Sound Generated By Successive Heartbeat Electric Signals To Represent Heart Action Patents (Class 600/514)
  • Patent number: 10182735
    Abstract: Systems and methods for detecting atrial tachyarrhythmias (AT) such as atrial fibrillation (AF) are disclosed. A medical system can include a cardiac signal sensor circuit to sense a cardiac electrical signal and a heart sound (HS) sensor to sense heart a HS signal. A cardiac electrical signal metric, including a cycle length variability or a detection of atrial electrical activity, can be generated from the cardiac electrical signal. A HS metric can be generated from the HS signal, including a status of detection of S4 heart sound or a S4 heart sound intensity indicator. The system can include an AT detector circuit that can detect an AT event, such as an AF event, using the cardiac electrical signal metric and the HS metric. The system can additionally classify the detected AT event as an AF or an atrial flutter event.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: January 22, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Bin Mi, Howard D. Simms, Jr., Qi An, John D. Hatlestad, Keith R. Maile
  • Patent number: 10176818
    Abstract: Sound processing using a product-of-filters model is described. In one or more implementations, a model is formed by one or more computing devices for a time frame of sound data as a product of filters. The model is utilized by the one or more computing devices to perform one or more sound processing techniques on the time frame of the sound data.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 8, 2019
    Assignee: Adobe Inc.
    Inventors: Dawen Liang, Matthew Douglas Hoffman, Gautham J. Mysore
  • Patent number: 10045710
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: August 14, 2018
    Assignee: Medtronic, Inc.
    Inventors: Elise J. Higgins, Mark L. Brown, Jian Cao
  • Patent number: 9924893
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: March 27, 2018
    Assignee: MASIMO CORPORATION
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Patent number: 9907512
    Abstract: A system includes at least one medical device configured to generate a plurality of messages and a control unit in the at least one device. The control unit is configured to generate an auditory signal corresponding to one of the plurality of messages, wherein the auditory signal is configured based on a functional relationship linking psychological sound perceptions in a clinical environment to acoustic and musical sound properties. The functional relationship includes a plurality of types of auditory messages defining seven unique categories.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: March 6, 2018
    Assignee: General Electric Company
    Inventors: James Alan Kleiss, Karel William Barnoski
  • Patent number: 9734674
    Abstract: Examples are generally directed towards sonifying performance metrics. A computing device includes one or more data storage devices coupled to one or more processors. A performance dashboard controller maps a plurality of performance status updates corresponding to a plurality of points within a time range to a set of sound recordings to identify an audible performance indicator for the at least one object. A performance status update indicates a change in a performance status of the at least one object at a given point in time. The audible performance indicator sonifies the plurality of performance status updates at the plurality of points relative to the performance threshold. The audible performance indicator is output by an output device. The audible performance indicator identifies changes in performance status of the at least one object during the time range.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 15, 2017
    Assignee: EMC IP Holding Company LLC
    Inventors: Bruce R. Rabe, Nagasimha G. Haravu
  • Patent number: 9239393
    Abstract: A positron emission computed tomography apparatus according to an embodiment includes a detector, a coincidence counting information generating unit, and a body movement detecting unit. The detector detects annihilation radiation released from a subject. The coincidence counting information generating unit searches for sets of counting information, which counted a pair of annihilation radiations at substantially the same time, from a counting information list that is generated from output signals of the detector; generates a set of coincidence counting information for each retrieved set of counting information; and generates a time series list of coincidence counting information. Based on the time series list of coincidence counting information, the body movement detecting unit detects temporal changes in the body movement of the subject.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: January 19, 2016
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Manabu Teshigawara, Yasuhiro Noshi, Takuzo Takayama
  • Patent number: 9026202
    Abstract: Described herein are apparatuses (e.g., devices, systems, software), and methods for monitoring the cardiac health of a patient. The apparatuses and methods may include a smartphone or hand held computing device having an accelerometer. The apparatus may also include a device with a plurality of electrodes integral with or attached to the smartphone. The devices can be placed on a patient's chest to measure electrical signals and vibrations on the chest caused by the heartbeat. The measurements can generate a seismocardiogram (SCG) and in some variations an electrocardiogram (ECG). The apparatuses and methods can analyze the data in the SCG to produce a measure of the cardiac function. Changes in such measures can provide an early warning for potential cardiac problems and signal the need for the patient to seek treatment prior to a fatal cardiac event.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: May 5, 2015
    Assignee: AliveCor, Inc.
    Inventor: David E. Albert
  • Patent number: 8972008
    Abstract: A system and method provide for systolic interval analysis. In an example, an implantable device measures a cardiac impedance signal. A transformation of the cardiac impedance interval is generated. The device also measures a heart sound signal. A time interval between a point on the transformed signal of the cardiac impedance signal and a point on the heart sound signal is calculated.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Gerrard M. Carlson, Loell Boyce Moon
  • Patent number: 8882677
    Abstract: A health sensing device is described for placement on a user. The device may include a sensor, a filter, and a transmitter. The sensor is configured to sense one or more factors relating to an indicator of a health related condition or occurrence. The filter is configured to evaluate a signal from the sensor and determine if the indicator has been detected. The transmitter is arranged for initiating a transmission based on a signal from the filter. The sensor can include one or more microphone devices, accelerometers, and/or MEMS devices. A method of monitoring a user for a health related condition is also described.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: November 11, 2014
    Assignee: Empire Technology Development LLC
    Inventors: Andrew Wolfe, Thomas Martin Conte
  • Publication number: 20140296726
    Abstract: A cardiac-based metric is computed based upon characteristics of a subject's cardiac function. In accordance with one or more embodiments, the end of a mechanical systole is identified for each of a plurality of cardiac cycles of a subject, based upon an acoustical vibration associated with closure of an aortic valve during the cardiac cycle. The end of an electrical systole of an electrocardiogram (ECG) signal for each cardiac cycle is also identified. A cardiac-based metric is computed, based upon a time difference between the end of the electrical systole and the end of the mechanical systole, for the respective cardiac cycles.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: MARINA BROCKWAY, BRIAN BROCKWAY
  • Patent number: 8843198
    Abstract: The present disclosure refers to a heart stimulator comprising a stimulation control unit, a stimulation unit, an impedance measurement unit and an impedance evaluation unit. The stimulation control unit is operatively connected to the stimulation unit to control timing of stimulation pulses by said stimulation unit. The impedance measurement unit is configured to determine an impedance signal reflecting intracardiac impedance. The impedance evaluation unit is operatively connected to the impedance measurement unit and to the stimulation control unit and is configured to evaluate the impedance signal so as to determine an isovolumic contraction time, an isovolumic relaxation time, an ejection time and a filling time from said impedance signal. The stimulation control unit is further configured to control timing of stimulation pulses depending on a performance index.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: September 23, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Jie Lian, Volker Lang, Hannes Kraetschmer, Dirk Muessig
  • Patent number: 8750977
    Abstract: Measured values of ST segment deviations obtained from a multi-lead ECG are transformed and displayed on a polar ST Circle Display, with zero ST deviation values located on a circle having a diameter that is greater than a maximum absolute ST segment deviation value obtained for any measured or derived lead. An ischemic condition and a location of the ischemia can thereby be easily determined.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 10, 2014
    Assignee: Draeger Medical Systems, Inc.
    Inventors: Stefan Nelwan, Wolfgang Scholz
  • Patent number: 8700137
    Abstract: Described herein are apparatuses (e.g., devices, systems, software), and methods for monitoring the cardiac health of a patient. The apparatuses and methods may include a smartphone or hand held computing device having an accelerometer. The apparatus may also include a device with a plurality of electrodes integral with or attached to the smartphone. The devices can be placed on a patient's chest to measure electrical signals and vibrations on the chest caused by the heartbeat. The measurements can generate a seismocardiogram (SCG) and in some variations an electrocardiogram (ECG). The apparatuses and methods can analyze the data in the SCG to produce a measure of the cardiac function. Changes in such measures can provide an early warning for potential cardiac problems and signal the need for the patient to seek treatment prior to a fatal cardiac event.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 15, 2014
    Assignee: AliveCor, Inc.
    Inventor: David E. Albert
  • Patent number: 8684943
    Abstract: A method, system, stethoscope and server for classifying a cardiovascular sound recorded from a living subject. The method comprises the steps of: identifying diastolic and/or systolic segments of the cardiovascular sound; dividing at least one of the identified diastolic and/or systolic segments into a number of sub-segments comprising at least a first sub-segment and at least a second sub-segment; extracting from the first sub-segment at least a first signal parameter characterizing a first property of the cardiovascular sound, extracting from the second sub-segment at least a second signal parameter characterizing a second property of the cardiovascular sound; and classifying the cardiovascular sound using the at least first signal parameter and the at least second signal parameter in a multivariate classification method.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: April 1, 2014
    Assignee: Acarix A/S
    Inventors: Samuel Emil Schmidt, Johannes Jan Struijk, Claus Graff
  • Publication number: 20140039335
    Abstract: Devices and methods related to endocardial acceleration signal processing are provided. One device is configured to: (1) divide an endocardial acceleration (EA) signal into a plurality of EA sub-signals; (2) identify, in each of the plurality of EA sub-signals, at least one signal component associated with a type of heart sound; (3) extract a characteristic of the at least one signal component for two or more of the plurality of cycles; (4) calculate a correlation coefficient correlating the at least signal component for a first cycle of the plurality of cycles to the at least one signal component of a second cycle of the plurality of cycles; and (5) perform temporal retiming of one or more of the signal components based on the correlation coefficient to generate one or more adjusted signal components of the associated one or more EA sub-signals.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: SORIN CRM S.A.S.
    Inventors: Lionel Giorgis, Alfredo Hernandez
  • Patent number: 8628478
    Abstract: A health sensing device is described for placement on a user. The device may include a sensor, a filter, and a transmitter. The sensor is configured to sense one or more factors relating to an indicator of a health related condition or occurrence. The filter is configured to evaluate a signal from the sensor and determine if the indicator has been detected. The transmitter is arranged for initiating a transmission based on a signal from the filter. The sensor can include one or more microphone devices, accelerometers, and/or MEMs devices. A method of monitoring a user for a health related condition is also described.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 14, 2014
    Assignee: Empire Technology Development LLC
    Inventors: Andrew Wolfe, Thomas Martin Conte
  • Patent number: 8622919
    Abstract: An apparatus is disclosed, comprising a speaker suitable to be applied at a user's ear and enabled to be supplied with an audio signal for rendering; a microphone arranged in vicinity of the speaker to acquire a sound signal from sounds present in the ear of the user; and a signal processor, wherein the signal processor is arranged to subtract the audio signal from the sound signal to provide a physiological sound signal, and the signal processor is further arranged to detect a physiological measurement from the physiological sound signal. A method and a computer program are also disclosed.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: January 7, 2014
    Assignees: Sony Corporation, Sony Mobile Communications AB
    Inventors: Jacobus Cornelis Haartsen, Gerrit Sampimon
  • Patent number: 8600488
    Abstract: A system, method and computer executable code for generating a likelihood of cardiovascular disease from acquired cardiovascular sound signals is disclosed, where the generated likelihood of cardiovascular disease is based at least on an overlapping in time of bruit candidates in one heart cycle or in different heart cycles. Also disclosed is a system, method, and computer executable code for collecting, forwarding, and analyzing cardiovascular sound signals, where the collecting and analyzing may occur at locations that are remote from each other. Further disclosed is a system, method, and computer executable code for determining the time and phase information contained in cardiovascular sound signals, for use in analyzing those cardiovascular sound signals.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: December 3, 2013
    Assignee: SonoMedica, Inc.
    Inventors: Sailor Hampton Mohler, Dan Mulholland, Alan Figgatt, Warren Holford
  • Patent number: 8600485
    Abstract: While analyzing ventricular repolarization in accordance with the invention, ECG measurement with excitation of heart rate is evaluated and the coupling of an internal parameter, for example QT to heartbeat interval, for example RR, is modeled by a transfer function with three parameters. The values of the resulting five parameters describing the static and dynamic characteristics of ventricular repolarization are obtained by means of transfer function parameters and the measured values of heart rate and the internal parameter. The effect of medication is evaluated from the difference of the values of these parameters determined before and after administrating the medication.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: December 3, 2013
    Assignee: Institute of Scientific Instruments of the ASCR, V.V.I.
    Inventors: Josef Halamek, Pavel Jurak
  • Patent number: 8583222
    Abstract: Measured values of ST segment deviations obtained from a multi-lead ECG are transformed and displayed on a polar ST Circle Display, with zero ST deviation values located on a circle having a diameter that is greater than a maximum absolute ST segment deviation value obtained for any measured or derived lead. An ischemic condition and a location of the ischemia can thereby be easily determined.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 12, 2013
    Assignee: Draeger Medical Systems, Inc.
    Inventors: Stefan P. Nelwan, Wolfgang Scholz
  • Patent number: 8579828
    Abstract: A system and method for managing preload reserve and tracking the inotropic state of a patient's heart. The S1 heart sound is measured as a proxy for direct measurement of stroke volume. The S3 heart sound may be measured as a proxy for direct measurement of preload level. The S1-S3 pair yield a point on a Frank Starling type of curve, and reveal information regarding the patient's ventricular operating point and inotropic state. As an alternative, or in addition to, measurement of the S3 heart sound, the S4 heart sound may be measured or a direct pressure measurement may be made for the sake of determining the patient's preload level. The aforementioned measurements may be made by a cardiac rhythm management device, such as a pacemaker or implantable defibrillator.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: November 12, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gerrard M. Carlson, Ramesh Wariar, Krzysztof Z. Siejko
  • Patent number: 8504153
    Abstract: Techniques are provided for estimating left atrial pressure (LAP) or other cardiac performance parameters based on measured conduction delays. In particular, LAP is estimated based interventricular conduction delays. Predetermined conversion factors stored within the device are used to convert the various the conduction delays into LAP values or other appropriate cardiac performance parameters. The conversion factors may be, for example, slope and baseline values derived during an initial calibration procedure performed by an external system, such as an external programmer. In some examples, the slope and baseline values may be periodically re-calibrated by the implantable device itself. Techniques are also described for adaptively adjusting pacing parameters based on estimated LAP or other cardiac performance parameters. Still further, techniques are described for estimating conduction delays based on impedance or admittance values and for tracking heart failure therefrom.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 6, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Dan E. Gutfinger, Mihir Naware, Xiaoyi Min, Jeffery Siou, Anders Bjorling, Dorin Panescu
  • Patent number: 8504152
    Abstract: Techniques are provided for estimating left atrial pressure (LAP) or other cardiac performance parameters based on measured conduction delays. In particular, LAP is estimated based interventricular conduction delays. Predetermined conversion factors stored within the device are used to convert the various the conduction delays into LAP values or other appropriate cardiac performance parameters. The conversion factors may be, for example, slope and baseline values derived during an initial calibration procedure performed by an external system, such as an external programmer. In some examples, the slope and baseline values may be periodically re-calibrated by the implantable device itself. Techniques are also described for adaptively adjusting pacing parameters based on estimated LAP or other cardiac performance parameters. Still further, techniques are described for estimating conduction delays based on impedance or admittance values and for tracking heart failure therefrom.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 6, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Dan E. Gutfinger, Mihir Naware, Xiaoyi Min, Jeffery Siou, Anders Bjorling, Dorin Panescu
  • Patent number: 8412323
    Abstract: A computer method, employable during an at-rest period of a pacemaker patient, for controlling the operation of the pacemaker so as maximally to support the patient's hemodynamic behavior in a context involving inhibiting fluid overload. The method involves (a) collecting simultaneously occurring ECG and heart-sound information, (b) processing the collected information to obtain at least S3 data, and in certain instances also EMAT and/or % LVST data, (c) utilizing such obtained data, and during the at-rest period, applying (a) pacing rate, (b) pacing intensity, (c) atrio-ventricular delay, and (d) inter-ventricular delay control to the pacemaker.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: April 2, 2013
    Assignee: Inovise Medical, Inc.
    Inventor: Peter T. Bauer
  • Publication number: 20130041273
    Abstract: Disclosed herein are various embodiments of methods, systems and devices for detecting atrial fibrillation (AF) in a patient. According to one embodiment, a patient places his or her left and right hands around left and right electrodes and a hand-held atrial fibrillation detection device acquires an electrocardiogram (ECG) from the patient over a predetermined period of time such as, by way of example, one minute. After acquiring the ECG from the patient, the device processes and analyzes the ECG and makes a determination of whether the patient has AF. The device may further be configured to provide a visual or audio indication of whether the patient has AF, or does not have AF. The device may be employed in a health care provider's office without the need for complicated or expensive diagnostic equipment, and is capable of providing an on-the-spot and low-cost diagnosis of AF.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Applicant: Applied Biomedical Systems BV
    Inventors: Richard P. Houben, Vincent C. Larik, Robert G. Tieleman
  • Patent number: 8364249
    Abstract: Methods and systems for simulating a phonocardiogram (PCG) signal that includes an anomalous condition are provided. The method generates pressure and flow signals from a lumped-parameter heart model responsive to anomaly parameters. The anomaly parameters represent the anomalous condition. A timing profile or the timing profile and an amplitude profile are extracted from at least one of the generated pressure and flow signals. An anomalous signal is generated using the anomaly parameters and the extracted timing profile or timing profile and amplitude profile. The anomalous signal is time-aligned and combined with a predetermined non-anomalous signal to represent the PCG signal.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: January 29, 2013
    Assignee: 3M Innovative Properties Company
    Inventor: Raymond L. Watrous
  • Patent number: 8353843
    Abstract: A method for providing contents and an electronic device having a function therefore is disclosed. The method comprises receiving information regarding a current heart rate of a user, selecting an audio file having a specific tempo determined in consideration of the current heart rate and a reference heart rate, and reproducing the selected audio file and a heartbeat sound reflecting the current heart rate simultaneously. Therefore, the heartbeat of the user may be effectively controlled.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: January 15, 2013
    Assignee: LG Electronics Inc.
    Inventors: Seong Moon Cho, Youn Jae Lee, Vladimir Karyunovich Nagapetyan, Alexandr Nikolaevich Razumov, Viktoria Aslanbekovna Badtieva
  • Patent number: 8328728
    Abstract: Provided herein are implantable systems that include an implantable photoplethysmography (PPG) sensor, which can be used to obtain an arterial PPG waveform. In an embodiment, a metric of a terminal portion of an arterial PPG waveform is determined, and a metric of an initial portion of the arterial PPG waveform is determined, and a surrogate of mean arterial pressure is determined based on the metric of the terminal portion and the metric of the initial portion. In another embodiment, a surrogate of diastolic pressure is determined based on a metric of a terminal portion of an arterial PPG waveform. In a further embodiment, a surrogate of cardiac afterload is determined based on a metric of a terminal portion of an arterial PPG waveform.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Stuart O. Schecter
  • Patent number: 8185190
    Abstract: Methodology involving assessing, and applying therapy regarding, degree of ischemia and risk for sudden cardiac death in a therapy-device-equipped subject utilizing a Holter-type instrumentality. The methodology includes (a) gathering simultaneous ECG and heart-sound data, (b) computer processing and interrelating the gathered data to obtain one or more heart-functionality parameter(s), focusing on LDPT and % LVST, and (c), using these obtained parameters, adjusting, as necessary, the therapy device so as to minimize and counteract the likelihood of the onset or advancement of ischemia, and/or the onset of sudden cardiac death.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 22, 2012
    Assignee: Inovise Medical, Inc.
    Inventor: Peter T. Bauer
  • Patent number: 8162844
    Abstract: A system and method for managing preload reserve and tracking the inotropic state of a patient's heart. The S1 heart sound is measured as a proxy for direct measurement of stroke volume. The S3 heart sound may be measured as a proxy for direct measurement of preload level. The S1-S3 pair yield a point on a Frank Starling type of curve, and reveal information regarding the patient's ventricular operating point and inotropic state. As an alternative, or in addition to, measurement of the S3 heart sound, the S4 heart sound may be measured or a direct pressure measurement may be made for the sake of determining the patient's preload level. The aforementioned measurements may be made by a cardiac rhythm management device, such as a pacemaker or implantable defibrillator.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 24, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gerrard M. Carlson, Ramesh Wariar, Krzysztof Z. Siejko
  • Publication number: 20110201954
    Abstract: A method includes obtaining electrocardiograms during exercise tests performed on patients, converting the electrocardiograms to audio files, transferring the audio files to a portable electronic device for playback, and receiving a patient list from the portable electronic device. The patient list includes a list of a group of the patients identified for further investigation based on the playback of the audio files.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 18, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Willi Kaiser, Martin Findeis, Rolf Band
  • Publication number: 20110201953
    Abstract: A method includes receiving audio files from a computer using a portable electronic device. The audio files are electrocardiograms obtained during exercise tests performed on patients and converted to an audio format. The method also includes performing audio playback of the audio files, receiving user input at the portable electronic device regarding an analysis of the patients based on the playback of the audio files, and compiling a list of a group of the patients selected for further investigation based on the user input.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 18, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Willi Kaiser, Martin Findeis, Rolf Band
  • Patent number: 7930019
    Abstract: A cardiac rhythm management system provides a phonocardiographic image indicative of a heart's mechanical events related to hemodynamic performance. The phonocardiographic image includes a stack of acoustic sensor signal segments representing multiple cardiac cycles. Each acoustic sensor signal segment includes heart sounds indicative of the heart's mechanical events and representations of the heart's electrical events. The stack of acoustic sensor signal segments are aligned by a selected type of the heart's mechanical or electrical events and are grouped by a cardiac timing parameter for presentation.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: April 19, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, Gerrard M. Carlson, William C. Lincoln, Qingsheng Zhu
  • Patent number: 7920912
    Abstract: A system and method for triggering an external device in response to an electrocardiogram signal. In one embodiment the method includes determining a peak in the electrocardiogram signal, determining if the electrocardiogram signal is rising or falling at the peak in the signal and triggering a device in response to the rising or falling peak. In one embodiment of the invention an external trigger signal is produced only a rising peak is detected. In one embodiment, the system includes a microprocessor, a peak detector and a trigger circuit. The trigger circuit outputs a trigger signal to an external device when signaled by the peak detector and not inhibited by a signal from the microprocessor.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: April 5, 2011
    Assignee: Ivy Biomedical Systems, Inc.
    Inventors: Mark Steven Harris, Richard Alan Mentelos
  • Patent number: 7753856
    Abstract: A method for cardio-acoustic signal analysis includes receiving a signal representative of heart sounds and displaying the signal in a time-perceptual frequency-perceptual loudness domain representation. The received signal is transformed to represent a time-perceptual frequency-amplitude domain. The method further includes applying a human auditory modeling algorithm to the time-perceptual frequency-amplitude domain representation to generate the time-perceptual frequency-perceptual loudness domain representation.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 13, 2010
    Assignee: Medicalgorithmics Ltd.
    Inventor: Marek Dziubinski
  • Patent number: 7715909
    Abstract: A seismocardiograph using multiple accelerometer sensors to identify cardiac valve opening and closing times. A methodology for selecting event times is also disclosed.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: May 11, 2010
    Assignee: Acceleron Medical Systems, Inc.
    Inventors: John M. Zanetti, Douglas Perlick
  • Patent number: 7682316
    Abstract: An implantable medical device system senses a first signal using a first acoustical sensor adapted to be operatively positioned in a first internal body location for sensing heart sounds in a patient. The system includes a second acoustical sensor adapted to be operatively positioned in a second internal body location for sensing sounds in the patient and generate a second signal that is less responsive to the heart sounds than the first acoustical signal. An implantable medical device including a housing and a processor enclosed in the housing receives the first signal and the second signal and generates a corrected first signal by canceling non-cardiac signals in the first signal using the second signal.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 23, 2010
    Assignee: Medtronic, Inc.
    Inventors: David A. Anderson, Can Cinbis
  • Patent number: 7668589
    Abstract: A system and a related methodology for gathering, during a selected time span, and from a common anatomical site, time-contemporaneous ECG-electrical and heart-sound signals including (1) processing such signals to effect (a) time-based, related ECG fiducials, and (b) systolic and diastolic heart-sound indicators, and (2) creating a reportable data stream which communicates such effected fiducials and indicators in a manner whereby time-based relationships between them, and non-time-based differentiation between systolic and diastolic heart-sound indicators, are made visually discernible. The methodology of the invention may also be implemented strictly for the gathering and processing of heart sounds.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: February 23, 2010
    Assignee: Inovise Medical, Inc.
    Inventor: Peter T. Bauer
  • Patent number: 7634309
    Abstract: A system, method, or device monitor a force-frequency relationship exhibited by a patient's heart. A contractility characteristic, such as a heart sound characteristic of an S1 heart sound, is measured. The contractility characteristic indicates the forcefulness of a contraction of the heart. The frequency at which the heart is contracting is determined. A group of (contractility characteristic, heart rate) pairs is stored in a memory device. The group of pairs defines a force-frequency relationship for the heart. The method may be implemented by an implantable device, or by a system including a implantable device.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: December 15, 2009
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ramesh Wariar, Gerrard M. Carlson
  • Patent number: 7599734
    Abstract: An electronic endoscope system with high operability and high observing performance capable of driving properly and automatically the light-emitting elements without the size increase in system is provided, even in the case of using a plurality of interchangeable optical adaptors having varied numbers of light-emitting elements. A plurality of optical adaptors having LEDs are detachable to the distal end of an insertion unit of an endoscope. The insertion unit has an inserted electric cable connected to the LEDs. A constant-current circuit of an LED driving circuit flows constant current to the LEDs via the electric cable.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: October 6, 2009
    Assignee: Olympus Corporation
    Inventor: Masato Naruse
  • Patent number: 7585279
    Abstract: A system and method for managing preload reserve and tracking the inotropic state of a patient's heart. The S1 heart sound is measured as a proxy for direct measurement of stroke volume. The S3 heart sound may be measured as a proxy for direct measurement of preload level. The S1-S3 pair yield a point on a Frank Starling type of curve, and reveal information regarding the patient's ventricular operating point and inotropic state. As an alternative, or in addition to, measurement of the S3 heart sound, the S4 heart sound may be measured or a direct pressure measurement may be made for the sake of determining the patient's preload level. The aforementioned measurements may be made by a cardiac rhythm management device, such as a pacemaker or implantable defibrillator.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: September 8, 2009
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gerrard M. Carlson, Ramesh Wariar, Krzysztof Z. Siejko
  • Patent number: 7559900
    Abstract: A method and device for detecting cardiac signals that includes a first plurality of electrodes that senses cardiac signals and delivers therapy, and a second plurality of electrodes that senses the cardiac signals. A microprocessor detects a cardiac event in response to the sensing by the first plurality of electrodes, and verifies the cardiac event in response to the sensing by the second plurality of electrodes.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: July 14, 2009
    Assignee: Medtronic, Inc.
    Inventor: Jeffrey M. Gillberg
  • Patent number: 7517319
    Abstract: A method and system for analyzing sounds originating in at least a portion of an individual's cardiovascular system. N transducers, where N is an integer, are fixed on a surface of the individual over the thorax. The ith transducer is fixed at a location xi and generates an initial signal P(xi,i) indicative of pressure waves at the location xi, for i=1 to N. the signals P(xi,t) are processed so as to generate filtered signals in which at least one component of the signals P(xi,t)not arising from cardiovascular sounds has been removed. The filtered signals may be used for generating an image of the at least portion of the cardiovascular system.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: April 14, 2009
    Assignee: Deepbreeze Ltd.
    Inventors: Igal Kushnir, Meir Botbol
  • Publication number: 20080255464
    Abstract: A system for diagnosing Long QT Syndrome (LQTS) derives a QT/QS2 ratio from an electrical systole (QT) and a mechanical systole (QS2) to detect a prolonged QT interval in a patient's cardiac cycle. A processor acquires the systoles from a microphone and chest electrodes, calculates the QT/QS2 ratio, and outputs the result to a display. The processor may compare the QT/QS2 ratio to a threshold value stored in memory for diagnosing LQTS in the patient. A user interface provides for programming, set-up, and customizing the display. A mode selector allows the system to operate alternatively as a phonocardiograph, a 12 lead electrocardiograph, or a machine for diagnosing LQTS. A related method for diagnosing cardiac disorders such as LQTS includes measuring QT and QS2 during a same cardiac cycle, calculating a QT/QS2 ratio, and comparing the result to a threshold value derived from empirical data.
    Type: Application
    Filed: April 10, 2007
    Publication date: October 16, 2008
    Inventor: G. Michael Vincent
  • Patent number: 7424321
    Abstract: A system to monitor heart sounds, such as to detect a worsening condition of heart failure decompensation. The system comprises a medical device that includes an implantable multi-axis heart sound sensor, operable to produce, for each of at least two nonparallel axes, an electrical signal representative of at least one heart sound, the heart sound associated with mechanical activity of a patient's heart. The device further includes a controller circuit coupled to the heart sound sensor. The controller circuit measures components of the heart sound that respectively correspond to each of the axes.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: September 9, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ramesh Wariar, Krzysztof Z. Siejko, Gerrard M. Carlson, Jeffrey E. Stahmann
  • Publication number: 20080171945
    Abstract: Apparatus for measuring a user's heart rate and other physiological parameters derived from two electrodes at least one of which is in contact with the user's head. The second electrode is in contact with the user's skin. A heart rate detection circuit is coupled to the electrodes to detect the user's heart rate as electrical potential difference between the first and second electrodes. The electrodes may be integral with user apparel such as hats, headbands, helmets, eyewear, etc. The electrodes may be integral with headphone speakers in contact with the user's ears. The heart rate detection circuit may be integral with or coupled to an audio source device such as an MP3 player or a portable communication device. The detected heart rate may be presented to the user as audio signals or as visually displayed information. A third electrode may be added to improve the quality of the sensed signals.
    Type: Application
    Filed: November 20, 2007
    Publication date: July 17, 2008
    Inventor: James E. Dotter
  • Patent number: 7302290
    Abstract: Apparatus and associated methodology for monitoring correlatable anatomical electrical and sound signals, such as electrical and audio signals produced by human heart activity, including (a) attaching to a selected, common anatomical site ECG (or other) electrode structure, and a multi-axial sound sensor, and (b) simultaneously collecting from adjacent that site both ECG(or other)-electrical and sound signals, where such sound signals arrive adjacent the site along multiple, angularly intersecting axes.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: November 27, 2007
    Assignee: Inovise, Medical, Inc.
    Inventor: Peter T. Bauer
  • Patent number: 7260429
    Abstract: A cardiac rhythm management system provides a phonocardiographic image indicative of a heart's mechanical events related to hemodynamic performance. The phonocardiographic image includes a stack of acoustic sensor signal segments representing multiple cardiac cycles. Each acoustic sensor signal segment includes heart sounds indicative of the heart's mechanical events and representations of the heart's electrical events. The stack of acoustic sensor signal segments are aligned by a selected type of the heart's mechanical or electrical events and are grouped by a cardiac timing parameter for presentation.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: August 21, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, Gerrard M. Carlson, William C. Lincoln, Qingsheng Zhu
  • Patent number: 7248923
    Abstract: An implantable medical device includes a dual-use sensor such as a single accelerometer that senses an acceleration signal. A sensor processing circuit processes the acceleration signal to produce an activity level signal and a heart sound signal. The implantable medical device provides for rate responsive pacing in which at least one pacing parameter, such as the pacing interval, is dynamically adjusted based on the physical activity level. The implantable medical device also uses the heart sounds for pacing control purposes or transmits a heart sound signal to an external system for pacing control and/or diagnostic purposes.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: July 24, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Keith R. Maile, Krzysztof Z. Siejko