Sequentially Forming, Reheating, And Working Patents (Class 65/63)
  • Patent number: 5999315
    Abstract: Plural layers of metallic particle layers in which metallic particles having morphological anisotropy are dispersed and dielectric layers are alternately stacked on at least one pricipal surface of a substrate having transparency to form a polarizing layer. The content of the group 0 elements in the polarizing layer is kept not higher than 1.5.times.10.sup.20 molecules/cm.sup.3.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: December 7, 1999
    Assignee: Kyocera Corporation
    Inventors: Toru Fukano, Yasushi Sato, Masato Shinya
  • Patent number: 5951732
    Abstract: A method of forming glass uses the steps of forming base glass from layered stacks of colored glass; V-Grooving a plurality of base glass layers; stacking the grooved layers; heating and maintaining at an elevated temperature for flow and air entrainment elimination; recutting the block to desired dimensions and reforming into sheet form. The glass has ribbons of color contained within a glass matrix, the ribbons being aligned perpendicularly to the face of the glass.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: September 14, 1999
    Inventor: Mark Duro
  • Patent number: 5917105
    Abstract: A method is provided of manufacturing an optical element having an optical axis, and including a plurality of definable adjacent zones of optical material, each zone having a definable refractive index different from the refractive index of an adjacent zone and an Abbe number, the zones of optical materials being arranged parallel to each other to define a profile of refractive indices which is symmetric about a plane of symmetry along the optical axis of the element and parallel to the zones.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: June 29, 1999
    Assignee: LightPath Technologies, Inc.
    Inventors: Xiaojie Xu, Michael E. Savard
  • Patent number: 5908482
    Abstract: A silica glass has a structure determination temperature of 1200K or lower and a hydrogen molecule concentration of 1.times.10.sup.17 molecules/cm.sup.3 or more. The silica glass is used together with light in a wavelength region of 400 nm or shorter. The silica glass is produced by heating a silica glass ingot having a hydrogen molecule concentration of 1.times.10.sup.17 molecules/cm.sup.3 or more to a temperature of 1200-1350K, retaining the ingot at that temperature for a given period of time, and then, cooling the ingot to a temperature of 1000K or lower at a temperature-lowering rate of 50K/hr or less to anneal the ingot.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: June 1, 1999
    Assignee: Nikon Corporation
    Inventors: Norio Komine, Hiroyuki Hiraiwa
  • Patent number: 5907770
    Abstract: An amorphous silicon film is formed on a flat glass substrate, and then crystallized by heating to obtain a crystalline silicon film. The glass substrate is placed on a stage having a convex U-shaped curved surface. The glass substrate is heated for a desired period of time at a temperature close to a strain point of the glass substrate, and then is cooled. Also, an amorphous silicon film formed on a glass substrate is crystallized into a crystalline silicon film by heating and then the glass substrate is mounted on a stage having a flat surface in such a manner that the lower surface of the glass substrate is in close contact with the flat surface of the stage by pressing the upper surface of the glass substrate. Then, a linear laser beam is irradiated on the crystalline silicon film in a scanning manner.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: May 25, 1999
    Assignee: Semiconductor Energy Laboratory Co.,
    Inventors: Shunpei Yamazaki, Koichiro Tanaka
  • Patent number: 5904746
    Abstract: Method and apparatus for producing vitreous optical elements by injection molding, which essentially includes the stages of: melting down a glass material into a molten state in a viscosity at or lower than a working point of the glass material; injecting molten glass under pressure into a mold cavity defined between transfer surfaces of relatively movable mold members of a mold assembly unit in communication with a sprue connecting the mold cavity with an injection port on the outer side of the mold assembly unit; and applying a predetermined pressure on the glass material in the mold cavity while cooling the mold assembly unit down to a temperature in the vicinity of yielding point of the glass material.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: May 18, 1999
    Assignee: Fuji Photo Optical Co., Ltd.
    Inventor: Shin-ya Okada
  • Patent number: 5864427
    Abstract: A metal such as Au and a dielectric such as borosilicate glass are simultaneously sputtered to form a film on a glass substrate. Next, this film is heated to grow metal particulates. Next, the substrate is drawn on heating to give an anisotropy to the metal particulates and produce a polarizer. The metal particulates are spheroidal and are dispersed almost homogeneously in the dielectric.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: January 26, 1999
    Assignee: Kyocera Corporation
    Inventors: Toru Fukano, Masato Shinya, Yasushi Sato
  • Patent number: 5853446
    Abstract: A method and apparatus for making formed glass structures. A glass frit containing material is deposited within a recessed pattern, hardened in the recessed pattern, and transferred to a substrate. The method and apparatus of the invention are particularly useful for forming barrier rib structures for use in plasma display panels.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: December 29, 1998
    Assignee: Corning Incorporated
    Inventors: Alain R.E. Carre, Bernard Eid, Mark S. Friske, Ronald E. Johnson, Candace J. Quinn, Frances M. Smith, Jean-Pierre Themont
  • Patent number: 5837026
    Abstract: Air is blowed before an annealing step to corner portions in an inner face portion of a glass panel which has been press-formed in a mold to cool that portions to be stronger than the other portion whereby a temperature difference between the corner portions and the other portion is reduced.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: November 17, 1998
    Assignee: Asahi Glass Company Ltd.
    Inventors: Tsunehiko Sugawara, Toshikazu Ikezawa, Naoya Shimizu, Hiroshi Yamasaki
  • Patent number: 5837108
    Abstract: A sputter-coated layer system including a non-nitrided and non-oxidized nickel or nickel alloy layer located between two layers of Si.sub.3 N.sub.4 of the requisite thicknesses and used for architectural and automotive glass substrates so as to be heat treatable and have .DELTA.E characteristics sufficiently low to render the products matchable as between heat treated and non-heat treated products having the same coating thereon.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: November 17, 1998
    Assignee: Guardian Industries Corp.
    Inventors: Philip J. Lingle, Klaus W. Hartig, Steven L. Larson
  • Patent number: 5788731
    Abstract: A process for producing a crystallized glass substrate for magnetic disks, including the steps of: (a) holding an amorphous glass plate having a uniform thickness and two principal flat surfaces thereof between a pair of pressing setters in a sandwiched fashion, which pressing setters are non-reactive with the amorphous glass and undeformable during heating for crystallization of the amorphous glass; (b) softening the amorphous glass plate in a sandwiched stack form by heating at a temperature above an annealing point of the amorphous glass, whereby the principal surfaces are fitted onto the flat surfaces of the pressing setters to rectify warping to flatten the amorphous glass plate; and (c) then, increasing the temperature to a crystal growth temperature to grow crystals within the amorphous glass, whereby the amorphous glass plate is crystallized as maintaining its warp-free state, followed by solidifying.
    Type: Grant
    Filed: October 1, 1996
    Date of Patent: August 4, 1998
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomio Suzuki, Fuminori Takeya
  • Patent number: 5785729
    Abstract: A method for fabricating a large-sized primary treated quartz glass tube by perforating a cylindrical quartz glass mother material by a hot carbon drill press-in-process followed by etching and washing. The large-sized primary treated quartz glass tube is converted to a large-sized quartz glass preform by combining it with a core glass rod for an optical fiber. Another embodiment is a method for fabricating a large-sized quartz glass tube by heating, hot drawing or hot drawing under pressure using a tool-free drawing method under control of an inside pressure of the large-sized primary treated quartz glass tube at a temperature ranging from 1600.degree. C. to 3000.degree. C. to satisfy a specific equation.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: July 28, 1998
    Assignees: Heraeus Quarzglas GmbH, Shin-Etsu Quartz Products Co., Ltd
    Inventors: Kiyoshi Yokokawa, Masaaki Aoyama, Gerhart Vilsmeier
  • Patent number: 5766291
    Abstract: A porous silica body with a density of 0.1 g/cm.sup.3 to 0.5 g/cm.sup.3 and a density variation of less than 30% is subjected to a first heat-treatment in an ammonia-containing atmosphere, a second heat-sintering in non-oxidizing atmosphere, and further heat-treatment at a temperature in the range of 1400.degree. C. to 2000.degree. C. under an increased pressure of 500 kg/cm.sup.2 or more in a non-oxidizing atmosphere.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: June 16, 1998
    Assignee: Heraeus Quarzglas GmbH
    Inventors: Tatsuhiro Sato, Akira Fujinoki
  • Patent number: 5762673
    Abstract: In a method of manufacturing glass optical elements at high operational efficiency, a mass of molten glass which is dropped down is cut at a first step by a wind blast into a sequence of glass gobs each of which is received by a gas stream spouted from a lower portion. Each glass gob is kept afloat with a gas stream spouted to be adjusted to a temperature corresponding to a glass viscosity between 10.sup.5.5 and 10.sup.9 poises. Thereafter, the glass gob is pressed in a third step by the use of a pair of forming dies kept at a temperature which corresponds to a glass viscosity between 10.sup.8 and 10.sup.12 poises and which is lower than the temperature of the glass gob. During the third step, the forming dies are cooled to a temperature lower than the temperature corresponding to a glass viscosity of 10.sup.13.4 poises with the glass gob kept within the forming dies and are thereafter opened to release a shaped article from the forming dies.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: June 9, 1998
    Assignees: Hoya Precision Inc., Hoya Corporation
    Inventors: Shin-Ichiro Hirota, Tadayuki Fujimoto, Hiroaki Takahara
  • Patent number: 5720791
    Abstract: An optical lens element is produced by the following steps of:preparing a glass pre-form;forming a metal thin layer or a powder layer, said metal thin layer including gold, platinum, rhodium, nickel, or palladium; andpressing the glass pre-form with the metal thin layer against molding surfaces to form the optical lens element.
    Type: Grant
    Filed: March 7, 1995
    Date of Patent: February 24, 1998
    Assignee: Minolta Co., Ltd.
    Inventor: Tomoko Miyaura
  • Patent number: 5634956
    Abstract: Glass ceramic for use as a biomaterial comprising CaO 34.6 to 54.6%, SiO.sub.2 24.2 to 44.8 %, P.sub.2 O.sub.5 0 to 8.0%, CaF.sub.2 0.1 to 1.0% and Mgo 1.0 to 10.0% by weight and characterized by a primary wollastonite crystalline phase (CaO, SiO.sub.2) and a secondary apatite crystalline phase, and the process for the preparation thereof are disclosed. The glass ceramic of the present invention has superior mechanical properties, good biocompatibility, bioactivity, and no toxicity making it useful as a biomaterial in artificial bone and dental implants.
    Type: Grant
    Filed: June 19, 1995
    Date of Patent: June 3, 1997
    Assignee: Samjo Industrial Co., Ltd.
    Inventors: Chung K. Suh, Ho K. Kim
  • Patent number: 5573622
    Abstract: A method of fabricating a plurality of multilayer structures which includes at least one recess defined by a nonplanar surface. The method comprising the step of: (a) providing a resilient, compliant material on over one or more stacks of layers including the area over the recess; (b) applying sufficient pressure to the stacks to cause the resilient, compliant material to fill the recess and laminate said stacks; (c) lifting the resilient, compliant material off the stack subsequent to the application of pressure; (d) providing one or more stacks of layers that have not been subjected to step (b); and (e) repeating steps (a)-(d). In a preferred embodiment of the invention steps (a)-(d) are repeated at least ten times without the need to change the resilient compliant material. In a most preferred embodiment of the invention steps (a)-(d) are repeated at least one hundred times.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: November 12, 1996
    Assignee: Aluminum Company of America
    Inventors: Allan R. Hass, Joseph M. Dynys
  • Patent number: 5535056
    Abstract: A elemental mirror for vehicles having a luminous reflectance of at least about 30% includes a substrate coated with a thin layer of elemental semiconductor having an index of refraction of at least 3 and an optical thickness of at least about 275 angstroms. Preferably, the elemental semiconductor coating is sputter coated silicon or germanium and a light absorbing coating is included therebehind. The mirror is spectrally nonselective with elemental semiconductor optical thicknesses of about 275 to 2400 angstroms on the front substrate surface. Spectrally selective mirrors are provided by adding an interference coating to the elemental semiconductor layer coating, preferably of a dielectric such as silicon dioxide or silicon nitride, on either the front or rear substrate surface, or by using a thicker, single elemental semiconductor layer. Instead of an absorbing coating behind the mirror, additional elemental semiconductor and dielectric thin layers may be included to reduce secondary reflections.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: July 9, 1996
    Assignee: Donnelly Corporation
    Inventors: Gregory T. Caskey, Niall R. Lynam, Bryant P. Hichwa
  • Patent number: 5224977
    Abstract: A fiber optic polarization maintaining apparatus for use in fabrication of fused optical couplers, where the fused optical couplers include first and second optical fibers. The apparatus includes apparatus for holding the first and second optical fibers in a first predetermined alignment where the first and second fibers each include a stripped portion and where the stripped portions are held in contact along their length. Apparatus for heating the first and second optical fibers are located adjacent the holding apparatus wherein the heating apparatus is brushed across the length of the first and second fibers so as to oscillate across the fibers in an amplitude varied in an ever decreasing stepped manner until fusion of the fibers is complete.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: July 6, 1993
    Assignee: Honeywell Inc.
    Inventors: Yellapu Anjan, Sam Habbel, Joseph F. Straceski
  • Patent number: 5108477
    Abstract: A method for foming glass articles of substantial thickness from unstable glass compositions which normally devitrify when formed by conventional casting or molding processes, is disclosed. The method includes the steps of quench-cooling the glass to form a crystal-free glass feedstock material, and then pressure-consolidating the feedstock at a temperature between the transition temperature and the crystallization temperature of the glass.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: April 28, 1992
    Assignee: Corning Incorporated
    Inventors: Lauren K. Cornelius, Linda H. Marks, Teresa C. Nolet, Paul A. Tick, Donald M. Trotter, Jr.
  • Patent number: 5009689
    Abstract: In a method of manufacturing a semiconductor device, at least a support body (1) and a monocrystalline semiconductor body (2) are provided with at least one flat optically smooth surface obtained by means of bulk-reducing polishing (mirror polishing), while at least the semiconductor body is provided at the optically smooth surface with an oxide layer (3). The two bodies (1 and 2) are brought into contact with each other in a dust-free atmosphere after their flat surfaces have been cleaned in order to obtain a mechanical connection. Before the bodies are brought into contact with each other, at least the oxide layer (3) on the semiconductor body (2) is subjected to a bonding-activating operation, while after a connection has been formed between the surfaces, radiation (5) of a laser is focused on the connection surface of the two bodies and material of at least the semiconductor body is molten locally near the connection surface by means of the laser radiation.
    Type: Grant
    Filed: January 27, 1987
    Date of Patent: April 23, 1991
    Assignee: U.S. Philips Corporation
    Inventors: Jan Haisma, Cornelis L. Alting, Theodorus M. Michielsen
  • Patent number: 4818263
    Abstract: A microlens is precisely positioned on the end of an optical fiber by urging the fiber against a moving abrasive lap at a desired angle and simultaneously turning the fiber end, either continuously or in discrete steps. The turning causes the fiber end to contact the abrasive at points all around its periphery, thereby removing material equally from all sides of the fiber and producing a precise lens form. The pressure with which the fiber end is urged against the abrasive is maintained substantially constant by spring action of the fiber. The resulting conical lens is centered on the fiber by action of friction forces which constrain the fiber to rotate in a fixed position despite the fiber's freedom of movement within a guide tube. The invention repeatably provides optically accurate lenses of a variety of conifurgations centered to within one micron on fibers of all types, including polarization-preserving fibers.
    Type: Grant
    Filed: June 11, 1987
    Date of Patent: April 4, 1989
    Assignee: Tektronix, Inc.
    Inventor: John H. Mitch
  • Patent number: 4793844
    Abstract: A method for preparing glassy borate disks is disclosed where a determined amount of investigated material is mixed with borate flux, the mixture is homogenized and tableted; then the obtained tablet is melted in a graphite ring placed on a graphite support, the area of which corresponds to the number of graphite rings, at a temperature higher than 900 degrees C. and afterwards the melt is cooled. The investigated material, prior to taking a determined amount of it, is preheated at a temperature higher than 800 degrees C. The graphite ring in which the melting of the tablet is performed has a height approximately equal to the numeric value of the ratio of the mass of the investigated material and borate flux to the inner diameter of the graphite ring. The graphite support, has a mass approximately equal to the double value of the mass of investigated material and borate flux. The cooling of the melt along with the graphite ring and support is performed in an air medium.
    Type: Grant
    Filed: August 11, 1987
    Date of Patent: December 27, 1988
    Assignee: Geologicheski Institute
    Inventor: Georgi A. Panayotov
  • Patent number: 4504298
    Abstract: A process is disclosed for producing an infrared light transmitting optical fiber by drawing a rod of single crystal or polycrystalline metal halide into a fiber through a die; also disclosed is a process for producing an infrared light transmitting optical fiber of step-index type by forming around a single crystal or polycrystalline fiber core, an intimate cladding crystal layer having a lower refractive index than the core by working in the temperature range that does not cause recrystallization of the core or cladding during working.
    Type: Grant
    Filed: October 19, 1983
    Date of Patent: March 12, 1985
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Minoru Yokota, Kazuhito Murakami, Kenichi Takahashi
  • Patent number: 4445953
    Abstract: Lightweight aircraft transparencies are shaped to a desired configuration by laying up a plurality of flat oversized plastic sheets in a desired sequence to form a flat assembly. Portions of the marginal edges of the flat assembly are supported on a female support ring having a non-planar supporting surface. The assembly is first shaped at a temperature below its deformation temperature to a preliminary shape where its marginal edge portions conform to the non-planar supporting surface of the female support ring. While the marginal edges of the preliminarily shaped assembly are maintained in conformity with the female support ring, the assembly is uniformly exposed in an enclosed autoclave to elevated pressures to minimize outgassing and to elevated temperatures above its deformation temperature. A male form having an outline smaller than the female support ring engages the central portion of the preliminarily shaped assembly to impress the desired final shape thereto, e.g., a compound configuration.
    Type: Grant
    Filed: February 25, 1982
    Date of Patent: May 1, 1984
    Assignee: PPG Industries, Inc.
    Inventor: Thomas W. Hawk
  • Patent number: 4358306
    Abstract: The invention provides a method for molding a block of a fused quartz glass by the plastic deformation of a starting block with smaller dimensions at a high temperature. The molding procedure is carried out in a graphite mold under compression at a temperature of 1700.degree. C. or higher in an atmosphere of helium at a pressure in the range, preferably, from 50 to 500 Torr. The cooling schedule as specified is also of importance in order that the molded quartz glass block is freed from any strain or cracks.
    Type: Grant
    Filed: October 5, 1981
    Date of Patent: November 9, 1982
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Haruo Okamoto, Motoyuki Yamada
  • Patent number: 4098596
    Abstract: A glass article having an optical quality surface smoothness can be formed by molding a "silanol" glass material against a die having a molding surface which is a mirror of that required for the glass article, thereby obviating glass grinding and polishing steps. The article is prepared by first forming an anhydrous base glass comprising, in mole percent on the oxide basis, about 72 to 82% SiO.sub.2, 10 to 17% Na.sub.2 O and/or K.sub.2 O, and 5 to 15% of an oxide or oxides selected from ZnO and PbO. The base glass may include up to 5% Al.sub.2 O.sub.3 and up to 3% of B.sub.2 O.sub.3, BaO and/or MgO. The anhydrous base glass is then hydrated to include a water content ranging from 0.5 to 10% by weight to form a "silanol" glass. That glass is then molded against the die surface at a temperature ranging from about 250.degree. C. to 500.degree. C.
    Type: Grant
    Filed: June 13, 1977
    Date of Patent: July 4, 1978
    Assignee: Corning Glass Works
    Inventor: Che-Kuang Wu