Blood Vessel Patents (Class 623/903)
  • Patent number: 9034005
    Abstract: A vascular implant formed of a compressible foam material has a compressed configuration from which it is expansible into a configuration substantially conforming to the shape and size of a vascular site to be embolized. Preferably, the implant is formed of a hydrophilic, macroporous foam material, having an initial configuration of a scaled-down model of the vascular site, from which it is compressible into the compressed configuration. The implant is made by scanning the vascular site to create a digitized scan data set; using the scan data set to create a three-dimensional digitized virtual model of the vascular site; using the virtual model to create a scaled-down physical mold of the vascular site; and using the mold to create a vascular implant in the form of a scaled-down model of the vascular site. To embolize a vascular site, the implant is compressed and passed through a microcatheter, the distal end of which has been passed into a vascular site.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 19, 2015
    Assignee: MicroVention, Inc.
    Inventors: George R. Greene, Jr., Robert F. Rosenbluth, Brian J. Cox
  • Patent number: 8870946
    Abstract: A bifurcated intravascular stent graft comprises primary stent segments and a primary graft sleeve, forming a main fluid channel and having a side opening therethrough. An external graft channel formed on the primary graft sleeve has a first end communicating with the side opening and an open second end outside the primary graft sleeve, thereby providing a branch flow channel from the main channel out through the side opening and external graft channel. The primary stent segments and graft sleeve engage an endoluminal surface of a main vessel and form substantially fluid-tight seals. The stent graft further comprises a secondary stent graft, which may be positioned partially within the external graft channel, through the open second end thereof, and partially within a branch vessel. The secondary stent graft engages the inner surface of the external graft channel and the endoluminal surface of the branch vessel, thereby forming substantially fluid-tight seals.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 28, 2014
    Assignee: W.L. Gore & Associates, Inc.
    Inventor: Stephen F. Quinn
  • Patent number: 8821565
    Abstract: An assembly for open surgical repair of a damaged wall portion of a body vessel includes a stent/graft device comprising an elongated stent body and a graft material covering the stent body. The device is expandable from a compressed condition having a diameter less than a diameter of the vessel to an expanded condition at least as great as the diameter of the vessel. A sheath enclosing the device when in the compressed condition includes a sheath body and a pull string for selectively splitting the sheath body to allow expansion of the device. The device and enclosing sheath are sized for insertion through the damaged wall portion into the vessel, wherein the pull string is extendable through the damaged wall portion for splitting the sheath body.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: September 2, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: Demetrios Demetriades, Bruce Gingles, James B. Hunt, Charles L. McIntosh
  • Patent number: 8673014
    Abstract: A method of cranial repair and the cranial implant molding device used therein, the device having a frame or base that receives a bottom or convex molding plate and a top or concave molding plate in a manner whereby the two plates are separated a distance to receive a settable or curable implant forming material therebetween. The plates are separated by a compressible member such that by the use of threaded mechanical fasteners or similar members the distance between the two plates can be adjusted by tightening or loosening the mechanical members. The thickness of the implant is varied by varying the separation distance on different sides of the frame.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 18, 2014
    Assignee: KLS-Martin, L.P.
    Inventors: Shawn Burke, Michael Teague, Pat Lemoyne
  • Patent number: 8579958
    Abstract: A stent delivery assembly is provided that includes a microcatheter, a delivery tube, a stent, and an elongate release member. The stent can have a first end that is (i) disposed within a delivery tube lumen and (ii) constrained by the delivery tube from radially expanding beyond a delivery tube lumen diameter. The stent can have a second end that is (i) disposed outside of a delivery tube distal end and (ii) substantially radially unconstrained by the delivery tube to expand beyond the delivery tube lumen diameter. The elongate release member can be moveable between first and second positions to engage or release the stent.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: November 12, 2013
    Assignee: Covidien LP
    Inventor: Richard S. Kusleika
  • Patent number: 8556953
    Abstract: Described herein are flexible implantable occluding devices that can, for example, navigate the tortuous vessels of the neurovasculature. The occluding devices can also conform to the shape of the tortuous vessels of the vasculature. In some embodiments, the occluding devices can direct blood flow within a vessel away from an aneurysm or limit blood flow to the aneurysm. Some embodiments describe methods and apparatus for adjusting, along a length of the device, the porosity of the occluding device. In some embodiments, the occluding devices allows adequate blood flow to be provided to adjacent structures such that those structures, whether they are branch vessels or oxygen-demanding tissues, are not deprived of the necessary blood flow.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 15, 2013
    Assignee: Covidien LP
    Inventors: Aaron Lee Berez, Quang Quoc Tran
  • Patent number: 8556961
    Abstract: A bifurcated intravascular stent graft comprises primary stent segments and a primary graft sleeve, forming a main fluid channel and having a side opening therethrough. An external graft channel formed on the primary graft sleeve has a first end communicating with the side opening and an open second end outside the primary graft sleeve, thereby providing a branch flow channel from the main channel out through the side opening and external graft channel. The primary stent segments and graft sleeve engage an endoluminal surface of a main vessel and form substantially fluid-tight seals. The stent graft further comprises a secondary stent graft, which may be positioned partially within the external graft channel, through the open second end thereof, and partially within a branch vessel. The secondary stent graft engages the inner surface of the external graft channel and the endoluminal surface of the branch vessel, thereby forming substantially fluid-tight seals.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: October 15, 2013
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Stephen F. Quinn
  • Patent number: 8449602
    Abstract: Implantable medical devices having at least one porous layer, and methods for making such devices, and loading such devices with therapeutic agents are described. A mixture or alloy is placed on the surface of a medical device, then one component of the mixture or alloy is generally removed without generally removing the other components of the mixture or alloy to create the pores of the porous layer. The porous layer may be adapted for bonding non-metallic coating, including drug eluting polymeric coatings. A porous layer may have a random pore structure or an oriented or directional grain porous structure. The medical device may be a vascular stent having at least one porous layer adapted to resist stenosis or cellular proliferation.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: May 28, 2013
    Assignee: Medtronic Vascular, Inc.
    Inventors: Whye-Kei Lye, Gary K. Owens, Brian R. Wamhoff, Matthew S. Hudson, Joshua Spradlin, Kareen Looi
  • Patent number: 8409269
    Abstract: A method of reducing blood flow within an aneurysm includes: injecting a contrast agent into a blood vessel including an aneurysm; deploying an occlusion device across the aneurysm; producing an image of the aneurysm including the contrast agent; and withdrawing the delivery device from the vessel after observing that the aneurysm has been obstructed by a desired amount. The image may be two-dimensional or three-dimensional. Observing that the aneurysm has been obstructed may include determining a degree of obstruction, for example by comparing an area or volume of the contrast agent in a first image and a second image. The desired amount may be a certain degree of obstruction, identification of a shape indicative of stasis such as a flat surface, an approximate hemisphere, a mushroom, or a crescent. If the occlusion device does not achieve the desired amount, a second occluding device may be deployed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 2, 2013
    Assignee: Covidien LP
    Inventors: Aaron Lee Berez, Quang Quoc Tran
  • Patent number: 8372133
    Abstract: Delivery systems for a polymeric tubular implant, kits that include such delivery systems, and methods of treating patients by implanting tubular implants using the delivery systems. The delivery systems include an inner shaft, an expandable member slidably disposed about the inner shaft and configured to receive the tubular implant, and a tubular outer shaft disposed about the inner shaft.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: February 12, 2013
    Assignee: 480 Biomedical, Inc.
    Inventors: Nareak Douk, Rany Busold, Lee Core, Kicherl Ho, My Le
  • Patent number: 8317850
    Abstract: A delivery device includes a delivery tube having an elongate release member. An everted stent may be releasably captured by the elongate release member between the release member and the delivery tube. The captured and everted stent can be distally advanced to a target site, followed by manipulating the release member to free the captured stent. Some devices utilize distal advancement of the release member while other devices use proximal retraction of the release member to free the captured stent. Once released, the stent is free to self-expand or be expanded against the surrounding blockage and/or vessel walls. In some methods, a guide catheter or microcatheter is also included and disposed about the everted and captured stent to advance the stent, delivery tube, and release member to a location near the site to be stented.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 27, 2012
    Assignee: Tyco Healthcare Group LP
    Inventor: Richard S. Kusleika
  • Patent number: 8303641
    Abstract: A method of reducing blood flow within an aneurysm includes: injecting a contrast agent into a blood vessel including an aneurysm; deploying an occlusion device across the aneurysm; producing an image of the aneurysm including the contrast agent; and withdrawing the delivery device from the vessel after observing that the aneurysm has been obstructed by a desired amount. The image may be two-dimensional or three-dimensional. Observing that the aneurysm has been obstructed may include determining a degree of obstruction, for example by comparing an area or volume of the contrast agent in a first image and a second image. The desired amount may be a certain degree of obstruction, identification of a shape indicative of stasis such as a flat surface, an approximate hemisphere, a mushroom, or a crescent. If the occlusion device does not achieve the desired amount, a second occluding device may be deployed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: November 6, 2012
    Assignee: Tyco Healthcare Group LP
    Inventors: Aaron Lee Berez, Quang Quoc Tran
  • Patent number: 8252034
    Abstract: A stent combined with a positioning apparatus to effectively place the stent at a precise deployment site within a narrowed vascular region such as an artery. The stent is maneuvered through the vessel and is guided by a guiding catheter up the vessel to where the narrowing is located. Upon exiting the guiding catheter and approaching the deployment site within the coronary artery, a deployment site locator expands to contact the vascular structure and, thereby, effectively position the stent at the deployment site within the narrowed vessel. This system apparatus and method is particularly useful for stent placement at an ostium (origin) of a vessel.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: August 28, 2012
    Inventor: Jeffrey W. Chambers
  • Patent number: 8252047
    Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments and a liquid-infusible mechanical anchoring layer attached to or formed in outer surface of the filaments. A drug coating in the stent is composed of a substantially polymer-free composition of an anti-restenosis drug, and has a substratum infused in the anchoring layer and a substantially continuous surface stratum of drug that is brought into direct contact with the vessel walls at the vascular site. Thus, the rate of release of the anti-restenosis drug from the surface stratum into said vascular site is determined solely by the composition of said drug coating.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: August 28, 2012
    Assignee: Biosensors International Group, Ltd.
    Inventors: Douglas R. Savage, Ronald E. Betts
  • Patent number: 8211167
    Abstract: A method of positioning a main stent at a vessel bifurcation includes positioning a main guidewire in the main vessel; and advancing a stent delivery system to a position proximate the bifurcation. The stent delivery system includes a catheter with a flexible side sheath attached thereto and a main stent positioned over the catheter. The flexible side sheath is positioned to pass through the side opening in the main stent. The method also includes advancing a branch guidewire through the flexible side sheath and into the branch vessel; and subsequently, advancing the catheter over the main guidewire while advancing the flexible side sheath over the branch guidewire while viewing relative movement of a marker positioned on the flexible side sheath with respect to at least one marker positioned on the catheter.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: July 3, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Gil M. Vardi, Charles J. Davidson, Eric Williams
  • Patent number: 8211158
    Abstract: Described is a method for deploying a stent-graft in the aorta, the method including positioning a shunt to go along a portion of a brain-supplying artery (BSA) into the aorta; deploying a stent-graft in the aorta along a portion of the shunt; and removing the shunt. Also described is a removable shunt adapted for deployment along a brain-supplying artery into an aorta to supply blood to the artery during deployment of a stent-graft in the aorta, the removable shunt including a stiff segment that is stiff enough to remain at least partially open when between the aorta and the stent-graft and large enough to allow sufficient blood supply to the brain during the deployment of the stent-graft; and a mechanism for facilitating safe removal of the shunt from between the stent-graft and the aorta.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: July 3, 2012
    Assignee: The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center
    Inventor: Yehuda G. Wolf
  • Patent number: 8202311
    Abstract: A method and a stent/graft device for intraoperative repair of a damaged portion of a body vessel. The stent/graft device has a length at least as long as the length of the damaged portion of the vessel undergoing repair, and is positioned within the vessel such that the device at least spans the length of the damaged vessel portion. The stent/graft device is securely engaged with the vessel at the site of the damage in a manner such that migration of the device in said vessel is inhibited.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: June 19, 2012
    Assignee: Cook Medical Technologies LLC
    Inventors: Demetrios Demetriades, Bruce Gingles, James B. Hunt, Charles L. McIntosh
  • Patent number: 8147536
    Abstract: A catheter configured to carry one or more stents and having an inflatable balloon for expanding a stent surrounding the balloon. The catheter is characterized in having a positioner for moving the one or more stents relative to the balloon from a first position in which the stent does not surround the balloon to a second position in which the stent surrounds the balloon. Also disclosed is a method for deploying a stent at a desired location in the vascular system.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: April 3, 2012
    Assignee: XTENT, Inc.
    Inventor: Israel S. Chermoni
  • Patent number: 8142487
    Abstract: A catheter configured to carry one or more stents and having an inflatable balloon for expanding a stent surrounding the balloon. The catheter is characterized in having a positioner for moving the one or more stents relative to the balloon torn a first position in which the stent does not surround the balloon to a second position in which the stent surrounds the balloon. Also disclosed is a method for deploying a stent at a desired location in the vascular system.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: March 27, 2012
    Assignee: XTENT, Inc.
    Inventor: Israel S. Chermoni
  • Patent number: 8123796
    Abstract: A stent prosthesis for vascular surgery for inserting into an artery, particularly for bridging a vascular enlargement in the area of the aortic arch, comprising a tubular flexible and radially expandable stent body, on which at least one tear-proof long thread is attached in a fixed manner at a point of attachment on the outer peripheral surface of the stent body in the front portion thereof The thread can be recognized under x-ray radiation and has a free thread length of a number of decimeters and, starting from the point of attachment, is exposed outside the stent body so that the stent body, while following the thread, can be passed into the artery and can be placed, by means of the thread, in position inside the artery and can be subsequently fixed to the vascular wall.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: February 28, 2012
    Inventor: Piotr Kasprzak
  • Patent number: 8118830
    Abstract: Methods and devices for reducing emboli formation during medical procedures. In accordance with the present invention a first medical device is passed through a stenosed area and activated to block fluid flow through the lumen, a second medical device including a filter is passed through the stenosed area and deployed. The first medical device is then deactivated to restore fluid flow through the lumen.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: February 21, 2012
    Assignee: Salviac Limited
    Inventors: Gerard Rabbitte, Ronald Kelly
  • Patent number: 8083752
    Abstract: Systems and methods introduce a tissue fastener applier to apply tissue-piercing fasteners to a prosthesis sequentially along a path established by the directing device that, between fastener applications, is manipulated into orientation with different desired fastening sites, until a plurality of tissue-piercing fasteners are placed, one-at-a-time, in the prosthesis.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 27, 2011
    Assignee: Aptus Endosystems, Inc.
    Inventor: Lee Bolduc
  • Patent number: 8057396
    Abstract: Devices for assessing the size, shape, and topography of vessel lumens and hollow portions of organs are described. The devices are particularly adapted for determining the size, shape, topography, and compliance of the native heart valves to facilitate the later implantation of a prosthetic heart valve. The devices are typically catheter-based having an assessment mechanism fixed to a distal end of the catheter. The assessment mechanism generally includes an expandable member, such as a balloon. The assessment mechanism may also include an imaging member, a physical assessment member, an electronic mapping construction, an alignment mechanism, a valvuloplasty balloon, or any combination thereof.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: November 15, 2011
    Assignee: Phoenix Biomedical, Inc.
    Inventors: David C. Forster, Brian Beckey, Brandon Walsh, Scott Heneveld
  • Patent number: 8016853
    Abstract: A sacrificial anode stent system comprises a stent having at least one sacrificial anode portion and a vaso-occlusive device. The vaso-occlusive device has at least one portion with a potential different from that of the sacrificial anode portion of the stent.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: September 13, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Stephen Griffen, Brent C. Gerberding
  • Patent number: 7993385
    Abstract: The method and apparatus for caged stent delivery is provided herein. The device can be used to position and deliver any type of stent to a preselected treatment site within an intraluminal cavity. The device comprises a tubular portion, a plurality of arms attached to the distal end of the tubular portion, and a mechanism to open the arms. In operation, the caged device carries a stent in a constricted form to the treatment site for deployment. The arms of the cage are then opened, the stent released and deployed, and the device withdrawn. Several methods are provided to open the arms, including various pullwires, a piston, an electrolytic joint, and an activator. The arms may be constructed of a shape memory alloy and opened when shape memory behavior is effected. The device may be used with conventional catheters or used with a stent-loaded guidewire.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: August 9, 2011
    Assignee: Counter Clockwise, Inc.
    Inventors: Marc-Alan Levine, Stephen Hebert
  • Patent number: 7922759
    Abstract: According to one embodiment there is disclosed a device including a shield member including an ECM material and a retaining member conformable to maintain at least a portion of the shield member in a desired relationship with respect to an area of a blood vessel to be treated or repaired.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: April 12, 2011
    Assignee: Cook Medical Technologies LLC
    Inventor: Fred T. Parker
  • Patent number: 7799047
    Abstract: A vascular implant formed of a compressible foam material has a compressed configuration from which it is expansible into a configuration substantially conforming to the shape and size of a vascular site to be embolized. Preferably, the implant is formed of a hydrophilic, macroporous foam material, having an initial configuration of a scaled-down model of the vascular site, from which it is compressible into the compressed configuration. The implant is made by scanning the vascular site to create a digitized scan data set; using the scan data set to create a three-dimensional digitized virtual model of the vascular site; using the virtual model to create a scaled-down physical mold of the vascular site; and using the mold to create a vascular implant in the form of a scaled-down model of the vascular site. To embolize a vascular site, the implant is compressed and passed through a microcatheter, the distal end of which has been passed into a vascular site.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: September 21, 2010
    Assignee: MicroVention, Inc.
    Inventors: George R. Greene, Jr., Robert F. Rosenbluth, Brian J. Cox
  • Patent number: 7717950
    Abstract: A stent-graft deployment system (10) includes a stent-graft (15), a flexible catheter tip (12) attached to a catheter shaft (25), a retractable primary sheath (20) containing the stent-graft in a first constrained small diameter configuration around the catheter shaft near the flexible tip. The stent-graft deployment system further includes a flexible secondary sheath (14) disposed within the retractable primary sheath and also containing the stent-graft, wherein when the primary sheath is removed from around the stent-graft, the flexible secondary sheath contains the stent-graft in a second constrained small diameter configuration around the catheter shaft near the flexible tip. The removal of the secondary sheath releases the stent-graft from a radial constraint so that stent-graft deployment may proceed.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: May 18, 2010
    Assignee: Medtronic Vascular, Inc.
    Inventor: Trevor Greenan
  • Patent number: 7682388
    Abstract: A method of treating a vascular condition includes delivering a stent including at least one elongated axial slot to a target region of a vessel and receiving endothelial cell growth in the slots. A system for treating a vascular condition includes a catheter and a stent disposed on the catheter. The stent includes a stent framework including elongated axial slot formed therein and at least one therapeutic agent carried within the elongated axial slots. An outermost surface of the therapeutic agent is recessed within the elongated axial slots from the outer surface of the stent framework to allow endothelial cell growth within the elongated axial slots upon delivery of the stent to a target region of a vessel.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: March 23, 2010
    Assignee: Medtronic Vascular, Inc.
    Inventor: Susan Rea
  • Patent number: 7662898
    Abstract: A biocompatible material having excellent biocompatibility such as small interaction with a component of a living body such as a protein or blood cell. A biocompatible material comprising a polymer obtained by polymerizing a monomer composition comprising an amino acid-type betaine monomer represented by the formula (I): wherein R1 is a hydrogen atom or a methyl group; R2 is an alkylene group having 1 to 6 carbon atoms; each of R3 and R4 is independently an alkyl group having 1 to 4 carbon atoms; R5 is an alkylene group having 1 to 4 carbon atoms; and Z is an oxygen atom or an —NH group; and a polymerizable monomer represented by the formula (II): wherein R1 is as defined above; and R6 is a monovalent organic group, in a weight ratio, i.e. amino acid-type betaine monomer/polymerizable monomer, of from 1/99 to 100/1. The biocompatible material can be suitably used, for example, in food, a food additive, a medicament, a quasi-drug, a medical device, cosmetics, a toiletry article, or the like.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: February 16, 2010
    Assignee: Osaka Organic Chemical Ind., Ltd.
    Inventors: Hiromi Kitano, Makoto Genmei, Yoshiyuki Saruwatari, Takahiro Mukaiyama
  • Patent number: 7597697
    Abstract: Minimally invasive techniques utilized in bypass grafting are disclosed. For instance, a method of implanting an end portion of a graft in the body of a patient during a bypass grafting procedure includes the steps of (i) advancing a medical instrument within a circulatory system of said body, (ii) guiding a distal end of said medical instrument out of said circulatory system through an opening defined in said circulatory system after said medical instrument advancing step, (iii) advancing said end portion of said graft within said medical instrument after said guiding step, and (iv) securing said end portion of said graft to a blood vessel of said circulatory system after said end portion advancing step.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: October 6, 2009
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Thomas J. Maginot
  • Patent number: 7553326
    Abstract: To prevent intimal hyperplasia within a dialysis graft, a flexible tube comprising the dialysis graft is coated interiorly before placement with an anticarcinogen or mitosis-inhibiting agent for preventing cell division. The graft can also be irradiated with light energy by directing light into the lumen of the tube that has been grafted in place, thereby preventing or reducing dialysis graft intimal hyperplasia and reducing inflammation. The light source can be a light emitting diode (LED) or a chemical light source, i.e., a chemiluminescent substance for producing cool light energy within the graft to prevent or reduce the symptoms of GIH. When phototherapy is used, the body is exposed to light radiation at the site of the graft in sufficient amount to prevent undesired cell proliferation within the vessels, the graft, or surrounding tissue where the invention is used without detectable damage to body tissue.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: June 30, 2009
    Inventors: Richard M. Sweet, Robert A. Ganz
  • Patent number: 7524329
    Abstract: A self-contracting stent for use at a treatment site comprising shape memory material is provided. The stent may have an initial diameter for delivery to the treatment site and an expanded diameter when deployed at the treatment site. The stent further may have a contracted diameter when subjected to a temperature at or above a transition temperature. The contracted diameter is less than the expanded diameter and permits repositioning or removal of the stent from the treatment site. Additionally, a method for delivering and recovering the stent from a treatment site is provided. The method includes delivering a stent to a treatment site and expanding the stent at the treatment site so that the stent is deployed at the treatment site. The method further includes changing the temperature of the stent at the treatment site to at least a transition temperature to cause the stent to contract.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: April 28, 2009
    Assignee: Wilson-Cook Medical Inc.
    Inventor: Brian K. Rucker
  • Patent number: 7468072
    Abstract: A method and apparatus for repair of stenotic and aneurysmic vessels utilizing in situ deployment of an inflatable tubular shaped device (1) having a longitudinally oriented annulus (17). When inflated, the size and rigidity of the device (1) is increased, thereby providing supplemental strength to the vessel wall and a lumen (8) for the passage of fluid.
    Type: Grant
    Filed: December 27, 2003
    Date of Patent: December 23, 2008
    Inventor: Hesham Morsi
  • Patent number: 7449027
    Abstract: The present invention, in one embodiment, provides an implantable intraluminal fluid flow control system comprising an interface and a flow-modifying device positioned at a flow-modifying effective distance from the interface within the lumen of a body vessel. In one embodiment, the invention relates to maintaining, regulating or varying the fluid flow within a body vessel to preserve, promote, alter or enhance remodeling of tissue at the interface. Remodeling can include the resorption and replacement of implanted remodelable material with autologous tissue. The interface can comprise remodelable material such as small intestine submucosa. In one embodiment, one or more interfaces are positioned at flow-modifying effective distances from one or more flow-modifying devices. Related medical devices, kits and methods of treatment are also provided in some embodiments.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: November 11, 2008
    Assignee: Cook Incorporated
    Inventors: James B. Hunt, Brian C. Case
  • Patent number: 7422602
    Abstract: Methods and apparatus for making an anastomotic connection between first and second tubular fluid conduits are provided. For example, a connector may be configured for attachment to the first and second tubular fluid conduits and have an interior thereof substantially accessible to the interior of the first tubular fluid conduit. The connector may be configured for annular enlargement. An expandable structure is provided having a first portion configured to annularly enlarge the connector by engaging the interior of the connector. A second portion may be configured to extend through an opening in the medial portion of the first tubular fluid conduit.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 9, 2008
    Assignee: St. Jude Medical ATG, Inc.
    Inventors: Jerry Grudem, William J Swanson, Todd A Berg
  • Patent number: 7413574
    Abstract: An intravascular stent includes an eluting sheath fabricated from a mesh for controlled release of therapeutic drugs and for delivery of the therapeutic drugs in localized drug therapy in a blood vessel. The eluting sheath is attached to at least a portion of an outside surface area of the stent structure and is fabricated from a mesh designed to neck down in response to a radially outward directed force resulting in the uniform expansion of the stent. The eluting sheath can be loaded with at least one therapeutic drug for the release thereof at a treatment site to facilitate repair of a damaged vessel. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: August 19, 2008
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Philip S. Yip, James Jacobs, Syed Hossainy, Jon Becker, Timothy A. Limon
  • Patent number: 7357812
    Abstract: Blood vessels and other body lumens are expanded using an evertible braided prosthesis. The braided prosthesis is delivered to the blood vessel in a radially collapsed configuration. A leading edge of the braided prosthesis is then everted so that it expands as it is advanced through the blood vessel. Optionally, the prosthesis can be provided with a biologically active substance in order to inhibit hyperplasia or have other desired biological effects.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: April 15, 2008
    Assignee: Xtent, Inc.
    Inventors: Bernard Andreas, Ron French, Mark E. Deem, Hanson S. Gifford, III, Alan Will
  • Patent number: 7320703
    Abstract: A graft system for intraluminal delivery in a vessel in need of repair comprising a graft, anchoring means, and a strippable sheath around at least part of the graft. A preferred anchoring means is a balloon-expandable stent. Also included in the invention is a method of using the device to treat a body lumen. The strippable sheath is removable by pulling on a drawstring to remove it which permits expansion of the graft. The positioning of the device may then be adjusted prior to stent dilation. A preferred embodiment of the invention includes a bifurcated graft system for intraluminal delivery in an aortic aneurysm comprising a bifurcated graft having a distal region and two legs, an expandable stent disposed in part of the distal region, and a strippable crocheted sheath around the distal region and one of the two legs. The strippable crocheted sheath is removable by untying it to permit expansion of the graft after initial placement within the aneurysm.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: January 22, 2008
    Inventors: Kristian DiMatteo, Robert Thistle, John Spiridigliozzi
  • Patent number: 7297156
    Abstract: An apparatus is provided for deploying an endograft that maintains a fluid channel throughout deployment. A method for deploying an endograft maintaining a fluid channel through the deployment is also provided.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: November 20, 2007
    Assignee: Boston Scientific Corporation
    Inventor: Kristoff Nelson
  • Publication number: 20070255394
    Abstract: A method of placing a valve in a tubular organ including the steps of delivering an expandable tubular adapter to a site within the tubular organ, wherein the adapter includes an enclosed volume surrounded by an outer wall that is spaced from an inner wall, and first and second end walls. The method further includes expanding the outer wall relative to the inner wall so that the outer wall contacts the tubular organ, and placing a valve within the inner wall of the adapter. The method may further include inserting material into the enclosed volume of the adapter to expand the outer wall relative to the inner wall, which material may include liquid or gel. Alternatively, the valve may be positioned within the inner wall prior to the adapter being delivered to the desired site.
    Type: Application
    Filed: April 27, 2007
    Publication date: November 1, 2007
    Inventor: Timothy R. Ryan
  • Patent number: 7226473
    Abstract: An improved method and devices for preventing restenosis are provided. The method may include delivering a stent configured to contain a stenosis to a body vessel. The method may also include using atherectomy at the site prior to stent delivery. In one embodiment, the stent has a proximal end, a distal end, and a center portion arranged such that the diameters of the proximal and distal ends are greater than the diameter of the center portion. In one embodiment, the atherectomy device includes a housing to prevent injury to the unaffected areas of the body vessels but the cutter is extendible beyond the housing. In one embodiment, the stent may be impregnated with at least one drug after stent deployment.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: June 5, 2007
    Inventors: Balbir S. Brar, Harvinder Sahota
  • Patent number: 7201762
    Abstract: A vascular implant formed of a compressible foam material has a compressed configuration from which it is expansible into a configuration substantially conforming to the shape and size of a vascular site to be embolized. Preferably, the implant is formed of a hydrophilic, macroporous foam material, having an initial configuration of a scaled-down model of the vascular site, from which it is compressible into the compressed configuration. The implant is made by scanning the vascular site to create a digitized scan data set; using the scan data set to create a three-dimensional digitized virtual model of the vascular site; using the virtual model to create a scaled-down physical mold of the vascular site; and using the mold to create a vascular implant in the form of a scaled-down model of the vascular site. To embolize a vascular site, the implant is compressed and passed through a microcatheter, the distal end of which has been passed into a vascular site.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 10, 2007
    Assignee: Microvention, Inc.
    Inventors: George R. Greene, Jr., Robert F. Rosenbluth, Brian J. Cox
  • Patent number: 7186264
    Abstract: A method and apparatus for reducing mitral regurgitation. The apparatus is inserted into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus being adapted to straighten the natural curvature of at least a portion of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation and reduce mitral regurgitation.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: March 6, 2007
    Assignee: Viacor, Inc.
    Inventors: John R. Liddicoat, Daniel C. Taylor, Richard B. Streeter, Steven B. Woolfson, William E. Cohn, Todd F. Davenport
  • Patent number: 7156871
    Abstract: An expandable stent having a covering which exhibits the characteristic of being normally dissolvable in blood, but upon being activated, becomes inert to blood. The stent may be placed across the neck of an aneurysm to seal the aneurysm and thereafter the portion of the covering of the stent across the neck of the aneurysm is activated to become inert to blood and the balance of the covering dissolves to permit blood to flow to adjacent vessels.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: January 2, 2007
    Assignee: Cordis Neurovascular, Inc.
    Inventors: Donald K. Jones, Marc Ramer
  • Patent number: 7105031
    Abstract: An endoluminal graft repair device includes a multi-lumen catheter with a balloon coupled to a distal end portion of the catheter. A portion of the outer surface of the balloon is designed and configured to define a repair cavity. A repair cavity lumen of the catheter is coupled to and in fluid communication with the repair cavity. The catheter and balloon are inserted into an artery system, advanced and positioned interluminally through percutaneous procedures so that the repair cavity is positioned to substantially align with the location of an endoluminal leak in an endoluminal graft used to treat aortic aneurysmal disease. The balloon is inflated by injecting an inflation fluid through an inflation lumen of the catheter into the balloon to fix the position of the repair cavity substantially adjacent the location of the endoluminal leak. A repair agent is conveyed to the repair cavity through the repair cavity lumen.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: September 12, 2006
    Assignee: Medtronic Vascular, Inc.
    Inventor: Michel Letort
  • Patent number: 7101402
    Abstract: A conduit is provided to provide a bypass around a blockage in the coronary artery. The conduit is adapted to be positioned in the myocardium or heart wall to provide a passage for blood to flow between a chamber of the heart such as the left ventricle and the coronary artery, distal to the blockage. The stent is self-expanding or uses a balloon to expand the stent in the heart wall. Various attachment means are provided to anchor the stent and prevent its migration.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: September 5, 2006
    Assignee: Percardia, Inc.
    Inventors: David Phelps, Greg Furnish, Todd Hall, Scott Wolf, Peter Wilk
  • Patent number: 7094254
    Abstract: An intravascular dilator includes a central body acting as deflector o the blood flow to increase the value of shear stress to the artery wall. Flexible spires soldered to the deflector are radially extensible from a first diameter substantially equal to the deflector diameter to a second diameter greater than the artery diameter, the spires rest against the artery internal wall in operative position.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: August 22, 2006
    Assignee: Ecole Polytechnique Federale de Lausanne
    Inventor: Nikolaos Stergiopulos
  • Patent number: 7083643
    Abstract: This invention is directed to methods for treating aneurysms wherein the aneurysmal sac is filled with a non-particulate agent or plurality of such agents and/or with a fluid composition which solidifies in situ. Filling of the aneurysmal sac employs sufficient amount of the non-particulate agent or plurality of such agents and/or the fluid composition to inhibit blood flow into the aneurysm sac. In addition, the methods of this invention also provide for non-endogenous isolation of the parent artery proximal and distal to the aneurysmal sac from systemic blood flow of the treated mammal. The combination of these features provides for treatment of the aneurysmal sac while, at the same time, inhibiting aneurysm formation and/or regrowth in the diseased portions of the arterial wall proximal and distal to the treated aneurysm.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: August 1, 2006
    Assignee: Micro Therapeutics, Inc.
    Inventors: Thomas J. Whalen, II, Richard J. Greff, Kevin P. Gilmartin, Douglas Ray Hayman, Todd J. Hewitt, Ed L. Olson, Mark A. Pecor, Earl H. Slee, George Wallace
  • Patent number: 7044967
    Abstract: A device for treatment of mitral annulus dilatation comprises an elongate body having two states. In a first of these states the elongate body is insertable into the coronary sinus and has a shape adapting to the shape of the coronary sinus. When positioned in the coronary sinus, the elongate body is transferable to the second state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus and the radius of curvature as well as the circumference of the mitral annulus is reduced.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: May 16, 2006
    Assignee: Edwards Lifesciences AG
    Inventors: Jan Otto Solem, Per Ola Kimblad