Braided Patents (Class 623/1.53)
  • Patent number: 10363153
    Abstract: Provided is a superfine polyester fiber containing at least 98 wt % of a polyethylene terephthalate component, and characterized by fulfilling the following conditions: (1) the reduced viscosity (?sp/c) is at least 0.80 dl/g; (2) the total fineness is 7-120 dtex, and the single filament fineness is no more than 0.5 dtex; and (3) the toughness parameter (X) indicated by formula (1) is at least 2.0, the tensile strength is at least 3.5 cN/dtex and the tensile elongation is at least 12%. X=(tensile strength×?tensile elongation)/(total fineness×single filament fineness)??formula (1).
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 30, 2019
    Assignee: ASAHI KASEI FIBERS CORPORATION
    Inventors: Tetsuko Takahashi, Junichi Kojima, Keiichi Toyoda
  • Patent number: 10342546
    Abstract: An occlusive device comprising a braided component which can be inserted into a blood vessel and a delivery system for delivering said occlusive device is described.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 9, 2019
    Assignee: MicroVention, Inc.
    Inventors: Ivan Sepetka, Cathy Lei, Matthew Fitz
  • Patent number: 10335297
    Abstract: In one embodiment according to the present invention, a stent is described having a generally cylindrical body formed from a single woven nitinol wire. The distal and proximal ends of the stent include a plurality of loops, some of which include marker members used for visualizing the position of the stent. In another embodiment, the previously described stent includes an inner flow diverting layer.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 2, 2019
    Assignee: Terumo Corporation
    Inventors: Shirley Vong, Priscilla Tsai, Cang Lam, Ross Soltanian, Greg Bak-Boychuk, Tai D. Tieu, Ponaka Pung, Arnold Tuason, Heather Griffith
  • Patent number: 10182927
    Abstract: A braided stent system includes a stent body having a lumen formed by a plurality of braided members with interstices formed therebetween and a first expansion ring connected to the lumen of the stent body. The first expansion ring may include a frame defined by a plurality of interconnected support assemblies that are selectively positioned to impart an outwardly expanding radial force to the stent body, each support assembly can include a plurality of legs joined at a first intersection and connected to one of the other interconnected support assemblies at a second intersection opposite the first intersection. Each support assembly can include a claw portion mechanically connected to one or more of the interstices of the stent body so that the frame imparts an outward radial expansion force of the stent to facilitate use and delivery of the stent.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 22, 2019
    Assignee: DEPUY SYNTHES PRODUCTS, INC.
    Inventors: Juan Lorenzo, Robert Slazas, Ramin Tehrani, Pedro Pedroso
  • Patent number: 10004834
    Abstract: A braided polymeric scaffold, made at least in part from a bioresorbable material is deployed on a catheter that uses a push-pull mechanism to deploy the scaffold. A drug coating is disposed on the scaffold. A plurality of scaffold segments on a catheter is also disclosed.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: June 26, 2018
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Syed Faiyaz Ahmed Hossainy, John E. Papp, Joel Harrington
  • Patent number: 9993333
    Abstract: A system (100) for a controlled stressing of a reconstructed or re-natured ligament of a human or animal body comprises an anchoring element (10) for implantation in a first bone (50), at least one connecting element (120) and a holding element (30), which fixes the at least one connecting element (20) in a second bone. According to the invention, an elastomer element (125) is arranged in the anchoring element and/or in the connecting element (120) and provides a defined elastic action through the cooperation of elastomer element (125) with the connecting element (120).
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: June 12, 2018
    Assignee: Mathys AG Bettlach
    Inventors: Daniel Delfosse, Alessandro De Cesaris, Clemens Dransfeld, Christian Rytka
  • Patent number: 9980833
    Abstract: A modified double helical and braided (platted) helical wire stent is described that provides for uniform collapsing and expansion of the stent body such that the stent collapses and expands in a uniform, predictable manner, reduces foreshortening, and is durable, stable, and reliable.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: May 29, 2018
    Assignee: Cook Medical Technologies LLC
    Inventor: Vincent McHugo
  • Patent number: 9295541
    Abstract: A graft device is provided comprising a flow conduit and a surrounding covering. The graft device is for connecting between a first body space and a second body space. In one embodiment, the flow conduit is a vein, such as a harvested saphenous vein, useful as an arterial graft, for example and without limitation, in a coronary artery bypass procedure. Also provided are methods of preparing a graft device and connecting the graft between a first body space and a second body space, such as the aorta and a location on an occluded coronary artery, distal to the occlusion.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: March 29, 2016
    Assignee: Neograft Technologies, Inc.
    Inventors: David Wagner, Lorenzo Soletti, Mohammed S. El-Kurdi, Jon McGrath, John T. Garibotto, J. Christopher Flaherty
  • Patent number: 9157174
    Abstract: A vascular device includes a body having a first, collapsed configuration and a second, expanded configuration. The body includes a plurality of heat-set strands that are braided such that when the body is in the second configuration, the strands form a plurality of pores and one or more apertures between the strands. The apertures are generally disposed at a longitudinal center region of the body. When the body is in the second configuration, the pores at proximal and distal portions of the body are generally uniform in size and smaller in size than the apertures. The pores and the apertures are substantially the same size when the body is in the first configuration.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 13, 2015
    Assignee: Covidien LP
    Inventor: Richard S. Kusleika
  • Patent number: 9107670
    Abstract: The invention relates to an implant (1) to be used for the occlusion of aneurysms in the region of vessel branches, in particular bifurcation aneurysms (A), with a mesh structure (3, 4), said implant comprising—from proximal to distal—sections (a) to (d) where (a) is a section tapering down proximally in which the mesh structure is brought together to form one or several coupling elements (10). (b) is a fixing section by means of which the implant can be supported on the to wall of a vessel, (c) is a permeable section for the region of the vessel bifurcation, and (d) is a distal section in which the implant is expanded in comparison to section (b) and which is intended for placement into the aneurysm (A), wherein a separation zone (T1, T2) being arranged in the area of sections (c) or (d).
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: August 18, 2015
    Assignee: Phenox GmbH
    Inventors: Ralf Hannes, Hermann Monstadt
  • Patent number: 9060852
    Abstract: A method of making a stent-graft is provided. The method includes mounting a stent on a mandrel so that the stent is stretched when it is on the mandrel. A graft layer is then adhered to the stent while it is mounted on the mandrel. When the stent-graft is removed from the mandrel, the stent contracts and the graft layer becomes partially wrinkled when the stent is in its expanded relaxed state.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: June 23, 2015
    Assignee: Cook Medical Technologies LLC
    Inventors: David G. Grewe, Keith R. Milner, Blayne A. Roeder, Steven J. Charlebois
  • Patent number: 8966733
    Abstract: A woven, self-expanding stent device has one or more strands and is configured for insertion into an anatomical structure. The device includes a coupling structure secured to two different strand end portions that are substantially aligned with each other. The two different strand end portions include nickel and titanium. The coupling structure is not a strand of the device.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: March 3, 2015
    Assignee: IDev Technologies, Inc.
    Inventors: Jeffery Sheldon, Richard Booth, Kenneth M. Bueche
  • Patent number: 8904914
    Abstract: Methods of forming a structure for treating a vessel include providing a mandrel and braiding a plurality of filaments around the mandrel. The mandrel may include a strand having a longitudinal axis and a plurality of balls coupled to the strand along the longitudinal axis. Pairs of the plurality of balls may be spaced along the longitudinal axis. Braiding the plurality of filaments around the mandrel may include, during braiding, forming a plurality of bulbs around the plurality of balls and forming necks between pairs of the plurality of balls. The methods may include, after braiding the plurality of filaments, heat treating (e.g., shape setting) the plurality of filaments on the mandrel. Portions of the braided plurality of filaments may be secured to the mandrel, for example using bangles, wire, and/or adhesive.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: December 9, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8905961
    Abstract: A cardiovascular conduit system may comprise a connector. The connector may comprise a proximal end adapted to attach to a cardiovascular organ. The proximal end may comprise a first plurality of expandable members, and each member in the first plurality of expandable members may be deployable from a delivery position to a deployed position. The first plurality of expandable members may be dimensioned to deploy inside the cardiovascular organ to secure the connector to the cardiovascular organ. The connector may comprise a distal end adapted to attach to a conduit and an opening extending through the connector. Connectors for cardiovascular conduit systems may also include expandable stents. Connectors may be rotatably secured to a conduit, and the conduit may be reinforced. Methods for forming and using cardiovascular conduit systems are also disclosed.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 9, 2014
    Assignee: St. Jude Medical, Inc.
    Inventors: Peter N. Braido, Yousef F. Alkhatib
  • Patent number: 8895891
    Abstract: Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measurable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: November 25, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8869670
    Abstract: Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measureable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: October 28, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8863631
    Abstract: Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measurable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: October 21, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8852269
    Abstract: Disclosed is a stent having a hollow tubular structure with open ends which tubular structure is formed by a plurality of filaments woven alternately, wherein each of the filaments has at least one elongated closed-loop wire and both ends of each of the filaments are positioned at the open ends, and a method for fabricating the stent.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 7, 2014
    Assignee: Seoul National University Industry Foundation
    Inventors: Woong-Ryeol Yu, Ju-Hyun Kim, Suk-Jin Hong, Joon-Seok Lee, Jae-Heung Yoo
  • Patent number: 8813625
    Abstract: Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measureable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: August 26, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8789452
    Abstract: Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measurable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: July 29, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8783151
    Abstract: Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measureable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: July 22, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8778011
    Abstract: Soft crowns are provided for use in a medical device. Soft crowns may reduce the incidence of tissue perforations as a medical device engages a luminal wall. In certain embodiments, a soft crown may include a first strut and a second strut interconnected by an end portion. The end portion may include a third strut and a fourth strut that intersect to form a distal end of the soft crown. The first strut and the second strut may intersect other struts in the medical device to attach the crown thereto. The soft crown may bend or pivot about a plane defined by the intersections of the first strut and the second strut to the medical device.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: July 15, 2014
    Assignee: Cook Medical Technologies LLC
    Inventor: Michael Ryan
  • Patent number: 8753708
    Abstract: A solventless method for forming a coating on a medical electrical lead is described. The method includes combining particles of a therapeutic agent with a polymeric material in a flowable form in the absence of a solvent to form a uniform suspension. A predetermined amount of the suspension is dispensed onto a portion of the lead and is then cured to form the therapeutic agent eluting layer. Additional layers such as a primer layer, fluoro-opaque layer and/or a topcoat layer can be formed using the solventless method. Employing a solventless method may avoid contraction of the layer being formed due to solvent evaporation during the curing process, and may facilitate greater control over the thickness of the therapeutic agent eluting coating.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Larry L. Hum, James Q. Feng, Arienne P. Simon, Tolga Tas
  • Patent number: 8739382
    Abstract: A woven, self-expanding stent device has one or more strands and is configured for insertion into an anatomical structure. The device includes a coupling structure secured to two different strand end portions that are substantially aligned with each other. The two different strand end portions include nickel and titanium. The coupling structure is not a strand of the device.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: June 3, 2014
    Assignee: IDev Technologies, Inc.
    Inventors: Jeffery Sheldon, Richard Booth, Ken Bueche
  • Patent number: 8685486
    Abstract: Methods of and systems for applying blocking material to assay substrates are disclosed. A method includes supplying an assay substrate having at least one surface. A first portion of the surface of the substrate has at least one analysis feature thereon, and a second portion of the surface of the substrate lacks analysis features. The method also includes generating a spray of a blocking material in proximity to the surface of the substrate and continuing the spray generation in proximity to the surface of the substrate at least until the second portion of the surface of the substrate is substantially covered by the blocking material.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: April 1, 2014
    Assignee: Aushon Biosystems, Inc.
    Inventors: Kevin Oliver, Toni Holway, Travis Sullivan
  • Patent number: 8632581
    Abstract: Conformable end sealing stent for treating aortic aneurysms with acute angulation having an end portion with a circumference and configured to exert a radial force against an inner wall of the aorta, said end portion comprised of one or more filaments formed into at least three intertwined curved loops, each loop having a first and second end and a curved section which curved section is shaped and sized to extend at least halfway around the circumference.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: January 21, 2014
    Assignee: Cook Medical Technologies LLC
    Inventor: Timothy A. M. Chuter
  • Patent number: 8419788
    Abstract: A woven, self-expanding stent device has one or more strands and is configured for insertion into an anatomical structure. The device includes a coupling structure secured to two different strand end portions that are substantially aligned with each other. The two different strand end portions include nickel and titanium. The coupling structure is not a strand of the device.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: April 16, 2013
    Assignee: IDev Technologies, Inc.
    Inventors: Jeffery Sheldon, Richard Booth, Ken Bueche
  • Patent number: 8382825
    Abstract: A vascular occluding device for modifying blood flow in a vessel, while maintaining blood flow to the surrounding tissue. The occluding device includes a flexible, easily compressible and bendable occluding device that is particularly suited for treating aneurysms in the brain. The neurovascular occluding device can be deployed using a micro-catheter. The occluding device can be formed by braiding wires in a helical fashion and can have varying lattice densities along the length of the occluding device. The occluding device could also have different lattice densities for surfaces on the same radial plane.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: February 26, 2013
    Assignee: Covidien LP
    Inventors: Adrian Garcia, Ting Tina Ye, Quang Q Tran, Aaron L Berez
  • Patent number: 8337543
    Abstract: A system for intraluminally delivering and deploying stents and other prostheses includes an outer catheter, an inner catheter movable axially relative to the outer catheter, and an anchoring device mounted to a distal end region of the inner catheter. The anchoring device includes one or more control features that interact with a linking structure proximally disposed on the prosthesis, preferably including one or more loops. The control features and loops interact by surface engagement to anchor the prosthesis relative to the inner catheter in a nonfrictional manner, thus to maintain lower axial prosthesis deployment and retraction forces. In one version of the anchor, the control features extend radially outward from a sleeve. In another version, the control features are formed in respective recesses which also receive the loops or other linking structure.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 25, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Gary Jordan, Gary J. Leanna, Dean Molloy, Paul K. Norton
  • Patent number: 8323351
    Abstract: The self-expanding plastic stent is a resilient plastic stent with such expansional strength that a small diameter delivery system may be used to implant the stent, thereby minimizing possible complications for the patient. The stent is made from a braided monofilament, which may be polyetheretherketone (PEEK), polyetherketone (PEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), polyetherketoneether-ketoneketone (PEKEKK), or any blends and alloys of these particular resins. The plastic stent may or may not be covered with polymer film. When used, the polymer film includes materials based on polyurethanes, silicones, or materials that biodegrade or erode in the body. Specifically the biodegradable materials might include poly-L-lactide, poly-D-lactide, polyglycolide, ?-caprolactone (epsilon-caprolactone), starch, and collagen or its polymer blends, alloys or copolymers. This material is heat-treated. The monofilament preferably has a diameter of 0.2-0.7 mm.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: December 4, 2012
    Assignee: Ella-CS, S.R.O.
    Inventors: Petr Kubena, Lucie Kotalova
  • Patent number: 8252064
    Abstract: Absorbable/disintegratable endourological stents, specifically endoureteral stents, and applicators for their introduction into the biological site, are formed from fiber-reinforced elastomeric films configured to prevent their migration from the application site.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: August 28, 2012
    Assignee: Poly-Med, Inc.
    Inventors: Shalaby W. Shalaby, Kenneth W. Clinkscales
  • Patent number: 8142415
    Abstract: A catheter includes an elongate member having a braided reinforcing layer. The reinforcing layer comprises a plurality of continuous filaments that transform from a braided configuration to short axially oriented segments in a least one location along the catheter. Also disclosed is a method of manufacturing a braided elongate member including providing a core, forming at least one braided portion with a plurality of filaments and forming at least one short axially oriented segment with at least a portion of the same plurality of filaments.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 27, 2012
    Assignee: Medtronic Vascular, Inc.
    Inventors: Kenneth Warnock, Jr., Peter Lunn
  • Patent number: 7993387
    Abstract: A method for making an implantable stent includes the steps of (i) providing a plurality of elongate stent wires; (ii) forming said wires into a hollow tubular structure having opposed first and second open ends; (iii) terminating said wires at the second end; (iv) aligning the wires at the second end into a plurality of mated adjacent wires to define a plurality of abutting regions; (v) welding the mated adjacent wires to one and the other at the abutting regions to define a plurality of welds; and optionally (vi) chemically or electro-chemically removing a portion of the welds. The method may further include the steps of (a) extending at least one of the mated stent wires to provide an extended stent wire; (b) looping the extended stent wire so the extended end abuts a proximal pair of stent wires; and (c) welding the extended and looped wire to the proximal pair of wires.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: August 9, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Claude O. Clerc, Paul K. Norton, Michael Zupkofska, Gary J. Leanna, George Tom Roberts
  • Publication number: 20110046719
    Abstract: A luminal endoprosthesis for treating aneurysms, particularly aneurysms located at an arterial bifurcation. One feature of the endoprosthesis is a tubular armature that can expand radially from a compressed state to an expanded state. A further feature of the endoprosthesis, when in the expanded state, is a lenticular head whom axis coincides with that of the tubular armature, and which can be inserted into an aneurysm pocket. A method of manufacturing such an endoprosthesis is also described.
    Type: Application
    Filed: May 30, 2005
    Publication date: February 24, 2011
    Inventor: Noureddine Frid
  • Patent number: 7857844
    Abstract: An implantable stent includes a plurality of elongate wires braided to form a hollow tubular structure having a tubular wall to define an interior surface and an exterior surface and having opposed open first and second ends, wherein the opposed open first and second ends are atraumatic ends The atraumatic ends of the stent are desirably free of any loose wire ends. The wires include composite wires to enhance visibility of the wires to provide improved external imaging of the wires in the body. The elongate composite wires of the stent may be metallic wires having an outer metallic portion including a first metal, such as nitinol, and an inner metallic core portion including a second metal, which is a radiopaque material, such as gold, barium sulfate, ferritic particles, platinum, platinum-tungsten, palladium, platinum-iridium, rhodium, tantalum or combinations thereof.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: December 28, 2010
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Paul K. Norton, Michael Zupkofska, Peter Brady, Gary L. Leanna, Claude O. Clerc, William Bertolino, Grainne Hanley
  • Patent number: 7846198
    Abstract: The present invention is directed to an implantable vascular prosthesis configured for use in a wide range of applications, such as treating aneurysms, maintaining patency in a vessel, and allowing for the controlled delivery of therapeutic agents to a vessel wall. The prosthesis comprises a helical proximal section coupled to a distal anchoring section having a generally zig-zag configuration. The prosthesis is configured to comply to a vessel wall without substantially remodeling the vessel, and further is configured to be precisely deployed in a vessel without shifting during deployment. The prosthesis also has a substantially small delivery profile compared to other known stents, while having an increased surface area to enhance delivery of therapeutic agents.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: December 7, 2010
    Assignee: NovoStent Corporation
    Inventor: Michael Hogendijk
  • Patent number: 7758631
    Abstract: A bioabsorbable implantable endoprosthesis having elongate elements including hollow, cavity or porous portions adapted to accumulate by-product from the degradation of the bioabsorbable material and shortening the diffusion distance for water absorption and thereby relatively increasing the degradation of the structure.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: July 20, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jonathan S. Stinson
  • Patent number: 7699887
    Abstract: The invention relates to a stent-graft with a bioabsorbable structure and a permanent graft for luminal support and treatment of arterial fistulas, occlusive disease, and aneurysms. The bioabsorbable structure is formed from braided filaments of materials such as PLA, PLLA, PDLA, and PGA and the graft is formed from materials such as PET, ePTFE, PCU or PU.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 20, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Diana K. Burnside, Jonathan S. Stinson, Paul F. Chouinard
  • Patent number: 7691460
    Abstract: Sheathing for reinforcing natural veins for use as surgical implants in the form of textile netting that is configured by forming a seamless, tubular, essentially pile-less, knit fabric and has loops having large, open apertures having essentially polygonal shapes is made available.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: April 6, 2010
    Assignee: Aesculap AG & Co. KG
    Inventors: Anton Moritz, Helmut Goldmann, Patricia Kreuz
  • Publication number: 20100063578
    Abstract: Embodiments of the present invention provide medical devices and methods for treating a target site within the body. For example, one embodiment provides a stent graft for treating a target site proximate to a bifurcated lumen, wherein the stent graft includes a first tubular structure having proximal and distal ends and a side wall extending therebetween. The first tubular structure includes an opening defined within the side wall and is configured to define a first portion having first and second ends and a second portion having first and second ends. The opening corresponds to the first ends of the first and second portions and the second ends of the first and second portions respectively correspond to the proximal and distal ends of the first tubular structure, and at least a portion of the first and second portions are configured to be positioned within respective branches of a bifurcated lumen.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 11, 2010
    Inventors: Brooke Ren, Daniel O. Adams, John C. Oslund
  • Patent number: 7655039
    Abstract: An open frame prosthesis is formed with looped end terminations at its proximal and distal ends. At one end of the prosthesis, the filaments or strands are welded together in pairs to form strand couplings. A plurality of loop segments are connected to the strand couplings, one loop segment for each pair of adjacent strand couplings. In one version of the prosthesis, strands at the opposite end are bent to form looped ends. In another version, loop segments are connected to pairs of strand couplings at both ends of the prosthesis. The loop segments can be connected to the couplings by welding, fusion bonds, or tubes, which are either crimped or heat shrunk.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: February 2, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Gary J. Leanna, Paul K. Norton, Peter Brady, Dean Molloy, Michael E. Zupkofska
  • Publication number: 20090306762
    Abstract: A stent includes regions of differing numbers of braided filaments to provide different dimensions and/or properties in different regions along the stent length. The stent may include a first and second plurality of braided filaments each braided together. The second plurality of braided filaments is braided into the first plurality of braided filaments to form a region of different properties than the first. A method of constructing a braided stent includes the steps of braiding a first plurality of filaments to form the flexible portion, combining a second plurality of filaments to the first plurality of filaments, and then braiding the second plurality of filaments with the first plurality of filaments to form the more rigid region from the combination of the first and second plurality of filaments, where the second plurality of filaments is braided only in the rigid region.
    Type: Application
    Filed: November 26, 2007
    Publication date: December 10, 2009
    Inventors: Orla McCullagh, William R. Quinn
  • Publication number: 20090054972
    Abstract: An implantable stent includes a plurality of elongate wires braided to form a hollow tubular structure having a tubular wall to define an interior surface and an exterior surface and having opposed open first and second ends, wherein the opposed open first and second ends are atraumatic ends The atraumatic ends of the stent are desirably free of any loose wire ends. The wires include composite wires to enhance visibility of the wires to provide improved external imaging of the wires in the body. The elongate composite wires of the stent may be metallic wires having an outer metallic portion including a first metal, such as nitinol, and an inner metallic core portion including a second metal, which is a radiopaque material, such as gold, barium sulfate, ferritic particles, platinum, platinum-tungsten, palladium, platinum-iridium, rhodium, tantalum or combinations thereof.
    Type: Application
    Filed: October 30, 2008
    Publication date: February 26, 2009
    Applicant: BOSTON SCIENTIFIC, SCIMED, INC.
    Inventors: Paul K. Norton, Michael Zupkofska, Peter Brady, Gary L. Leanna, Claude O. Clerc, William Bertolino, Grainne Hanley
  • Patent number: 7481836
    Abstract: A tubular prosthesis comprises a tubular member having raised portions, which can be formed from and be part of the tubular member. The raised portions form a chamber or discrete space in a body passageway or lumen between the prosthesis and a portion of the passageway or lumen wall in which it is placed. A substance is delivered to the chamber to assist the prosthesis placement. The substance can comprise one or more substances that can enhance the seal and/or fixation characteristics between the prosthesis the passageway wall and/or provide therapeutic benefit. In another embodiment, the raised portions can be collars secured to the tubular member and in yet a further embodiment the raised portions can comprise inflatable collars.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: January 27, 2009
    Assignee: Medtronic Vascular, Inc.
    Inventor: Trevor Greenan
  • Patent number: 7462192
    Abstract: An implantable stent includes a plurality of elongate wires braided to form a hollow tubular structure having a tubular wall to define an interior surface and an exterior surface and having opposed open first and second ends, wherein the opposed open first and second ends are atraumatic ends The atraumatic ends of the stent are desirably free of any loose wire ends. The wires include composite wires to enhance visibility of the wires to provide improved external imaging of the wires in the body. The elongate composite wires of the stent may be metallic wires having an outer metallic portion including a first metal, such as nitinol, and an inner metallic core portion including a second metal, which is a radiopaque material, such as gold, barium sulfate, ferritic particles, platinum, platinum-tungsten, palladium, platinum-iridium, rhodium, tantalum or combinations thereof.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: December 9, 2008
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Paul K. Norton, Michael Zupkofska, Peter Brady, Gary J. Leanna, Claude O. Clerc, William Bertolino, Grainne Hanley
  • Publication number: 20080300673
    Abstract: The invention relates to an implantable radiopaque stent adapted to be disposed in a body lumen. In one aspect of the invention, a plurality of elongate filaments including one or more radiopaque filaments are arranged to form a hollow tubular structure having a tubular wall that defines an inner surface and an outer surface and opposing first open end and second open end. One of the open ends of the stent is formed by an intersection of adjacent filament ends. A radiopaque compound is applied to the intersection, the radiopaque compound comprising radiopaque material and polymeric material. The radiopaque compound and radiopaque filament provide improved external imaging of the tubular structure on imaging equipment.
    Type: Application
    Filed: April 2, 2008
    Publication date: December 4, 2008
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Claude Clerc, F. Anthony Headley, JR., Forrest Whitcher, Suresh Gidwani
  • Publication number: 20080288043
    Abstract: An insertion system with a self-expanding braided stent (11) for implantation in a blood vessel has an outer sleeve (12) with a distal end (14) and a proximal end. An inner sleeve (16) arranged in the outer sleeve (12) is displaceable relative to the latter and protrudes, with a handling section, from the proximal end of the outer sleeve (12). Moreover, at the distal end (15), there is a tip (18) which is securely connected to a stent support (24) on which the braided stent (11) is arranged in its loaded state. The stent support (24) is arranged to be displaceable relative to the inner sleeve (16).
    Type: Application
    Filed: November 1, 2007
    Publication date: November 20, 2008
    Inventors: Ralf Kaufmann, Berthold Hauser
  • Publication number: 20080243244
    Abstract: A metallic endoprosthesis is provided and causes no significant artefacts on images taken by magnetic resonance tomography (MRT), as a result of the combination of the production materials with a special design, which permits an evaluation of the externally adjacent region and the lumen of the endoprosthesis by means of MRT. The endoprosthesis is made from a material with a magnetisability similar to human tissue. The design of the endoprosthesis is such that the members or wires of the endoprosthesis run extensively along the longitudinal axis of the endoprosthesis, without forming a closed circuit in a plane which is essentially perpendicular to the endoprosthesis longitudinal axis.
    Type: Application
    Filed: February 22, 2008
    Publication date: October 2, 2008
    Inventors: Arno Bucker, Alexander Rubben
  • Publication number: 20080221670
    Abstract: The invention relates to an implantable radiopaque stent adapted to be disposed in a body lumen. In one aspect of the invention, at least one radiopaque filament is arranged for permanent attachment to a hollow tubular structure. The filament is desirably arranged in a linear direction traverse to a longitudinal length of the structure, the structure having a tubular wall that defines an inner surface and an outer surface and opposing first open end and second open end. The radiopaque filament improves external imaging of the tubular structure on fluoroscope or x-ray imaging equipment.
    Type: Application
    Filed: February 26, 2008
    Publication date: September 11, 2008
    Inventors: Claude Clerc, F. Anthony Headley, Forrest Whitcher, John Damarati
  • Publication number: 20080221671
    Abstract: A stent comprising a plurality of continuous filaments braided together, at least one filament comprising a tapered filament having at least one first region having a first, relatively-larger cross-sectional area and at least one second region having a second, relatively-smaller cross-sectional area. The stent itself may have a tapered diameter, such as from one end to the other.
    Type: Application
    Filed: May 16, 2008
    Publication date: September 11, 2008
    Applicant: Boston Scientific SciMed
    Inventors: Paul F. Chouinard, Dennis A. Peiffer, Patrick A. Haverkost, George T. Roberts