Plural Sensed Conditions Patents (Class 607/18)
  • Publication number: 20140188184
    Abstract: In an example, a pacing therapy can be optimized using information indicative of an offset duration between an intrinsic first atrioventricular delay of a subject at rest and a second atrioventricular delay specified to enhance a cardiac output of the subject heart when the subject is at rest. Optimizing the therapy can include receiving information about a heart rate of the subject and receiving information about an intrinsic, heart rate dependent atrioventricular delay. In an example, a therapy parameter, such as a therapy atrioventricular delay, can be adjusted using information about the received heart rate of the subject, the heart-rate-dependent third AV delay, or the offset duration.
    Type: Application
    Filed: November 21, 2013
    Publication date: July 3, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Allan C. Shuros
  • Publication number: 20140180352
    Abstract: An implantable medical device, IMD, comprises atrial and ventricular sensing units for sensing atrial or ventricular electric events. The IMD also comprises atrial and ventricular pulse generators for generating atrial or ventricular pacing pulses. A controller controls the operation of the IMD (100) according to a first mode, in which the ventricular pulse generator is prevented from generating a back-up pulse if an evoked response detector fails to detect evoked response to a delivered ventricular pacing pulse, and a second mode, in which the ventricular pulse generator is controlled to generate a back-up pulse if no evoked response is detected following delivery of a ventricular stimulating pulse. The controller switches operation from the first mode to the second mode based on the evoked response detector failing to detect an evoked response to a delivered ventricular pacing pulse.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: ST. JUDE MEDICAL AB
    Inventor: Johan Eckerdal
  • Publication number: 20140172035
    Abstract: An apparatus comprises a cardiac signal sensing circuit and a first implantable electrode pair. At least one electrode of the first implantable electrode pair is configured for placement at a location in a right branch of a His bundle of the subject. The apparatus can include a therapy circuit and a control circuit. The control circuit can include an AH delay calculation circuit configured to calculate an optimal paced AH delay interval. The pacing stimulation location is distal to a location of RV conduction block in a right branch of the His bundle. The control circuit initiates delivery of an electrical stimulation pulse to the stimulation location in the His bundle according to the calculated paced AH delay interval and in response to an intrinsic depolarization event sensed in an atrium of the subject.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Jiang Ding, Barun Maskara, Yinghong Yu
  • Publication number: 20140172037
    Abstract: A device produces at least two distinct temporal components (Vbip, Vuni) from two separate endocardial electrogram EGM signals concurrently collected in the same cavity. A 2D non-temporal characteristic is determined from the variations of one of the temporal components (Vuni) versus the other (Vbip). The analysis of this characteristic allows detection of the possible presence of an anodal stimulation, causing a depolarization in a second cavity after stimulation delivered to a first heart chamber, opposite to the first. One possibility is to proceed by observing whether the non-temporal 2D characteristic is included or not within a predetermined domain defined in a coordinate frame corresponding to the space of the two temporal components.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 19, 2014
    Inventors: Marie-Anne Euzen, Elodie Vincent, Laurence Graindorge
  • Publication number: 20140172036
    Abstract: A device produces at least two distinct temporal components (Vbip, Vuni) from two separate endocardial electrogram (EGM) signals concurrently collected. The capture test determines a non-temporal 2D characteristic (VGM) representative of the cardiac cycle to be analyzed. The VGM is constructed using variations of one of the temporal components (Vuni) according to the other (Vbip). The devices determines the presence or absence of capture by analysis of this characteristic relative to a two dimensional domain.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 19, 2014
    Inventors: Marie-Anne Euzen, Elodie Vincent
  • Patent number: 8753276
    Abstract: In an embodiment, an implantable medical device includes a controller circuit, a posture sensing circuit, and a physiological sensing circuit. The controller circuit senses a change in a physiological signal as a result of a change in posture, and generates a response as a function of that change. In another embodiment, the controller circuit identifies a heart failure condition as a function of the change in the physiological signal.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John D. Hatlestad, Imad Libbus, Aaron Lewicke
  • Patent number: 8755874
    Abstract: In an implantable medical device such as an implantable cardiac defibrillator, and a method for classifying arrhythmia events, IEGM signals are analyzed to detect an arrhythmia event and a respiratory pattern of the patient is sensed. At least one respiratory parameter reflecting characteristics of the respiratory pattern of the patient is determined based on the sensed respiratory pattern and a respiratory measure corresponding to a change of a rate of change of the at least one respiratory parameter is calculated. The detected arrhythmia event is classified based on the respiratory measure and the IEGM signals, wherein arrhythmia events that satisfy at least a first criterion is classified as an arrhythmia event requiring therapy.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 17, 2014
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Rupinder Bharmi, Michael Broomé, Karin Järverud
  • Publication number: 20140163631
    Abstract: A method of operating a cardiac therapy system to deliver cardiac resynchronization therapy (CRT) pacing that includes pacing both ventricles or pacing only the left ventricle is described. Delivery of the CRT pacing to one or both ventricles is scheduled for a cardiac cycle. If an intrinsic depolarization of a ventricle is detected during a pacing delay of the ventricle, then the scheduled CRT pacing to the ventricle is inhibited for the cycle. The intrinsic interval of the ventricle, such as the intrinsic atrioventricular interval concluded by the intrinsic depolarization, is measured. During a subsequent cardiac cycle, the pacing delay of the ventricle is decreased to be less than or equal to the measured intrinsic interval. Capture of the ventricle is verified after pacing is delivered during the subsequent cardiac cycle.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Jiang Ding, M. Jason Brooke
  • Patent number: 8750963
    Abstract: An implantable electromedical device, having a detection unit for capturing possible device-impairing effects, a control unit, which is connected to the detection unit, a diagnostic and/or treatment unit, and a test unit, of which the test unit is designed to test the diagnostic-treatment unit, and to output test results for storage, of which the diagnostic and/or treatment unit includes sensor units and/or treatment delivery units as components and is designed to record physiological parameters and/or bring about delivery of a treatment, and of which the control unit is designed to actuate the test unit for testing the diagnostic-treatment unit.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: June 10, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Patent number: 8740789
    Abstract: A system and related method for identifying a trigger event to a patient health-related exacerbation. The system includes at least one sensor configured to collect data related to the patient health-related exacerbation, an analyzer configured to validate the collected data, a patient interface device configured to receive patient inputs to at least one question, and an identifier device configured to receive the patient inputs and collected data and identify the trigger event. The system may also include an expert system configured to receive the patient inputs and the validated collected data and identify a primary patient disease, and a reporting device configured to generate reports related to the identified primary patient disease, patient inputs, and sensed patient conditions.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: June 3, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Marina Brockway, David Johnson, Don Goscha, Veerichetty A. Kadhiresan, Muralidharan Srivathsa, Lisa Haeder
  • Patent number: 8744577
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: June 3, 2014
    Assignee: Physio-Control, Inc.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Patent number: 8738111
    Abstract: Systems and methods for cardiac contraction detection using information indicative of lead motion are described. In an example, an implantable medical device can include a receiver circuit configured to be electrically coupled to conductor comprising a portion of an implantable lead and be configured to obtain information indicative of a movement of the implantable lead due at least in part to a motion of a heart. The device can include a processor circuit configured to determine whether a cardiac mechanical contraction occurred during a specified interval included in the obtained information indicative of the movement of the implantable lead. The processor circuit can be configured to determine information about the cardiac mechanical contraction using the obtained information indicative of the movement of the implantable lead.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 27, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Allan C. Shuros, Krzysztof Z. Siejko, David C. Olson, Frank Ingle
  • Publication number: 20140142650
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
  • Publication number: 20140142649
    Abstract: Response to cardiac resynchronization therapy is predicted for a given stimulation site so that an atrioventricular delay of an implantable device administering cardiac resynchronization therapy may be set to a proper amount. The first deflection of ventricular depolarization is measured, such as through a surface electrocardiogram or through an intracardiac electrogram measured by a lead positioned in the heart at the stimulation site. The maximum deflection of the ventricular depolarization is then measured by the lead positioned at the stimulation site. The interval of time between the first deflection and the maximum deflection of the ventricular depolarization is compared to a threshold to determine whether the stimulation site is a responder site. If the interval is larger than the threshold, then the site is a responder and the atrioventricular delay of the implantable device may be set to less than the intrinsic atrioventricular delay of the patient.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Julio C. Spinelli, Yinghong Yu
  • Publication number: 20140142651
    Abstract: An implantable medical device operates to promote intrinsic ventricular depolarization according to a pacing protocol. When a cardiac rate exceeds a predetermined threshold, the implantable medical device modifies the pacing protocol parameters to promote AV synchrony.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Inventors: Mattias Rouw, Willem Boute, Peter M. Van Dam
  • Patent number: 8731665
    Abstract: Systems and methods are provided for detecting the orientation and/or movement of a patient having an implantable cardiac stimulation device and evaluating whether a change in the patient's cardiac activity can be at least in part due to a change in the patient's orientation. In one particular embodiment, signals from an orientation sensor and/or a pressure sensor are evaluated to determine static positional orientation of the patient and determine based on the static orientation whether the patient's cardiac activity is abnormal.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: May 20, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Laleh Jalali, Steve Koh, Gene A. Bornzin, Euljoon Park
  • Publication number: 20140135866
    Abstract: A method can include providing (302) at least one parameter to control a therapy that is applied to at least one internal anatomical structure of a patient. Electrical data can be obtained from the patient (304), including electrical data acquired via a plurality of sensors during each of a plurality of iterations of the therapy. The electrical data can be analyzed (306) for a respective value of the at least one parameter of the therapy at each of the plurality of iterations of the applied therapy to compute an indication of at least one function of the at least one internal anatomical structure of the patient at each respective iteration of the applied therapy. The computed indication can be stored in memory (308). At least one parameter of the therapy can be adjusted (310) for delivery in a subsequent one of the plurality of iterations based on the indication of the at least one function.
    Type: Application
    Filed: July 5, 2012
    Publication date: May 15, 2014
    Applicant: Cardioinsight Technologies, Inc.
    Inventors: Charulatha Ramanathan, Harold Wodlinger, Ping Jia, Maria Strom
  • Patent number: 8725089
    Abstract: Provided are a first hub corresponding to a first WBAN and a second hub corresponding to a second WBAN which may communicate with each other through a temporal connection. The temporal connection may decrease the usage of additional data, complexity, and power consumption that typically occurs due to mutual communication between different WBANs.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: May 13, 2014
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Young Soo Kim, Chang Soon Park, Young Jun Hong, Daesik Hong, Seokwon Lee, Hyungsik Ju
  • Patent number: 8725260
    Abstract: Systems and methods of performing rhythm discrimination within a patient's body using sensed hemodynamic signals are disclosed. The method can include the steps of receiving an electrical activity signal from an electrode located within or near the heart, detecting an event of the heart based on the received electrical activity signal, sensing one or more mechanical measurements using a sensor located within the body, analyzing a mechanical activity signal received from the sensor, and confirming the type of event based on the mechanical and electrical activity signals. The sensor can comprise a single pressure sensor configured to sense both atrial and ventricular activity within the heart.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: May 13, 2014
    Assignee: Cardiac Pacemakers, Inc
    Inventors: Allan C. Shuros, Dan Li, Quan Ni
  • Publication number: 20140128932
    Abstract: An electrode stimulation delivery system is described having a unit and a network of wireless remote electrodes configured for implantation within a plurality of spaced apart locations in the tissue, e.g. myocardium, of a patient. The control unit is configured to be positioned at or subcutaneous to the patient's skin, and includes a processor, an antenna configured for delivering RF energy in proximity to the plurality of wireless remote electrodes, and programming executable on the processor for wirelessly communicating to the network of wireless remote electrodes via the delivered RF energy to individually control pacing of the plurality of wireless remote electrodes. Each of the plurality of wireless remote electrodes comprises a metamaterial-based biomimetic harvesting antenna comprising a Van Atta array zero-phase transmission lines to receive the RF energy to power activation of the plurality of wireless remote electrodes.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 8, 2014
    Applicants: UNIVERSITY OF NORTH DAKOTA, NDSU RESEARCH FOUNDATION
    Inventors: Daniel Ewert, Benjamin Braaten, Cody Satterlee, Brian Schwandt, Sheyann Harrison, Christopher Yost, Joshua Wynne
  • Publication number: 20140128933
    Abstract: Approaches for characterizing a phrenic stimulation threshold, a cardiac capture threshold, a maximum device parameter, and a minimum device parameter are described. A plurality of cardiac pacing pulses can be delivered by using a cardiac pacing device, a pacing parameter of the plurality of cardiac pacing pulses being changed between delivery of at least some of the pulses. One or more sensor signals can be evaluated to detect stimulation of the phrenic nerve by one or more of the plurality of cardiac pacing pluses. The evaluation of the one or more sensor signals and the pacing parameter can be compared to determine if a phrenic stimulation threshold is at least one of higher than a maximum device parameter and lower than a minimum device parameter.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 8, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventor: M. Jason Brooke
  • Patent number: 8718764
    Abstract: An implantable cardiac rhythm/function management system integrates cardiac contractility modulation (CCM) and one or more other therapies, such as to preserve device safety, improve efficacy, enhance sensing and detection, or enhance therapy effectiveness and delivery. Examples of the one or more other therapies can include pacing, defibrillation/cardioversion, cardiac resynchronization therapy (CRT), or neurostimulation.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: May 6, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Jeffrey E. Stahmann
  • Patent number: 8718767
    Abstract: An implantable medical device, IMD, comprises atrial and ventricular sensing units for sensing atrial or ventricular electric events. The IMD also comprises atrial and ventricular pulse generators for generating atrial or ventricular pacing pulses. The ventricular sensing unit is connectable to a multi-electrode lead to individually sense electric events in a ventricle using multiple electrode pairs implanted at different ventricular sites. A controller blanks the ventricular sensing unit during a blanking period following delivery of an atrial stimulating pulse by the atrial pulse generator and activates the ventricular sensing unit at the expiry of the blanking period. Due to the lower propagation speed of PVC depolarization waves and the multi-site sensing, a PVC depolarization wave initiated at a ventricular site during the blanking period can be detected by the IMD.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 6, 2014
    Assignee: St. Jude Medical AB
    Inventor: Anders Lindgren
  • Publication number: 20140121719
    Abstract: A device includes a signal generator module, a processing module, and a housing. The signal generator module is configured to deliver pacing pulses to an atrium. The processing module is configured to detect a ventricular activation event and determine a length of an interval between the ventricular activation event and a previous atrial event that preceded the ventricular activation event. The processing module is further configured to schedule a time at which to deliver a pacing pulse to the atrium based on the length of the interval and control the signal generator module to deliver the pacing pulse at the scheduled time. The housing is configured for implantation within the atrium. The housing encloses the stimulation generator and the processing module.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Saul E. Greenhut, Todd J. Sheldon, Wade M. Demmer
  • Publication number: 20140121720
    Abstract: A device includes a signal generator module, a processing module, and a housing. The signal generator module is configured to deliver pacing pulses to an atrium. The processing module is configured to detect a ventricular activation event and determine a length of an interval between the ventricular activation event and a previous atrial event that preceded the ventricular activation event. The processing module is further configured to schedule a time at which to deliver a pacing pulse to the atrium based on the length of the interval and control the signal generator module to deliver the pacing pulse at the scheduled time. The housing is configured for implantation within the atrium. The housing encloses the stimulation generator and the processing module.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Matthew D. Bonner, Saul E. Greenhut, Todd J. Sheldon, Wade M. Demmer
  • Patent number: 8712519
    Abstract: Techniques are provided for controlling therapy provided by the implantable cardiac stimulation device based on cardiogenic impedance. A cardiogenic impedance signal (or intracardiac impedance signal) is an impedance signal representative of the beating of the heart of the patient in which the device is implanted. The cardiogenic impedance signal is sensed along a sensing vector passing through at least a portion of the heart so that the sensed impedance is affected by the mechanical beating of the heart along that sensing vector. Pacing therapy is automatically and adaptively adjusted based on the cardiogenic impedance signal. For example, pacing timing parameters such as the atrioventricular delay and the inter-ventricular delay may be adjusted. Preferably, the adjustments are adaptive, i.e. the adjustments are performed in a closed-loop so as to adapt the adjustments to changes in the cardiogenic impedance signal so as to optimize therapy.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: April 29, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Dorin Panescu, Weiqun Yang, Louis Wong, Nils Holmstrom, Andre Walker
  • Publication number: 20140114370
    Abstract: Various system embodiments comprise a stimulator adapted to deliver a stimulation signal for a heart failure therapy, a number of sensors adapted to provide at least a first measurement of a heart failure status and a second measurement of the heart failure status, and a controller. The controller is connected to the stimulator and to the number of sensors. The controller is adapted to use the first and second measurements to create a heart failure status index, and control the stimulator to modulate the signal using the index. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Krzysztof Z. Siejko, Marina V. Brockway, Robert J. Sweeney
  • Patent number: 8706223
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: April 22, 2014
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Lilian Kornet, Richard N. M. Cornelussen, Paul D. Ziegler, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Lucy Nichols, Alberto Della Scala
  • Publication number: 20140107507
    Abstract: In one example, a method includes determining a slope of a cardiac electrogram. The method may also include determining a threshold value based on a maximum of the slope of the cardiac electrogram. The method may further include identifying a last point of the cardiac electrogram before the slope of the cardiac electrogram crosses the threshold as one of an onset or an offset of a wave. In another example, the method further includes receiving an indication of local ventricular motion associated with a cardiac contraction, and determining an electromechanical delay between the identified onset and the local ventricular motion. Some examples include providing the electromechanical delay for configuration of cardiac resynchronization therapy.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 17, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Subham Ghosh, Teresa A. Whitman
  • Patent number: 8700153
    Abstract: An implantable medical device, IMD, comprises atrial and ventricular sensing units for sensing atrial or ventricular electric events. The IMD also comprises atrial and ventricular pulse generators for generating atrial or ventricular pacing pulses. A controller controls the operation of the IMD (100) according to a first mode, in which the ventricular pulse generator is prevented from generating a back-up pulse if an evoked response detector fails to detect evoked response to a delivered ventricular pacing pulse, and a second mode, in which the ventricular pulse generator is controlled to generate a back-up pulse if no evoked response is detected following delivery of a ventricular stimulating pulse. The controller switches operation from the first mode to the second mode based on the evoked response detector failing to detect an evoked response to a delivered ventricular pacing pulse.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 15, 2014
    Assignee: St. Jude Medical AB
    Inventor: Johan Eckerdal
  • Publication number: 20140100626
    Abstract: An implantable cardiac device includes a sensor for sensing patient activity and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the accelerometer signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 10, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob I. Laughner
  • Publication number: 20140100625
    Abstract: In a pacing mode where the left ventricle is paced upon expiration of an escape interval that is reset by a right ventricular sense, there is the risk that the left ventricular pace may be delivered in the so-called vulnerable period that occurs after a depolarization and trigger an arrhythmia. To reduce this risk, a left ventricular protective period (LVPP) may be provided. Methods and devices for implementing an LVPP in the context of multi-site left ventricular pacing are described.
    Type: Application
    Filed: December 11, 2013
    Publication date: April 10, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, James O. Gilkerson, Krzysztof Z. Siejko, Yinghong Yu
  • Patent number: 8694098
    Abstract: Methods, devices, and processor-readable storage media are provided for detecting spontaneous ventricular events in a heart using implantable medical devices. A method in this context includes applying a sensitivity function to collected data to detect occurrence of ventricular events. The sensitivity function is based on an adjustable detection threshold. The method further includes determining whether noise is suspected to be present in the data and, if so, increasing the threshold. The method further includes providing a stimulation pulse to the heart when a ventricular event has not occurred after a predetermined escape interval and, following the stimulation pulse, applying a capture test to detect whether an induced depolarization has occurred. If induced polarization is not detected, the threshold is reduced, while the threshold is maintained if induced polarization is detected.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: April 8, 2014
    Assignee: Sorin CRM SAS
    Inventors: Elodie Vincent, Marie-Anne Euzen, Marcel Limousin
  • Publication number: 20140094870
    Abstract: A device includes a hemodynamic sensor measuring blood flow in the left chambers of a myocardium, at least one motion sensor measuring a displacement of the walls of the left ventricle of the myocardium, a first analysis module determining a time of closure of the aortic valve based on a signal of the hemodynamic sensor, a second analysis module determining a time of peak contraction of the left ventricle based on a signal from the motion sensors, and a third analysis module determining a time between the moment of peak contraction of the left ventricle and the moment of closure of the aortic valve. If the peak of contraction of the left ventricle is after the instant of closure of the aortic valve, the device adjusts the inter-ventricular delay and/or the atrioventricular delay to minimize or cancel the time disparity.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Inventors: Fabrizio Renesto, Christine Henry
  • Patent number: 8688213
    Abstract: An apparatus comprises a cardiac signal sensing circuit configured to sense an electrical cardiac signal from at least one of an atrium or ventricle of a heart of a subject, a therapy circuit configured to provide electrical pacing therapy and electrical autonomic neural modulation therapy to the subject, and a control circuit. The control circuit is configured to initiate delivery of the autonomic modulation neural therapy, and the control circuit includes a signal detection circuit configured to detect delivery of the autonomic neural modulation therapy in the sensed cardiac signal. The control circuit is configured to change, in response to detecting the delivery, a sensitivity of the cardiac signal sensing circuit during delivery of the autonomic neural modulation therapy.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: April 1, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Douglas J. Brandner, Ramprasad Vijayagopal, Nicholas J. Stessman, William J. Linder, Keith R. Maile, Abhi V. Chavan
  • Patent number: 8688214
    Abstract: A system comprising implantable device, the implantable medical device including an intrinsic cardiac signal sensor, an impedance measurement circuit configured to apply a specified current to a transthoracic region of a subject and to sample a transthoracic voltage resulting from the specified current, and a processor coupled to the intrinsic cardiac signal sensor and the impedance measurement circuit. The processor is configured to initiate sampling of a transthoracic voltage signal in a specified time relation to a fiducial marker in a sensed intrinsic cardiac signal, wherein the sampling attenuates or removes variation with cardiac stroke volume from the transthoracic voltage signal, and determine lung respiration using the sampled transthoracic voltage signal.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: April 1, 2014
    Assignee: Cardiac Pacemakers. Inc.
    Inventors: Jaeho Kim, Quan Ni
  • Patent number: 8688212
    Abstract: A method for managing bradycardia through vagus nerve stimulation is provided. An implantable neurostimulator configured to deliver electrical therapeutic stimulation in both afferent and efferent directions of a patient's cervical vagus nerve is provided. An operating mode is stored, which includes parametrically defining a maintenance dose of the electrical therapeutic stimulation tuned to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. The maintenance dose is delivered via a pulse generator through a pair of helical electrodes via an electrically coupled nerve stimulation therapy lead independent of cardiac cycle. The patient's physiology is monitored, and upon sensing a condition indicative of bradycardia, the delivery of the maintenance dose is suspended.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 1, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. Kenknight
  • Patent number: 8682428
    Abstract: A method for operating an implantable medical device to obtain substantially synchronized closure of the mitral and tricuspid valves based on sensed heart sounds includes sensing an acoustic energy; producing signals indicative of heart sounds of the heart of the patient over predetermined periods of a cardiac cycle during successive cardiac cycles; calculating a pulse width of such a signal; and iteratively controlling a delivery of the ventricular pacing pulses based on calculated pulse widths of successive heart sound signals to identify an RV interval or VV interval that causes a substantially synchronized closure of the mitral and tricuspid valve. A medical device for optimizing an RV interval or VV interval based on sensed heart sounds implements such a method and a computer readable medium encoded with instructions causes a computer to perform such a method.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: March 25, 2014
    Assignee: St. Jude Medical AB
    Inventors: Nils Holmström, Kjell Noren
  • Publication number: 20140073971
    Abstract: A system and method for managing preload reserve and tracking the inotropic state of a patient's heart. The S1 heart sound is measured as a proxy for direct measurement of stroke volume. The S3 heart sound may be measured as a proxy for direct measurement of preload level. The S1-S3 pair yield a point on a Frank Starling type of curve, and reveal information regarding the patient's ventricular operating point and inotropic state. As an alternative, or in addition to, measurement of the S3 heart sound, the S4 heart sound may be measured or a direct pressure measurement may be made for the sake of determining the patient's preload level. The aforementioned measurements may be made by a cardiac rhythm management device, such as a pacemaker or implantable defibrillator.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 13, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Gerrard M. Carlson, Ramesh Wariar, Krzysztof Z. Siejko
  • Publication number: 20140067002
    Abstract: Systems and methods for selection of electrodes and related pacing configuration parameters used to pace a heart chamber are described. A change in the hemodynamic state of a patient is detected. Responsive to the detected change, a distribution of an electrical, mechanical, or electromechanical parameter related to contractile function of a heart chamber with respect to locations of multiple electrodes disposed within the heart chamber is determined. A pacing output configuration, including one or more electrodes of the multiple electrodes, is selected and the heart chamber is paced using the selected pacing output configuration.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 6, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Michael J. Stucky, Yinghong Yu, Jiang Ding
  • Publication number: 20140052209
    Abstract: An embodiment of an implantable system configured to be implanted in a patient includes an accelerometer, a neural stimulator, and a controller. The neural stimulator is configured to deliver neural stimulation to a neural target. The controller is configured to use the accelerometer to detect laryngeal vibration or coughing, and is configured to deliver a programmed neural stimulation therapy using the neural stimulator and using detected laryngeal vibration or detected coughing as an input to the programmed neural stimulation therapy.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Krzysztof Z. Siejko, Stephen B. Ruble, Jason J. Hamann
  • Publication number: 20140046395
    Abstract: An intracorporeal autonomous active medical device having a capsule body and a base. The capsule body includes a body portion and a lid portion, and the capsule body contains therein electronic circuitry containing the active elements of the autonomous medical device, and a power supply. The capsule body also includes a fastening system on an exterior surface of the capsule body that is configured to correspond with a fastening mechanism on the base configured to be anchored to a tissue wall. The fastening mechanism provides selective engagement between the capsule body and the base.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Inventors: Willy Regnier, Martin Deterre, Patrice Poussin
  • Patent number: 8649853
    Abstract: Systems and methods to monitor cardiac function using information indicative of lead motion are described. In an example, a system including an implantable medical device can include a receiver circuit configured to be electrically coupled to conductor comprising a portion of an implantable lead and be configured to obtain information indicative of a movement of the implantable lead due at least in part to a motion of a heart. The system can include a sensing circuit configured to obtain information indicative of cardiac electrical activity. The system can include a processor circuit configured to construct a template representative of a contraction of the heart, where the template can be constructed using the information indicative of the movement of the implantable lead due at least in part to the motion of the heart during the contraction, and using the information indicative of the cardiac electrical activity sensed during the contraction.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 11, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Allan C. Shuros, Krzysztof Z. Siejko, David C. Olson, Frank Ingle
  • Patent number: 8649865
    Abstract: Time delays between a feature of a signal indicative of electrical activity of a patient's heart and a feature of a plethysmograph signal indicative of changes in arterial blood volume are used to arrange the operation of an implantable device, such as a pacemaker. Shorter time delays between the feature of the signal indicative of electrical activity of a patient's heart and the feature of the plethysmograph signal indicative of changes in arterial blood volume are indicative of larger cardiac stroke volumes. The time delay can be used to select a pacing site or combination of pacing sites and/or to select a pacing interval set.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: February 11, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Wenbo Hou, Edward Karst, Brian J. Wenzel, Timothy A Fayram
  • Patent number: 8649864
    Abstract: An implantable medical device that continuously measures the patient's intracardiac ventricular impedance. Extracts cardiac performance information based on the intracardiac impedance, including amplitude, timing and variability of cardiac contraction function. The device records and analysis trends in the performance information. The device identifies changes, which exceed the selected threshold limits. In the event of an incipient crisis, the device transmits an alert message.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: February 11, 2014
    Assignee: Biotronik CRM Patent AG
    Inventors: David F. Hastings, Xin Good, Volker Lang
  • Patent number: 8649852
    Abstract: An embodiment of the invention comprises a method of monitoring cardiac electrical activity with two or more ECG devices and computing an enhanced cardiac electrical signal from the cardiac electrical signals obtained from the two or more ECG devices. Electrodes of the two or more ECG devices are positioned in a manner to provide an electrical potential difference that is large enough to give useful information about a given ECG signal. The method further includes recommending addition of a supplemental ECG device when it is determined that the one or more of the existing ECG devices are inadequate for providing cardiac electrical data that identifies a specific cardiac event.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 11, 2014
    Assignee: Medtronic, Inc.
    Inventors: Zhendong Song, Sheng Wang
  • Publication number: 20140039333
    Abstract: Techniques are provided for use with an implantable medical device for evaluating mechanical cardiac dyssynchrony based impedance (Z) measured along different vectors between an electrode in the right ventricle (RV) and various electrodes of a multi-pole left ventricle (LV) lead.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: PACESETTER, INC.
    Inventor: Xiaoyi Min
  • Publication number: 20140039238
    Abstract: Techniques are provided for use with an implantable cardiac rhythm management (CRMD) system equipped to deliver neurostimulation to acupuncture sites within anterior regions of the neck, thorax or abdomen of the patient. Parameters associated with the health of the patient are detected, such as parameters indicative of arrhythmia, heart failure and hypertension.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: PACESETTER, INC.
    Inventors: Xiaoyi Min, Stuart Rosenberg, Taraneh Ghaffari Farazi, Timothy A. Fayram
  • Patent number: 8644929
    Abstract: An implantable medical device includes a telemetry unit wirelessly receiving data signals and control commands; a control unit connected to the telemetry unit; and a comparator unit which compares data signals received via the telemetry unit with data signals generated in or detected by the implantable medical device. Each of the data signals represents specific features, e.g., patient characteristics. The comparator unit generates a release signal if data signals received via the telemetry unit represent one or more features that are similar, according to a specified similarity measure, to one or more features represented by data signals generated in or detected by the implantable medical device. The control unit executes control commands received via the telemetry unit, or receives control commands via the telemetry unit, in response to such a release signal (or, in the absence of the release signal, does not execute or receive control commands).
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 4, 2014
    Assignee: Biotrnik SE & Co. KG
    Inventor: Michael Diebold
  • Publication number: 20140031886
    Abstract: Intermittent delivery of ventricular pacing pulses synchronized to occur during an atrial diastole time period can be used to provide atrial stretch therapy and augment the production and release of atrial natriuretic hormone.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Ramesh Wariar, Stephen B. Ruble