By Stretching Means Patents (Class 65/283)
  • Patent number: 8752368
    Abstract: A diagnostic method is provided for a particle filter arranged in exhaust-gas flow of an internal combustion engine. A particle concentration is detected by a particle sensor positioned downstream of the particle filter. The combustion-relevant engine parameters are briefly changed by an engine controller in such a way that an untreated emissions concentration from the engine is significantly increased. A filter fault message is output if the detected associated measurement values of the particle concentration exceed a detection threshold value of the particle sensor, which is in particular considerably greater than a predefined, preferably volume-related particle limit value.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: June 17, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Johannes Ante, Manfred Weigl
  • Publication number: 20080127680
    Abstract: A method and device for making high precision glass forms (110). A glass rod (1) is pushed into a melting tube (47) and the glass form is pulled from the chamber. Preferably, both the push rate and the pull rate are controlled. Fiber optic glass ferrules and other components manufactured by the use of this invention have precision dimensions that fall well within the tight dimensional tolerances required for ferrules and others.
    Type: Application
    Filed: March 4, 2005
    Publication date: June 5, 2008
    Applicant: Quantum Quartz, LLC
    Inventors: Vaughan Morrill, Roger Wilke
  • Patent number: 6938442
    Abstract: According to a prior art method for producing a cylindrical component comprised of silica glass, a cylinder comprised of a softened silica glass mass is drawn in a predetermined drawing direction along a drawing axis by means of a drawing device which acts upon said cylinder. The aim of the invention is to provide a method which prevents, to the greatest possible extent, warping of the drawn cylinder and other deviations from the ideal cylinder dimensions and to prevent, to the greatest possible extent, the outer surface of the drawn cylinder from being touched. To these ends, the invention provides that the drawing device comprises a plurality of guide elements which are arranged one behind the other along the drawing axis, and which can be displaced independently of one another in a drawing direction and in a direction opposite thereto.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: September 6, 2005
    Assignee: Heraeus Tenevo GmbH
    Inventors: Clemens Schmitt, Karsten Bräuer, Uwe Christiansen, Rainer Köppler, Heinz Fabian
  • Patent number: 6739151
    Abstract: In a known method of producing a quartz glass tube (22), a cylinder (21) of quartz glass which rotates about a rotational axis (27) is continuously fed to a heating zone (24), softened therein in portions starting from one end, and the softened portion (25) is drawn over a drill head (1) of a drill body arranged to be coaxial to the rotational axis and is thereby formed into the quartz glass tube (22). Starting therefrom, in order to indicate a method for forming a cylinder of quartz glass into a hollow cylinder of quartz glass having an inner bore that is as flawless as possible and straight and dimensionally stable, it is suggested according to the invention that a drill body should be used with a drill head (1) having a contact surface (2) of a convex curvature facing the cylinder (21), preferably a spherically shaped contact surface (2). The drill body according to the invention is characterized by a drill head (1) which has a contact surface (2) of a convex curvature (2).
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: May 25, 2004
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Dagobert Knieling, Rainer Schleich
  • Patent number: 6536239
    Abstract: A mold for shaping the end region and the opening at a selected end of a first, hollow, generally cylindrical, glass tube to enable a second tube, of smaller diameter than the first tube, to be inserted snuggly a first distance within the selected end of the first tube resulting in the two tubes nesting and being self-centered. The mold includes two complementary elongated side pieces having inner side surfaces for, when joined, encircling the periphery of the first tube along a given portion of its selected end region, and an end cap with a cylindrical stub for insertion within the opening of the first tube at its selected end.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: March 25, 2003
    Assignee: Fitel USA Corp.
    Inventors: Peter M. Mueller, Ivan Pawlenko
  • Publication number: 20020174687
    Abstract: The invention is directed to a method of apply controllable pneumatic force in a multibarrel pipette puller to pull single and multibarrel pipettes. A multibarrel pipette puller has a top mechanical portion and a bottom control box. In the top mechanical portion, a metal base is mounted with a pneumatic cylinder, a linear motion guide rail with its movable block connected a clamp body, a pneumatic rotator connected a drill chuck and a pair of heater fixture located between the clamp body and the drill chuck. An optical grid plate is attached on side of the clamp body. An optical sensor is mounted on the metal base along side of the optical grid plate moving path. The piston rod of pneumatic cylinder is connected to the clamp body to deliver pulling and pushing force. The rotator can turn the drill chuck up to 180 degree clockwise or turn counter clockwise back to original position. Both the cylinder and rotator are actuated by pressured air.
    Type: Application
    Filed: June 4, 2002
    Publication date: November 28, 2002
    Inventor: Zong Yuen Cai
  • Patent number: 6363750
    Abstract: A glass tube is positioned over a heater and stretched until drawn apart into two drawn portions. A controlled pulling force is applied to the tube by a powered driver such as a linear motor. After separation, one of the drawn glass portions is repositioned over the heater and reciprocated in a controlled fashion by the driver to refine the geometry of the fine tip formed on the resulting pipette.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: April 2, 2002
    Inventor: Chris D. Chiodo
  • Patent number: 6079230
    Abstract: The apparatus for preparing quartz micropipettes includes a pair of carriers mounted on a linear ball bearing guide which grasp opposite ends of a quartz glass capillary tube. A pair of miniature torches fueled by a mixture of oxygen and propane simultaneously heat a portion of the center of the capillary tube and an inverted U-shaped bar disposed between the torches in propinquity to the capillary tube. A cable having one end attached to one of the carriers and the other end attached to the core of a solenoid, the intermediate portion of the cable being wound around a pulley and attached to the second carrier, is used to pull the capillary tube in opposite directions as the tube softens. The cable is also wound around the axle of an optical encoder assembly which sends an electrical signal to a computer based upon either the distance or velocity at which the tubing is pulled apart.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: June 27, 2000
    Inventor: Jian-Qiang Kong
  • Patent number: 5683483
    Abstract: The present invention provides large, high-purity quartz glass plate with a high degree of smoothness and flatness, its manufacturing method and equipment. The invention is characterized by the procedure in which a quartz glass tube with an opening over a specific width, in the direction of the tube shaft, that is preferably band-shaped, is heated and softened in a band-shaped area over the entire width, in the direction of the tube shaft, progressing sequentially along the direction of tube circumference from a specific position on the glass tube. While softening and heating, the quartz glass tube is pulled in a line approximately tangential to the specific position to flatten the glass tube.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: November 4, 1997
    Assignee: Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Ise Yosiaki, Asajima Kazuo, Okosi Shinichi, Kimura Hiroyuki
  • Patent number: 5658365
    Abstract: An apparatus is provided for applying a tensile force along the longitudinal axis of a cane assembly during the deposition of soot thereon to produce an optical fiber preform. Fiber drawn from such a preform exhibits improved core/clad concentricity. The tensile force may be applied at one or both ends of the cane assembly, with application at both ends being preferred. The tensile force may be varied during the deposition of soot. The cane assembly may be annealed prior to beginning the deposition of soot thereon.
    Type: Grant
    Filed: December 14, 1994
    Date of Patent: August 19, 1997
    Assignee: Corning Incorporated
    Inventors: Paul A. Chludzinski, David A. Tucker, Johnnie E. Watson, John G. Williams
  • Patent number: 5181948
    Abstract: A micropipette puller of the type having a laser for heating a length of capillary to be pulled is shown. Before intercepting the capillary, the laser beam is first passed through an aperture to reduce the beam width to a desired size. In one embodiment the aperture is made by a pair of movable shutters allowing the beam width to be adjusted. In this embodiment the spacing between the shutters can be made small in relation to the length of capillary to be heated and the resulting slit scanned back and forth along the capillary. Fixed, removable aperture plates means are also shown.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: January 26, 1993
    Assignee: Sutter Instrument Company
    Inventor: Jack H. Belgum
  • Patent number: 5053100
    Abstract: A method of making apparatus for dispensing very small and precise amounts of fluids is disclosed which includes forming a main body with a bore formed coaxially therethrough, attaching a first housing to the main body such that the bores thereof are coaxial, attaching a driver device to the first housing, attaching a second housing to the main body such that the driver device is enclosed by the second housing, attaching a weight to the end of the first housing and applying heat to the first housing at a predetermined location between the weight and the second housing, whereby the end of the first housing is pulled away from the main body to form a tapered end portion on the first housing.
    Type: Grant
    Filed: September 1, 1989
    Date of Patent: October 1, 1991
    Assignee: Microfab Technologies, Inc.
    Inventors: Donald J. Hayes, John R. Pies
  • Patent number: 5017208
    Abstract: Apparatus for forming a groove in a glass tube without contacting the glass tube in the groove region. The apparatus includes a pair of chucks for holding opposite ends of the glass tube. The chucks are coupled to a motor for rotating the glass tube about its longitudinal axis. The apparatus further includes one or more torches for noncontact heating of the groove region of the glass tube sufficiently to soften the glass tube in the groove region. The chucks which hold the glass tube are axially movable for stretching and then compressing the glass tube along its longitudinal axis, when the glass tube has been softened in the groove area. The chucks are rotated during heating, stretching and compressing of the glass tube.
    Type: Grant
    Filed: November 14, 1990
    Date of Patent: May 21, 1991
    Assignee: GTE Products Corporation
    Inventors: Jonathan M. Gregory, Thomas G. Brophy
  • Patent number: 4981505
    Abstract: A heat-sealable glass container is heat-sealed by an apparatus which heats the container with an infrared lamp while rotating the container and elongating the heat-softened top portion. The elongation of the softened glass pulls the glass to a point and results in an airtight seal.
    Type: Grant
    Filed: March 31, 1989
    Date of Patent: January 1, 1991
    Assignee: Schott-Ruhrglas GmbH
    Inventor: Reinhard Mannl
  • Patent number: 4923498
    Abstract: A method for forming a groove in a glass tube without contacting the glass tube in the groove region. The method includes the steps of rotating the glass tube about its longitudinal axis, heating a localized area of the glass tube where a groove is to be formed sufficiently to soften the glass tube in the localized area, stretching the glass tube along its longitudinal axis by a first distance sufficient to cause a reduction in the diameter of the glass tube in the localized area, and compressing the glass tube along its longitudinal axis by a second distance sufficient to produce a groove in the localized area. The glass tube is rotated during the steps of heating, stretching and compressing the glass tube. Heating is preferably performed by directing the flames from one or more torches at the groove area.
    Type: Grant
    Filed: September 11, 1989
    Date of Patent: May 8, 1990
    Assignee: GTE Products Corporation
    Inventor: Jonathan M. Gregory
  • Patent number: 4921522
    Abstract: The micropipette puller of this invention includes a pair of gripping jaws that pull a length of glass tubing in opposite directions. The source of heat is a laser device and a laser beam is directed against the glass tubing between the gripping jaws and beyond the tubing into a concave mirror, which reflects that portion of the beam that bypassed the tubing, back against the back side of the tubing for uniform heating around the circumference of the tubing.
    Type: Grant
    Filed: July 10, 1989
    Date of Patent: May 1, 1990
    Inventor: Dale G. Flaming
  • Patent number: 4913719
    Abstract: A micropipette puller of this invention includes a pair of gripping jaws that pull a length of glass tubing in opposite directions. The source of heat is a laser and a beam is directed into a zoom lens, or a selected one of a series of lenses, so that a beam of selected length and configuration is refracted against the glass tubing between the gripping jaws.
    Type: Grant
    Filed: July 10, 1989
    Date of Patent: April 3, 1990
    Inventor: Dale G. Flaming
  • Patent number: 4869745
    Abstract: The micropipette puller of this invention includes a pair of gripping jaws that pull a length of glass tubing in opposite directions. The source of heat is a laser and a beam is directed into a beam directing means, such as a lens or mirror, to refract or reflect the beam against the glass tubing between the gripping jaws. The mirror or lens may be oscillated at various rates and through selected angles in each direction to move the reflected beam a selected amount and at selected rates along a greater length of the glass tubing.
    Type: Grant
    Filed: April 24, 1989
    Date of Patent: September 26, 1989
    Inventor: Dale G. Flaming
  • Patent number: 4828599
    Abstract: The method of the present invention consists of the steps of heating an area along the length of a small diameter glass tube while the tube is being rotated, pulling the heated tube using an unidirectional force to rapidly extend the heated area while mechanically maintaining the heat source centrally located along the portion of the tubing being extended. The extended tubing is subsequently cooled and separated at the narrowed portion to produce two capillary tubes.
    Type: Grant
    Filed: August 8, 1988
    Date of Patent: May 9, 1989
    Assignee: The Research Foundation of State University of New York
    Inventors: Frederick Sachs, Victor Demjanenko
  • Patent number: 4818266
    Abstract: The method of the present invention consists of the steps of heating an area along the length of a small diameter glass tube while the tube is being rotated, pulling the heated tube using an unidirectional force to rapidly extend the heated area while mechanically maintaining the heat source centrally located along the portion of the tubing being extended. The extended tubing is subsequently cooled and separated at the narrowed portion to produce two capillary tubes. The apparatus of the present invention consists of two independently rotatable, co-axially aligned chucks. The chucks rotate in an essentially simultaneous manner, that is, the speed of rotation of each chuck is essentially the same. Each of the chucks has an adjustable collet thereon adapted to receive and hold a section of glass tubing aligned therebetween. A means of moving one of said chucks away from the other is provided. A moveable heating means is positioned intermediate the chucks.
    Type: Grant
    Filed: May 14, 1986
    Date of Patent: April 4, 1989
    Assignee: The Research Foundation of State University of New York
    Inventors: Frederick Sachs, Victor Demjanenko
  • Patent number: 4586944
    Abstract: A method and an apparatus for manufacturing hollow glass objects according to the press-and-blow process, in which a glass gob is shaped in a cooled preform mould into an elongate parison, the parison, while freely hanging at its neck portion, is then subjected to a thermal intermediate treatment and subsequently the parison is blown up in a finish mould to the desired hollow glass object and is simultaneously subjected to an upsetting operation, in such a manner that the blown-up hollow glass object at the part having larger transverse dimensions has a considerable wall thickness.
    Type: Grant
    Filed: October 19, 1984
    Date of Patent: May 6, 1986
    Assignee: U.S. Philips Corporation
    Inventor: Hendrik Romberg
  • Patent number: 4578101
    Abstract: Control over the diameter variations in a glass rod (10) during the stretching thereof is accomplished by cooling the rod after heating and initial neck down of a portion (22) thereof. After cooling, the rod (10) is reheated, at a lower temperature sufficient to reflow the glass in the necked-down portion (22) thereof, and is then stretched to the desired final diameter. Heating the rod (10) at a lower temperature during stretching increases the viscosity thereof which reduces its response to the stretching conditions, thereby affording better control over diameter fluctuations.
    Type: Grant
    Filed: September 26, 1984
    Date of Patent: March 25, 1986
    Assignee: AT&T Technologies, Inc.
    Inventors: Harold R. Clark, David A. Nicol
  • Patent number: 4330317
    Abstract: Method and machine for making vials from glass tubing, wherein at least one glass tube (22) with closed bottom is loaded on a rotatable plate (11), having a series of holes circumferentially passing therethrough, and is then grasped by upper pliers (23'), provided on a plane not coincident with the rotatable plate (11), and then grasped by lower pliers (23) also provided on a horizontal plane not coincident with a lower rotatable plate (10), the tube (22) being continuously rotated on its axis by rotating elements of the pliers (23, 23'), and rotated throughout the circumference of the machine by rotation of the suitably controlled rotatable plates (10, 11). In this rotation the tube, as drawn or pulled at suitable intervals by the pliers, is caused to pass in front of a series of burners (17) arranged in suitable number on the entire periphery of the machine, such burners being provided with parabolic arc flames.
    Type: Grant
    Filed: November 6, 1980
    Date of Patent: May 18, 1982
    Inventor: Ermanno Vertova
  • Patent number: 4157909
    Abstract: The disclosure is of apparatus including two pairs of metal gripping blocks held together by a spring and mounted adjacent to wedge blocks carrying wedges for opening each pair. An operating plate is provided which drives the apparatus to cause the wedge blocks to open the gripping blocks to permit a length of capillary tubing filled with mercury to be inserted between the pairs of gripping blocks. The apparatus is then driven to cause the tubing to pass through a flame positioned to melt the tubing at a desired location and to form two separate seal portions at this location which are gripped by the two gripping blocks; and, on the next cycle, when the gripping blocks are opened, the portion of the tubing which is the desired capsule is released from its pair of gripping blocks and fed to a suitable receiver.
    Type: Grant
    Filed: April 27, 1978
    Date of Patent: June 12, 1979
    Assignee: Burroughs Corporation
    Inventor: Adam Kachidurian