Reshaping Of Planar Sheet Patents (Class 65/106)
  • Patent number: 8833106
    Abstract: A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: September 16, 2014
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Paul Louis Florent Delautre, Allan Mark Fredholm, Laurent Joubaud, Stephane Poissy
  • Patent number: 8826697
    Abstract: There is provided a method of manufacturing a plate member including preparing a base plate member having main faces, and performing etching by immersing at least part of the base plate member in an etching liquid while controlling a lowering speed of a liquid surface of the etching liquid on the main faces of the base plate member to a desired lowering speed.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: September 9, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Toshihiro Nakamura
  • Publication number: 20140234581
    Abstract: A method of forming a shaped glass article includes placing a glass sheet on a mold such that a first glass area of the glass sheet corresponds to a first mold surface area of the mold and a second glass area of the glass sheet corresponds to a second mold surface area of the mold. The first glass area and the second glass area are heated such that the viscosity of the second glass area is 8 poise or more lower than the viscosity of the first glass area. A force is applied to the glass sheet to conform the glass sheet to the mold surface. During the heating of the second glass area, the first mold surface area is locally cooled to induce a thermal gradient on the mold.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 21, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Jacob Immerman, Thomas A. Keebler, John Robert Saltzer, JR., Ljerka Ukrainczyk
  • Publication number: 20140230493
    Abstract: A method and device for bending superposed sheets of glass. The sheets are picked up by a top form furnished with a suction creating an upward airflow blowing over the rim of the sheets, the suction being sufficient to lift and hold the superposed sheets against the top form, then the sheets are pressed between the top form and a full surface solid concave bottom form furnished with openings, the pressing beginning conducted while the suction is not yet finished or is finishing, then the superposed sheets are formed, by suction of the main face of the bottom sheet through the openings of the bottom concave mold, the forming by suction beginning while the pressing is not yet finished, and then the sheets are cooled. Windshields free of optical defects may thus be produced.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicant: Saint-Gobain Glass France
    Inventors: Michael BALDUIN, Michael LABROT, Karl-Josef OLLFISCH, Herbert RADERMACHER, Guenther SCHALL
  • Patent number: 8800321
    Abstract: The invention relates to a method for preparing a sheet of curved glass comprising an opening involving bending followed by cooling, the periphery of the sheet and the periphery of the opening being supported, at least at the start of cooling, by a skeleton.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: August 12, 2014
    Assignee: Saint-Gobain Glass France
    Inventors: Thierry Olivier, Frederic Berthe, Michael Labrot
  • Publication number: 20140202212
    Abstract: A press forming apparatus includes a mounting plate, a heating mechanism, and a die. The mounting plate supports a glass material on an upper surface of the mounting plate. The heating mechanism heats the glass material on the mounting plate to a temperature which allows press formation of the glass material. The die is provided to face the upper surface of the mounting plate and press forms the glass material heated by the heating mechanism between the die and the mounting plate.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Koki MORIYA, Tomoharu HAYASHI, Kohei HORIUCHI, Keisuke YOSHIKUNI
  • Publication number: 20140202211
    Abstract: A mold for shaping glass can be made by a method that includes providing a mold body having a shaping surface comprising at least about 90% nickel and modifying the composition of the shaping surface of the mold body by exposing the shaping surface to an oxidizing heat treatment. The oxidizing heat treatment may include a ramping heat treatment, a fixed heat treatment, or both the ramping heat treatment and the fixed heat treatment. The ramping heat treatment may include increasing a heating temperature at a rate from about 20° C./hour to about 500° C./hour to a temperature from about 700° C. to about 1000° C. The fixed heat treatment may include holding the heating temperature from about 700° C. to about 1000° C. for a holding time of at least about 5 minutes.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 24, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Kristen Marie Horn, David Myron Lineman, Kevin Thomas Morris, Wenchao Wang, Kim E. Womer
  • Publication number: 20140206523
    Abstract: The present disclosure relates to high purity nickel molds for use in forming three dimensional glass substrates, along with methods of making three dimensional glass substrates. The mold compositions minimize imperfections in the formed glass substrates providing optical quality shaped glass articles for use in electronics applications.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 24, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Kristen Marie Horn, David Myron Lineman, Kevin Thomas Morris, Wenchao Wang
  • Patent number: 8783066
    Abstract: A glass molding system and a method of making glass articles using the glass molding system are disclosed. The glass molding system includes an indexing table, a plurality of enclosures arranged along the indexing table, and a plurality of stations defined on the indexing table such that each of the stations is selectively indexable with any one of the enclosures. At least one radiant heater is arranged in at least one of the enclosures. A radiation reflector surface and a radiation emitter body are arranged in the at least one of the enclosures. The radiation emitter body is between the at least one radiant heater and the radiation reflector surface and has a first surface in opposing relation to the at least one radiant heater and a second surface in opposing relation to the radiation reflector surface.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: July 22, 2014
    Assignee: Corning Incorporated
    Inventors: Darrel P Bailey, John Harold Brennan, Michael Joseph Dailey, Jr., Scott Winfield Deming, Karl David Ehemann, Keith Raymond Gaylo, David Joseph Kuhn, Brian Christopher Sheehan, Ljerka Ukrainczyk, Kevin Lee Wasson, Yuriy Yurkovsky
  • Patent number: 8783065
    Abstract: A method for bending radiation shielding glass which has a heavy metal oxide content of at least 50% by weight is provided, wherein first a mold is provided, a glass plate comprising a radiation shielding glass is then provided, the mold is preheated to a temperature of 300 to 400° C., the glass plate is placed on the mold, the glass plate and the mold are heated in a furnace to a temperature of 370 to 430° C., then heated together to a temperature of 400° C. to 500° C., preferably to 440 to 500° C., the total heating time being at least 30 minutes, preferably at least 60 minutes, the glass plate is then molded and finally the molded glass is cooled by means of a cooling program over a period of at least 60 minutes. For thermal prestressing, the glass body is supported at least at its outer periphery at a number of support points, introduced into a preheated furnace, heated to 400 to 500° C.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 22, 2014
    Assignee: Schott AG
    Inventors: Horst Schillert, Dirk Roessler, Detlef Mevers
  • Publication number: 20140196501
    Abstract: A method of manufacturing a sheet glass includes: a re-draw process forming a sheet glass by, heating and softening a glass preform manufactured by float method, and extending the glass preform to a desirable plate thickness. An extension direction in which the glass preform is extended by the re-draw process is 90 degrees with respect to a direction in which molten glass is fed in the float method.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 17, 2014
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kousuke Nakao, Toshiyuki Asai
  • Patent number: 8776550
    Abstract: A glass sheet is placed on a mold and heated to a first temperature. The glass sheet is then formed into a glass article having a three-dimensional shape using the mold. An isothermal heat transfer device comprising at least one heat pipe is provided in thermal contact with the mold. With the glass article on the mold and the isothermal heat transfer device in thermal contact with the mold, the glass article, mold, and isothermal heat transfer device are transported along a thermally-graded channel to cool the glass article to a second temperature. During the transporting, the isothermal heat transfer device transfers heat from a relatively hot region of the mold to a relatively cold region of the mold.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: July 15, 2014
    Assignee: Corning Incorporated
    Inventors: Nikolaos P Kladias, Kenneth Spencer Morgan, Elias Panides, Rohit Rai, John R Ridge, Ljerka Ukrainczyk
  • Patent number: 8752403
    Abstract: A method is provided for shaping a glass sheet in more than one dimension, and within the one or more dimensions forming non-uniform shapes between, for example, the leading edge and the trailing edge of the same glass sheet. Such shaping is achieved by the selective location, in first and second shaping zones, of shaping rolls having first and second shaping configurations and by varying the speed of the glass sheet as it moves through the shaping zones, thus varying the length of time that selected portions of the glass sheet are in contact with certain shaping rolls.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: June 17, 2014
    Assignee: Pilkington Group Limited
    Inventors: Robert J. Boisselle, Efrain Serrano, John Tomik
  • Patent number: 8746011
    Abstract: A method and device for bending superposed sheets of glass. The sheets are picked up by a top form furnished with a suction creating an upward airflow blowing over the rim of the sheets, the suction being sufficient to lift and hold the superposed sheets against the top form, then the sheets are pressed between the top form and a full surface solid concave bottom form furnished with openings, the pressing beginning conducted while the suction is not yet finished or is finishing, then the superposed sheets are formed, by suction of the main face of the bottom sheet through the openings of the bottom concave mold, the forming by suction beginning while the pressing is not yet finished, and then the sheets are cooled. Windshields free of optical defects may thus be produced.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: June 10, 2014
    Assignee: Saint-Gobain Glass France
    Inventors: Michael Balduin, Michael Labrot, Karl-Josef Ollfisch, Herbert Radermacher, Guenther Schall
  • Patent number: 8713968
    Abstract: A method of making a 3D glass article includes forming at least one marker on an edge of a 2D glass piece. The 2D glass piece is thermally reformed into a 3D glass article, where the at least one marker formed on the edge of the 2D glass piece is carried over to an edge of the 3D glass article. The 3D glass article is aligned on a support using the at least one marker on the edge of the 3D glass article. Then, the edge of the 3D glass article is finished to a final shape and dimension.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventors: Thomas A Keebler, Robert Sabia, Ljerka Ukrainczyk
  • Patent number: 8701443
    Abstract: A glass molding system and a method of making glass articles using the glass molding system are disclosed. The glass molding system includes an indexing table, a plurality of enclosures arranged along the indexing table, and a plurality of stations defined on the indexing table such that each of the stations is selectively indexable with any one of the enclosures. At least one radiant heater is arranged in at least one of the enclosures. A radiation reflector surface and a radiation emitter body are arranged in the at least one of the enclosures. The radiation emitter body is between the at least one radiant heater and the radiation reflector surface and has a first surface in opposing relation to the at least one radiant heater and a second surface in opposing relation to the radiation reflector surface.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: April 22, 2014
    Assignee: Corning Incorporated
    Inventors: Darrel P Bailey, John Harold Brennan, Michael Joseph Dailey, Jr., Scott Winfield Deming, Karl David Ehemann, Keith Raymond Gaylo, David Joseph Kuhn, Brian Christopher Sheehan, Ljerka Ukrainczyk, Kevin Lee Wasson, Yuriy Yurkovsky
  • Publication number: 20140075996
    Abstract: A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.
    Type: Application
    Filed: September 18, 2012
    Publication date: March 20, 2014
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Paul Louis Florent Delautre, Allan Mark Fredholm, Laurent Joubaud, Stephane Poissy
  • Patent number: 8661854
    Abstract: Disclosed is a glass sheet bending system including a press bending station for bending a glass sheet into a desired shape. The press bending station includes a glass mounting bed on which the glass sheet is to be temporarily put until the glass sheet is pressed on the glass forming surface of a mold. This system is characterized in that the glass mounting bed includes a slat conveyer whose crawler is driven in the conveyance direction of the glass sheet or a belt conveyer whose belt is driven in the conveyance direction of the glass sheet. By this system, the glass sheet having no distortion can be produced.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: March 4, 2014
    Assignee: Central Glass Company, Limited
    Inventors: Takeshi Mori, Takeshi Hosokawa
  • Patent number: 8650907
    Abstract: The method produces a reshaped glass-ceramic article by forced reshaping of a flat green glass part during a ceramicizing process with temporarily lowered viscosity due to crystallization heat. To perform the forced reshaping economically the forced reshaping takes place in a continuous oven for ceramicizing and in an oven section in which the viscosity of the green glass part is temporarily lowered as a result of crystallization heat. An apparatus for performing the process is provided in the continuous oven including different active reshaping devices and/or a hollow mold. The method produces glass-ceramic articles with undamaged surfaces corresponding to surfaces produced during the making of the green glass part (smooth or structured, e.g. knobbed).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 18, 2014
    Assignee: Schott AG
    Inventors: Martin Taplan, Herwig Scheidler, Ioannis Kosmas, Friedrich-Georg Schroeder, Wolfgang Schmidbauer, Torsten Gabelmann, Dieter Schoenig
  • Publication number: 20140026621
    Abstract: Please replace the originally filed abstract with the following amended abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
    Type: Application
    Filed: October 2, 2013
    Publication date: January 30, 2014
    Applicant: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Allan Mark Fredholm, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Publication number: 20140011000
    Abstract: A vehicle glazing is described. The vehicle glazing has at least one windowpane having a height from 900 mm to 1650 mm, a top upper edge, a side edge of a pillar, a body edge, and two rectangular surfaces A and B. The surface A has an extent of 800 mm*800 mm and the surface B has an extent of 1000 mm*700 mm. Surface A and surface B are centrally bounded by the lowest contact point of the at least one windowpane with the body edge horizontally with respect to the ground, and the lowest contact point and the point of the top upper edge at the shortest distance from the contact point form a Y0 axis and the points at the furthest distance with respect to the width of the windowpane form a Z0 axis.
    Type: Application
    Filed: December 12, 2011
    Publication date: January 9, 2014
    Inventors: Benno Dunkmann, Jean-Marie Le Ny, Michael Balduin
  • Patent number: 8616023
    Abstract: Raised features are formed on a transparent substrate having absorption of less than about 20% within a processing wavelength range. A portion of the substrate is irradiated with a light beam to increase the absorption of the irradiated portion of the substrate. Continued irradiation causes local heating and expansion of the substrate so as to form a raised feature on the substrate surface.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: December 31, 2013
    Assignee: Corning Incorporated
    Inventors: Richard Robert Grzybowski, Stephan Lvovich Logunov, Alexander Mikhailovich Streltsov
  • Publication number: 20130340479
    Abstract: A device for bending panes is described. The device has a pre-bending ring, a movable bending ring holder, a final bending ring, a preheating region for preheating at least one pane, a pre-bending region for a further bending of the at least one pane, a heating region for a final bending of an edge of the at least one pane and for a surface pre-bending of the at least one pane, a second bending region for a further surface bending of the at least one pane and a cooling region.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Michael BALDUIN, Benno DUNKMANN, Jean-Marie LE NY, Lothar SCHMIDT, Herbert RADERMACHER
  • Publication number: 20130329346
    Abstract: A method of bending a glass sheet includes placing the glass sheet on a support and heating the entire glass sheet to a first viscosity. A band of heat is applied and translated along the selected region of the glass sheet in which a predetermined is to be formed over a time period to form the predetermined in the selected region. The band of heat sectionally heats the selected region to a second viscosity that is lower than the first viscosity. An actuated force is applied to the glass sheet to incrementally form the predetermined bend in the selected region according to the location of the band of heat in the selected region.
    Type: Application
    Filed: June 3, 2013
    Publication date: December 12, 2013
    Inventors: Thierry Luc Alain Dannoux, Paul Louis Florent Delautre, Patrick Jean Pierre Herve, Laurent Joubaud, Stephane Poissy
  • Publication number: 20130313852
    Abstract: A method for bending a sheet is described. The method includes the following steps: a) at least one sheet is inserted into a pre-bending ring with a movable bending ring holder, the movable bending ring holder is moved into a furnace and the at least one sheet is heated to softening temperature and is pre-bent to 5% to 50% of a final edge bending, b) the at least one sheet is lifted by means of a suction device and is bent further, beyond the bending obtained in the pre-bending ring, c) the at least one sheet is laid down by means of the suction device in a final-bending ring on the movable bending ring holder and is bent to the final edge bending, and an area pre-bending of the at least one sheet is performed by means of thermal irradiation, d) the at least one sheet is lifted out of the final-bending ring by means of a second suction device, pressed against an opposing mould and bent, and the at least one sheet is laid down on the final-bending ring and the at least one sheet is cooled down.
    Type: Application
    Filed: December 8, 2011
    Publication date: November 28, 2013
    Inventors: Michael Balduin, Benno Dunkmann, Jean-Marie Le Ny, Lothar Schmidt, Herbert Radermacher
  • Publication number: 20130307286
    Abstract: A method for bending a sheet is described. The method includes the following steps: a) at least one sheet is inserted into a pre-bending ring with a movable bending ring holder, the at least one sheet is heated at least to an approximately softening temperature, and the at least one sheet is prebent in the pre-bending ring to 5% to 50% of a final edge bending, b) the pre-bent sheet is lifted out of the pre-bending ring by means of a suction device and is bent further, beyond a bending obtained in the pre-bending ring, c) the at least one sheet is laid down by means of the suction device in a final-bending ring on the movable bending ring holder and the at least one sheet is bent to a final bending, and d) the at least one sheet is cooled down in the final-bending ring and the at least one sheet is bent by means of the suction device to 100% to 130% of an overall final edge bending.
    Type: Application
    Filed: December 8, 2011
    Publication date: November 21, 2013
    Inventors: Michael Balduin, Benno Dunkmann, Jean-Marie Le Ny
  • Publication number: 20130298608
    Abstract: Processes for producing shaped glass articles with a defined geometry are provided. In some embodiment, the process includes arranging a glass pane on a mould, heating the glass pane by infrared radiation, deforming the heated glass pane over the mould by gravity, negative pressure, and/or positive pressure, and cooling the shaped glass pane to obtain the shaped glass article with a defined geometry.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 14, 2013
    Applicant: SCHOTT AG
    Inventors: Andreas Langsdorf, Bernd Hoppe, Ulrich Lange
  • Publication number: 20130291592
    Abstract: A method for heating glass sheets includes alternately loading on a conveyor system two different sets of glass sheets with the glass sheets of each set having different properties than those of the other set so as to require different heating than each other; conveying the alternately loaded sets of glass sheets on the conveyor system along a plane of conveyance through a heating chamber having a heating system; and controlling operation of the heating system to provide two different sets of heating zones alternating along the direction of conveyance and respectively moving with the two sets of glass sheets so as to provide heating in the heating chamber of each set of glass sheets as required and in a different way than the heating of the other set of glass sheets.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: Troy R. Lewandowski, James P. Schnabel, JR.
  • Patent number: 8573005
    Abstract: An apparatus for mass production of 3D articles from 2D glass-containing sheets includes a heating section having a heating station that includes a heating chamber adapted to receive a 2D glass-containing sheet, a pneumatic bearing system proximate to the heating chamber for suspending the 2D glass-containing sheet inside the heating chamber, and a heater system proximate to the heating chamber for supplying heat to the heating chamber. A forming section downstream of the heating section has a forming station that includes a mold system adapted to shape a heated 2D glass-containing sheet into a 3D article. A cooling section downstream of the forming section has a cooling chamber adapted to controllably cool off one or more 3D articles. A method of mass producing 3D articles from 2D glass-containing sheets involves use of the apparatus.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 5, 2013
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Paul Delautre, Frederic Henri Florent, Allan Mark Fredholm, Patrick Jean Pierre Herve, Jean-Pierre Henri Rene Lereboullet, Stephane Poissy
  • Publication number: 20130269769
    Abstract: A method of manufacturing a transparent pane, in particular a glass pane, which includes on at least one of its main surfaces a surface structure including an assembly of specified individual motifs in relief, in particular pyramids, cones, or truncated cones, created by embossing or by rolling. A structure is created on the surface of the pane constituted by individual motifs, based on one or more basic motifs but which are distinguished from each other by their depth, their height, and/or the perimeter of their base area, and/or by the position of their peak with respect to their base. With this variation, formation of intensity peaks of the reflected light is prevented and at the same time a high quality of light trapping is obtained by panes suitable, for example, for solar applications.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 17, 2013
    Inventors: Nils-Peter HARDER, Ulf BLIESKE, Dirk NEUMANN, Marcus NEANDER, Michele SCHIAVONI, Patrick GAYOUT
  • Patent number: 8559093
    Abstract: An electrochromic mirror reflective element suitable for use in a rearview mirror assembly of a vehicle includes first and second substrates having an electrochromic medium disposed therebetween and bounded by a perimeter seal. A perimeter coating is disposed at a second surface of the first substrate proximate at least a perimeter portion of the first substrate. The perimeter coating generally conceals the perimeter seal from view by a person viewing a first surface of the first substrate and through the first substrate. An at least partially reflective stack of thin films is disposed at least a portion of a third surface of the second substrate. The perimeter seal is at least partially visible to a person viewing a fourth surface of the second substrate and through the second substrate.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 15, 2013
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Mingtang Zhao, Craig A. Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall R. Lynam
  • Patent number: 8549885
    Abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: October 8, 2013
    Assignee: Corning Incorporated
    Inventors: Thierry L. A. Dannoux, Allan M. Fredholm, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Publication number: 20130237034
    Abstract: A source material, which is based on a glass, is arranged on a working surface of a mold substrate. The mold substrate is made of a single-crystalline material. A cavity is formed in the working surface. The source material is pressed against the mold substrate. During pressing a temperature of the source material and a force exerted on the source material are controlled to fluidify source material. The fluidified source material flows into the cavity. Re-solidified source material forms a glass piece with a protrusion extending into the cavity. After re-solidifying, the glass piece may be bonded to the mold substrate. On the glass piece, protrusions and cavities can be formed with slope angles less than 80 degrees, with different slope angles, with different depths and widths of 10 micrometers and more.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Alexander Breymesser, Andre Brockmeier, Carsten von Koblinski, Francisco Javier Santos Rodriguez
  • Patent number: 8522576
    Abstract: A glass sheet bending station includes a framework, lower and upper deformable molds for receiving therebetween a glass sheet to be bent, and lower and upper linkages that respectively support the lower and upper molds on the framework. Each linkage includes connector links that are fixedly connected to the associated mold and that have pivotal connections to each other, wherein the pivotal connections define pivot axes that are parallel to a shape defined by the connector links between the lower and upper linkages throughout the bending. Each linkage also has control links connected to the connector links thereof such that the control links are pivotable about axes that extend perpendicular to the shape defined between the lower and upper. Furthermore, at least one of the control links of each linkage is configured to permit glass sheet bending by linkage movement on one side thereof independently of the other side thereof.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: September 3, 2013
    Assignee: Glasstech, Inc.
    Inventors: Alfredo Serrano, Gilbert L. Reed, Thomas J. Zalesak, Paul D. Ducat
  • Patent number: 8516854
    Abstract: The invention is directed to a method of forming small, thin glass articles having a thickness of less than 5 mm by the use of a plunger and a die, the die having walls, a terminal area and a transition area in contact with both the walls and the transition area is such that the interior distance dimensions of the die gradually decrease as one progresses from the terminal area through the transition area to the walls.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: August 27, 2013
    Assignee: Corning Incorporated
    Inventor: Matthew John Dejneka
  • Publication number: 20130199243
    Abstract: Disclosed is a glass sheet bending system including a press bending station for bending a glass sheet into a desired shape. The press bending station includes a glass mounting bed on which the glass sheet is to be temporarily put until the glass sheet is pressed on the glass forming surface of a mold. This system is characterized in that the glass mounting bed includes a slat conveyer whose crawler is driven in the conveyance direction of the glass sheet or a belt conveyer whose belt is driven in the conveyance direction of the glass sheet. By this system, the glass sheet having no distortion can be produced.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 8, 2013
    Applicant: Central Glass Company, Limited
    Inventors: Takeshi MORI, Takeshi Hosokawa
  • Patent number: 8495895
    Abstract: A bent glass sheet shaping method which is capable of reducing occurrence of visibility distortions and a bent glass sheet with reduced visibility distortions. A glass sheet is heated to a shapeable temperature, a cover material is mounted onto a press die such that a direction of waves in the cover material is diagonal to a direction of distortions in the glass sheet, and the heated glass sheet with the press die is pressed.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 30, 2013
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Kazuo Yamada, Takahiro Shimomura, Komei Kato, Shinichi Nishimoto
  • Publication number: 20130186138
    Abstract: Apparatus (36, 36?) and a method for forming glass sheets utilizes a press ring assembly (50) adjacent a heating furnace to receive a heated class sheet therefrom for press forming. The press ring assembly (50) includes a press ring (52) for mounting on a support (48), with the press ring having an open interior and peripheral shape including an upwardly oriented forming face (74) for contacting the heated glass sheet periphery. A heater (75) extends along the peripheral shape of the press ring (52) to provide heating under the control of at least one thermocouple (110), and insulation (78) extends along the periphery of the press ring within the interior, around the exterior and below the press ring to reduce heat loss, with the heater located between the insulation and the press ring. An upper press mold (58) cooperates with the press ring assembly (50) to provide press forming.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 25, 2013
    Applicant: GLASSTECH, INC.
    Inventors: Troy R. Lewandowski, David B. Nitschke, Dean M. Nitschke, Jeffrey A. Grzeszczak, Mace L. Odneal
  • Publication number: 20130171425
    Abstract: A glass article includes a main body made from glass and at least one decorative member. The main body has a three-dimensional shape and has an outer surface which has at least one curved surface portion. The at least one curved surface portion defines at least one recess. The at least one decorative member are received in the corresponding at least one recess to form a desired symbol, logo, or pattern on the glass article. A method for making the glass article is also provided.
    Type: Application
    Filed: May 31, 2012
    Publication date: July 4, 2013
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventors: REN-BO WANG, XIN-WU GUAN
  • Patent number: 8468850
    Abstract: In a preliminary forming step, positioning of a glass sheet is facilitated, and generation of a hinge mark by a flapping mechanism and generation of excessively bent portions, are prevented at the same time.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: June 25, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Masao Fukami, Taisei Mori, Yutaka Kitajima
  • Patent number: 8453479
    Abstract: A glass sheet bending method for glass sheet bending utilizes a primary actuating mechanism (154) for moving lower and upper mold support linkages (26, 48) from a flat shape to a curved shape of a constant radius provided by connection links (28) and control links (34) of the linkages. The lower and upper linkages (26, 48) having one pair of connector links (28) with control links (34) configured to allow a secondary actuating mechanism (155) to provide linkage movement on one lateral side thereof independently of on their other lateral side.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: June 4, 2013
    Assignee: Glasstech, Inc.
    Inventors: Alfredo Serrano, Gilbert L. Reed, Thomas J. Zalesak, Paul D. Ducat
  • Patent number: 8448466
    Abstract: The glass sheets (2) of an asymmetric glass-sheet pair, which is intended for the production of laminated glass, are preheated in a preheating furnace (1) and then undergo a press-bending process in a press-bending station (4). By means of a temperature measuring point (11) arranged at the exit of the press-bending station, it is ensured that the glass sheets exhibit a uniform bending behavior, in order to guarantee identical restoring forces during cooling. The temperature measuring point (11) is connected to a control device (16), which causes an intermediate cooling of the glass sheet heating more rapidly by means of an intermediate cooling installation (12, 13) in the pre-heating furnace and/or lengthens its dwell time in the press-bending station (4) by means of a timing control element (15).
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: May 28, 2013
    Assignee: Pilkington Automotive Deutschland GmbH
    Inventors: Dieter Funk, Joachim Pilz, Peter Michels
  • Patent number: 8448470
    Abstract: A method for manufacturing curved glass sheet includes the following steps: providing a mold which includes a first mold core and a second mold core corresponding to the first mold core; providing a raw glass sheet and placing the raw glass sheet on the second mold core; heating the first mold core to a first temperature, and heating the second mold core and the raw glass sheet to a second temperature which is equal to or lower than the glass transition temperature of the glass sheet but higher than the first temperature; closing the mold and hot pressing the first mold core on the glass sheet; opening the mold, and cooling the glass sheet to obtain the curved glass sheet. An annealing step can also be provided to the curved glass sheet. A mold for manufacturing the curved glass sheet is also provided.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 28, 2013
    Assignees: Fu Tai Hua Industry (Shenzhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Shyan-Juh Liu, Chu-Sheng Chen, Lai-Bing Huang, Ren-Jun Yang, Lei Liu
  • Publication number: 20130125589
    Abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Inventors: Thierry L.A. Dannoux, Allan M. Fredholm, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Publication number: 20130129921
    Abstract: Methods for producing crucibles for holding molten material that contain a reduced amount of gas pockets are disclosed. The methods may involve use of molten silica that may be outgassed prior to or during formation of the crucible. Crucibles produced from such methods and ingots and wafers that are produced from crucibles with a reduced amount of gas pockets are also disclosed.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Steven L. Kimbel, Harold W. Korb, Richard J. Phillips, Shailendra B. Rathod
  • Publication number: 20130125588
    Abstract: A glass sheet is placed on a mold and heated to a first temperature. The glass sheet is then formed into a glass article having a three-dimensional shape using the mold. An isothermal heat transfer device comprising at least one heat pipe is provided in thermal contact with the mold. With the glass article on the mold and the isothermal heat transfer device in thermal contact with the mold, the glass article, mold, and isothermal heat transfer device are transported along a thermally-graded channel to cool the glass article to a second temperature. During the transporting, the isothermal heat transfer device transfers heat from a relatively hot region of the mold to a relatively cold region of the mold.
    Type: Application
    Filed: October 22, 2012
    Publication date: May 23, 2013
    Inventors: Nikolaos P. Kladias, Kenneth Spencer Morgan, Elias Panides, Rohit Rai, John R. Ridge, Ljerka Ukrainczyk
  • Patent number: 8443629
    Abstract: The present invention relates to a method for manufacturing an ultra-thin glass substrate, the method including: a feeding step of feeding a preform for a glass substrate to a production line while being held; a heating step of heating the preform fed from the feeding step to a temperature around a softening point thereof; and a drawing step of drawing the preform that has softened in the heating step to form an ultra-thin glass substrate, in which the preform has been wound on a cylindrical first winding roll.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: May 21, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Yutaka Kuroiwa, Seiki Ohara
  • Patent number: 8429937
    Abstract: A flat glass sheet and a mold having a mold cavity defined by a shaping surface are provided. The shaping surface has a surface profile of a shaped glass article. At least one edge alignment pin is provided on the mold at an edge of the shaping surface. The glass sheet is leaned against the edge of the shaping surface such that an edge of the glass sheet abuts the edge alignment pin. The glass sheet is then heated. The glass sheet is sagged onto the shaping surface of the mold so that the glass assumes the surface profile of the shaped glass article and thereby form the shaped glass article. The edge alignment pin aligns the edge of the glass sheet with the mold cavity as the glass sheet sags onto the shaping of the mold. The shaped glass article is removed from the mold.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 30, 2013
    Assignee: Corning Incorporated
    Inventors: Joseph D Malach, Alexander Lamar Robinson, John Robert Saltzer, Jr., Ljerka Ukrainczyk
  • Publication number: 20130091896
    Abstract: A method and apparatus (54) for positioning glass sheets for forming includes positioners (55) that are moved slower than the speed of glass sheet conveyance to provide rotational adjustment of a glass sheet into alignment above a forming mold (52). The forming mold (52) is moved upwardly for the forming in a pressing manner against a downwardly facing upper mold (58). Both preformed and flat glass sheets can be positioned by different embodiments of the apparatus.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 18, 2013
    Applicant: GLASSTECH, INC.
    Inventors: David B. Nitschke, Dean M. Nitschke, Daniel P. Lechner
  • Patent number: 8418503
    Abstract: A sheet glass that has a side surface with an average surface roughness equal to or less than 0.2 ?m is provided. Furthermore, a method of manufacturing a sheet glass is provided that includes processing a base-material glass sheet to obtain a sheet glass that has a side surface with an average surface roughness equal to or less than 0.2 ?m. Moreover, a method of manufacturing a sheet glass is provided that includes processing a base-material glass sheet so that an average surface roughness of a side surface becomes equal to or less than a predetermined value according to a section modulus of the sheet glass that is to be manufactured.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 16, 2013
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Toshihiro Nakamura, Sadayuki Toda, Hisashi Koaizawa