axes includes means for providing a plurality of individual current sources to the electrode array.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: July 22, 2014
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John A. Hauck, James C. Baker