Combined With Knowledge Processing (e.g., Natural Language System) Patents (Class 700/246)
  • Patent number: 8428780
    Abstract: An external force target generating device of a legged mobile robot uses virtual surfaces S3a, S2a, and S2b to approximate a plurality of surfaces to be contacted FL, WL1, and WL2 in an operating environment of a robot 1, and determines provisional values of translational forces (required virtual surface translational forces) to be applied from the virtual surfaces S3a, S2a, and S2b to the robot 1 in order to implement a compensation total translational external force related to a translational motion of the robot 1.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: April 23, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Atsuo Orita
  • Publication number: 20130073081
    Abstract: The present invention relates to a device for positioning submarine pipeline robots and method. The device comprises a pressure wave generator and a device for pressure wave acquiring and processing. The method comprises the following steps of (1) determining the generation mode; (2) acquiring pressure signals; (3) filtering pressure signals; (4) dividing the filtered pressure signals of into the same group; (5) identifying the data during this period in real time; (6) determining the moving state of the robot in the pipeline; (7) calculating the position of the robot in the pipeline; (8) ending the operations, otherwise repeating Step 4 to Step 7 continuously. The present invention has the advantages that the position of submarine pipeline robots can be located in real time. In addition, the severe environment around the pipelines can hardly affect the performance under this method.
    Type: Application
    Filed: March 25, 2011
    Publication date: March 21, 2013
    Applicant: NORTHEAST UNIVERSITY
    Inventors: Huaguang Zhang, Jinhai Liu, Jian Feng, Jilei Li, Xiangxiang Wei, Da zhong Ma, Zhen wei Liu, Xin gang Zhang
  • Publication number: 20130073080
    Abstract: A control apparatus and methods using context-dependent difference learning for controlling e.g., a plant. In one embodiment, the apparatus includes an actor module and a critic module. The actor module provides a control signal for the plant. The actor module is subject to adaptation, which is performed to optimize control strategy of the actor. The adaptation is based upon the reinforcement signal provided by the critic module. The reinforcement signal is calculated based on the comparison of a present control performance signal observed for a certain context signal, with a control performance signal observed for the same context in the past.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Inventor: Filip Ponulak
  • Patent number: 8396593
    Abstract: A gait generating device of a legged mobile robot uses virtual surfaces to approximate a plurality of surfaces to be contacted in an operating environment of a robot, and determines the provisional values of the required virtual surface translational forces to be applied from the virtual surfaces to the robot in order to implement a translational motion of a desired motion of the entire robot. Further, to implement a rotational motion of the desired motion of the entire robot, the gait generating device determines moment compensation amounts to be combined with the provisional values of the required virtual surface translational forces and then determines the desired external forces to be applied from the surfaces to be contacted to the robot and the desired external force action points on the basis of the combinations of the provisional values of the required virtual surface translational forces and the moment compensation amounts.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 12, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Atsuo Orita
  • Patent number: 8392021
    Abstract: An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: March 5, 2013
    Assignee: iRobot Corporation
    Inventors: Stefanos Konandreas, Andrew Ziegler, Christopher John Morse
  • Publication number: 20130054025
    Abstract: An information processing apparatus comprises an obtaining unit configured to obtain sensing data on an area including an installation target component; a detection unit configured to detect a position/orientation of the installation target component as a component position/orientation based on the sensing data; a setting unit configured to set, based on the component position/orientation and shape data on the installation target component, a candidate gripped portion of the installation target component to be gripped by a hand mechanism; a calculation unit configured to calculate, as a candidate hand position/orientation, a position/orientation of the hand mechanism in which the candidate gripped portion can be gripped; and a generation unit configured to generate candidate teaching data for gripping operation by the hand mechanism by associating the candidate gripped portion and the candidate hand position/orientation with each other.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 28, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Yoshinori Ito
  • Patent number: 8386079
    Abstract: Methods and systems for determining semantic information associated with objects are provided. An example method includes receiving information associated with an object and information associated with a contextual situation of a robotic device from the robotic device. For example, the information associated with the contextual situation may include information associated with an environment in which the robotic device is configured to operate. The method may further include performing a search of a database for information associated with the object, and receiving results of the search. The method may also include a computing system determining semantic information associated with a use of the object based on the results of the search. The use of the object may be based on the information associated with the contextual situation of the robotic device. According to the method, the semantic information may be stored as supplemental information associated with the object.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 26, 2013
    Assignee: Google Inc.
    Inventors: Damon Kohler, Ryan Hickman
  • Patent number: 8384250
    Abstract: A system and method for ensuring that a large number of connectors, such as fiber-optic cable-connectors, which are plugged-into connector-receptacles arrayed across a connector-panel, are not intentionally disconnected by an un-authorized user with malicious intent, or accidentally unplugged by an authorized technician who may be trying to manually pull-out a specific connector for testing or other purposes but, inadvertently, could otherwise unplug a neighboring connector because of not being able to clearly see which plug is actually being removed due to the large number of cables that are connected to the panel. The connectors are locked in place by restraining arms which are controlled by solenoids or motors. Each restraining arm can be commanded to release its respective connector, but only when the correct command from a computer is received. The same system and method can be applied to connector-receptacles arrayed on one or both sides of the panel.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: February 26, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Rosa M. Underwood, Henry A. McKelvey, Jimmie D. Peterman, Emory L. Young
  • Publication number: 20130041504
    Abstract: A portable remote controller includes a display color setting unit, a display color information storage unit, and a teaching data display unit. The display color setting unit sets display colors for instructions for making a robot execute a predetermined behavior. The display color information storage unit stores the display colors set by the display color setting unit in association with the instructions. The teaching data display unit displays teaching data created by teaching on a display unit on the basis of the display colors.
    Type: Application
    Filed: December 12, 2011
    Publication date: February 14, 2013
    Applicant: Kabushiki Kaisha Yaskawa Denki
    Inventors: Yumie KUBOTA, Seishiro Sakaguchi
  • Publication number: 20130035790
    Abstract: A method is provided for initiating a telepresence session with a person, using a robot. The method includes receiving a request to host a telepresence session at the robot and receiving an identification for a target person for the telepresence session by the robot. The robot then searches a current location for a person. If a person is found, a determination is made regarding whether the person is the target person. If the person found is not the target person, the person is prompted for a location for the target person. The robot moves to the location given by the person in response to the prompt.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: MICROSOFT CORPORATION
    Inventors: Charles F. Olivier, III, Jean Sebastien Fouillade, Malek Chalabi, Nathaniel T. Clinton, Russell Sanchez, Adrien Felon, Graham Wheeler, Francois Burianek
  • Patent number: 8368339
    Abstract: A method of confining a robot in a work space includes providing a portable barrier signal transmitting device including a primary emitter emitting a confinement beam primarily along an axis defining a directed barrier. A mobile robot including a detector, a drive motor and a control unit controlling the drive motor is caused to avoid the directed barrier upon detection by the detector on the robot. The detector on the robot has an omnidirectional field of view parallel to the plane of movement of the robot. The detector receives confinement light beams substantially in a plane at the height of the field of view while blocking or rejecting confinement light beams substantially above or substantially below the plane at the height of the field of view.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: February 5, 2013
    Assignee: iRobot Corporation
    Inventors: Joseph L. Jones, Philip R. Mass
  • Patent number: 8364310
    Abstract: A modular robot development kit includes an extensible mobile robot platform and a programmable development module that connects to the mobile robot platform. The mobile robot platform includes a controller that executes robot behaviors concurrently and performs robot actions in accordance with robot control signals received from the development module, as modified by the concurrently running robot behaviors, as a safeguard against performing potentially damaging robot actions. Also, the user can develop software that is executed on the development module and which transmits the robot control signals to the mobile robot platform over the data communication link using a robot interface protocol.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 29, 2013
    Assignee: iRobot Corporation
    Inventors: Joseph Lee Jones, Paul Eric Sandin, Bryan Paul Adams
  • Patent number: 8359122
    Abstract: Autonomous personal service robot to monitor its owner for symptoms of distress and provide assistance. The system may include sensors to detect situations before they affect people such as smoke, heat, temperature and carbon monoxide sensors. The system can provide security for the home. The PRA may comprise features such as a medicine dispenser and blood pressure cuff. Features such as broadband internet, MP3 player, reading lights and eye glass tracker provide butler type capabilities that enable the system to appeal to markets beyond the elderly and infirmed. The system may also include an X10 transmitter/receiver to automatically control various household lights and appliances. Equipping the system with a robot arm enables the robot to fetch items, turn on and off wall switches and open the refrigerator.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: January 22, 2013
    Assignee: Vision Robotics Corporation
    Inventors: Harvey Koselka, Bret Wallach, David Gollaher
  • Patent number: 8346397
    Abstract: Controllers for controlling heating, ventilating, air conditioning, and cooling (HVAC) systems are provided. The controllers include graphical user interfaces for user adjustment of system settings. The graphical user interfaces also may be designed to present information that facilitates user understanding of system operations. In certain embodiments, the controllers may allow users to adjust airflow values within a wide range of values. In these embodiments, the graphical user interfaces may include slide bars for adjusting the airflow values.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: January 1, 2013
    Assignee: Johnson Controls Technology Company
    Inventors: Gregory Ralph Harrod, Amanda L. Slavens, Jedidiah O. Bentz, Grant E. Carmichael, Bradley A. Beers, Nathan T. Ostrye
  • Patent number: 8340818
    Abstract: A robotic mapping method includes scanning a robot across a surface to be mapped. Locations of a plurality of points on the surface are sensed during the scanning. A first of the sensed point locations is selected. A preceding subset of the sensed point locations is determined. The preceding subset is disposed before the first sensed point location along a path of the scanning. A following subset of the sensed point locations is determined. The following subset is disposed after the first sensed point location along the path of the scanning. The first sensed point location is represented in a map of the surface by an adjusted first sensed point location. The adjusted first sensed point location is closer to each of the preceding and following subsets of the sensed point locations than is the first sensed point location.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: December 25, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Benjamin Pitzer
  • Patent number: 8340817
    Abstract: There is provided a legged robot that performs motion by changing a joint angle, which includes a section of generating a center-of-gravity trajectory of the legged robot based on a trinomial equation obtained by discretizing a ZMP equation and a target ZMP, a section of calculating time-varying data of a target value of the joint angle based on the generated center-of-gravity trajectory, and a section of rotating a joint of the legged robot based on the calculated time-varying data of a target value of the joint angle, wherein the ZMP equation involves an angular momentum according to a center-of-gravity velocity.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: December 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisaku Honda, Keisuke Suga, Ryosuke Tajima
  • Publication number: 20120316676
    Abstract: Initial interaction between a mobile robot and at least one user is described herein. The mobile robot captures several images of its surroundings, and identifies existence of a user in at least one of the several images. The robot then orients itself to face the user, and outputs an instruction to the user with regard to the orientation of the user with respect to the mobile robot. The mobile robot captures images of the face of the user responsive to detecting that the user has followed the instruction. Information captured by the robot is uploaded to a cloud-storage system, where information is included in a profile of the user and is shareable with others.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: Jean Sebastien Fouillade, Russell Sanchez, Efstathios Papaefstathiou, Malek M. Chalabi
  • Patent number: 8332070
    Abstract: A robotic controller using schemata, the schemata being a set of parameterized sequences of motor commands in order to make a robot to achieve a set goal, the parameters of the sequences being gained from the state variables of the robotic controller, a robotic controller comprising an interface for supplying sensory input to the robotic controller. A schemata state memory (1) structure supplied with either input from a schemata recognition module (4) or input from an inverse model module (2) or combinations of them. An inverse model module (2) for generating motor commands based on state variables and stored schemata, a forward model module (3) for predicting state variables based on state variables and stored schemata, and a schemata recognition module (4) for selecting a schemata based on supplied state variables of the robot controlled by the robotic controller.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: December 11, 2012
    Assignee: Honda Research Institute Europe GmbH
    Inventors: Claudius Gläser, Frank Joublin
  • Patent number: 8326457
    Abstract: An apparatus for identifying a user in a service robot for domestic use is provided, the apparatus comprising a feature vector classifying unit for classifying feature vectors converted from a user voice signal for statistics into a feature vector not causing a user identification error and a feature vector causing the user identification error to thereby set user modes corresponding to the respective feature vectors for each user, and an identifying unit for identifying the user by utilizing the classification result of the feature vector classifying unit as data for the user identification. Accordingly, time restriction caused when the service robot for domestic use identifies who a user is can be overcome, and, the degradation of the user identification due to the lack of absolutely needed data amount when the user is identified only by the user's short voice can be solved.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: December 4, 2012
    Assignee: Korea Institute of Science and Technology
    Inventor: Soon-Il Kwon
  • Patent number: 8321055
    Abstract: A machine vision system for controlling the alignment of an arm in a robotic handling system. The machine vision system includes an optical imager aligned to simultaneously capture an image that contains a view of the side of an object, such as a test tube, along with a view of the top of the object provided by a mirror appropriately positioned on the robotic arm. The machine vision system further includes a microcontroller or similar device for interpreting both portions of the image. For example, the microcontroller may be programmed to determine the location of the object in the reflected portion of the image and transpose that information into the location of the object relative to the robotic arm. The microcontroller may also be programmed to decode information positioned on the object by interpreting visual information contained in the other portion of the captured image.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 27, 2012
    Assignee: JADAK, LLC
    Inventors: Mo Chen, Robert Mumford Gowans
  • Patent number: 8311673
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: November 13, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Patent number: 8311677
    Abstract: A control device for a legged mobile robot has a unit which generates the time series of a future predicted value of a model external force manipulated variable as a feedback manipulated variable for reducing the deviation of the posture of the robot. A desired motion determining unit sequentially determines the instantaneous value of a desired motion such that the motion of the robot will reach or converge to a reaching target in the future in the case where it is assumed that the time series of an additional external force defined by the time series of a future predicted value of the model external force manipulated variable is additionally applied to the robot on a dynamic model.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 13, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takahide Yoshiike, Hiroyuki Kaneko, Atsuo Orita
  • Patent number: 8311731
    Abstract: A robot is provided with a motion control unit that avoids collision between segments of the robot or between segments of the robot and other objects. The motion control unit of the robot comprises a distance computing module, a whole body control module, a collision avoidance module, and a blending control unit. The distance computing module calculates two closest points of different segments of the robot connected to each other via at least one joint or a segment of the robot and another object. The collision avoidance module is provided with the information about the two closest points. The blending control unit combines the weighted output control signals of the whole body control module and the collision avoidance control module. The weight of the whole body control output signal is higher when the risk of collision is lower. The weight of the collision avoidance control output signal is higher when the risk of collision is higher.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: November 13, 2012
    Assignee: Honda Research Institute Europe GmbH
    Inventors: Hisashi Sugiura, Herbert Janssen, Michael Gienger
  • Patent number: 8306657
    Abstract: A control device for a legged mobile robot has a first motion determiner which sequentially determines the instantaneous value of a first motion of a robot by using a first dynamic model and a second motion determiner which sequentially determines the instantaneous value of a second motion of the robot by using a second dynamic model, and sequentially determines a desired motion of the robot by combining the first motion and the second motion. A low frequency component and a high frequency component of a feedback manipulated variable having a function for bringing a posture state amount error, which indicates the degree of the deviation of an actual posture of the robot from a desired posture, close to zero are fed back to the first motion determiner and the second motion determiner, respectively.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 6, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takahide Yoshiike, Hiroyuki Kaneko, Atsuo Orita
  • Patent number: 8295978
    Abstract: The present invention relates to a system for cooperation of multiple mobile robots and a method thereof that allow the multiple mobile robots to cooperatively execute one complicated task. The system and method can use centralized control architecture, create robot cooperation application codes on the basis of conceptual behavior units without depending on actual physical robots, and dynamically bind behavior units used to create the robot cooperation application at the time of executing the robot cooperation application to actual functions of the robots, thereby actively adjusting to changes in a dynamical environment, such as a change in the types, the number, and the functions of robots for cooperation.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 23, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Joonmyun Cho, Hyoungsun Kim
  • Patent number: 8290617
    Abstract: In a robot system, and a method for operating a robot system, for loading general cargo units, a gripper unit of the robot is operated to stack the general cargo units in a stack, by movements controlled by a computerized control unit. In order to avoid unstable loading patterns, the computerized control unit automatically determines the loading pattern of the stack of general cargo units, and also automatically determines at least one characteristic that represents the stability of the loading pattern.
    Type: Grant
    Filed: January 5, 2008
    Date of Patent: October 16, 2012
    Assignee: Kuka Roboter GmbH
    Inventor: Gerda Ruge
  • Patent number: 8285417
    Abstract: A robot and the like capable of executing a task in an appropriate condition from the viewpoint of execution economy even when a state of the task is altered. A cost is evaluated that represents a load or labor required for a robot (1) to execute a new task, and the cost information indicating the cost is transmitted to a support server (200) (bid procedure). The support server (200) designates the robot (1) having the lowest cost as a designated robot (1) and transmits an execution instruction for executing the new task to the designated robot (1). The robot (1) executes the task according to the execution instruction (contract procedure). By employing the task bid and contract system, a designated task is executed by an adequate robot (R) among a plurality of robots (R) in consideration of the execution economy of the designated task.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: October 9, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuichiro Kawaguchi, Katsuyoshi Watari, Taro Yokoyama
  • Publication number: 20120239191
    Abstract: Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Roelof J. Versteeg, Douglas A. Few, Robert A. Kinoshita, Doug Johnson, Ondrej Linda
  • Patent number: 8271131
    Abstract: A robot with a learning control function is disclosed. The robot includes a robot mechanism unit, a learning control unit for obtaining data on positional deviation of the robot mechanism unit upon execution of a task program and executing a learning control for calculating a learning correction amount in order to decrease the positional deviation of the robot mechanism unit below a certain value, a normal control unit for executing a learning operation of the robot mechanism unit in order to obtain the data during the learning control and executing an actual operation of the robot mechanism unit based on the learning correction amount calculated by the learning control unit after executing the learning control, and an anti-exception processing unit for executing an anti-exception process in the case where an exception process occurs during the learning operation or the actual operation.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: September 18, 2012
    Assignee: Fanuc Corporation
    Inventors: Tetsuaki Kato, Masakazu Ichinose, Soichi Arita, Kiyonori Inaba, Hajime Suzuki
  • Patent number: 8258917
    Abstract: A control device for a vehicle or mechanism includes a portable displacement controller which permits a non-technical user to achieve effective control of the vehicle or mechanism, by moving the portable displacement controller intuitively with little learning effort. A first sensing device, attached to the displacement controller, detects the user's controlling motion. A second sensing device, attached to the object being controlled, detects motion thereof. An interface device receives signals from the sensing devices, processes those signals to determine relative motion of the controlling motion and the object's motion and outputs a control signal in accordance with the processed signals. The sensing devices each detect motion in six degrees of freedom; the sensing devices each include a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer. In specific embodiments, the accelerometers, gyroscopes, and magnetometers include micro-electromechanical system (MEMS) devices.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 4, 2012
    Assignee: Measurement Systems, Inc.
    Inventors: Steven Cai, Paul J. LeBlanc, Thomas R. Ecsedy, Leslie W. Yoho
  • Patent number: 8244402
    Abstract: A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 14, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: James W. Wells, Neil David Mc Kay, Suhas E. Chelian, Douglas Martin Linn, Charles W. Wampler, II, Lyndon Bridgwater
  • Publication number: 20120158175
    Abstract: A walking robot and a control method thereof. The control method includes storing angle change data according to time corresponding to at least one joint unit of the robot using human walking data, extracting reference knot points from the angle change data according to time, and generating a reference walking trajectory using the extracted reference knot points, calculating a walking change factor to perform change between walking patterns of the robot, generating a target walking trajectory through an arithmetic operation between the reference walking trajectory and the calculated walking change factor, calculating a control torque to track the generated target walking trajectory, and transmitting the calculated control torque to the at least one joint unit so as to control walking of the robot, thereby achieving various walking patterns through a comparatively simple arithmetic operation process.
    Type: Application
    Filed: October 24, 2011
    Publication date: June 21, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Min Hyung LEE, Kyung Shik ROH, Woong KWON
  • Patent number: 8204623
    Abstract: A planning approach for obstacle avoidance for a robot arm is disclosed. In particular, the invention relates to a planning approach for obstacle avoidance in complex environments for an articulated redundant robot arm which uses a set of via points surrounding an obstacle as an intermediary point between initial and target arm positions. Via points are generated using visual perception, and possible trajectories through the via points and to the target are rehearsed prior to execution of movement. The disclosed planning method solves the “local minima” problem in obstacle avoidance; a situation in which the obstacle avoidance vectors prevent the arm from making progress toward the target.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: June 19, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: Rajan Bhattacharyya, Narayan Srinivasa
  • Patent number: 8204626
    Abstract: A control device for a mobile body makes it possible to smoothly correct the deviation of an actual posture of a base body of a mobile body, which travels with the base body thereof moving up and down, from a desired posture of the base body while restraining an overshoot or an undershoot from occurring. To determine a required manipulated variable according to a feedback control law in order to converge a state amount deviation related to the posture of the base body of the mobile body to zero, the feedback gain of the feedback control law is determined by using the time series in a period from current time to predetermined time in the future in the time series of a desired inertial force of the mobile body or the base body. The required manipulated variable is determined by the calculation of the feedback control law on the basis of the determined feedback gain and an observed value of the state amount deviation.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: June 19, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takahide Yoshiike, Toru Takenaka, Takashi Matsumoto
  • Publication number: 20120150346
    Abstract: A system of distributed control of an interactive animatronic show includes a plurality of animatronic actors, at least one of the actors a processor and one or more motors controlled by the processor. The system also includes a network interconnecting each of the actors, and a plurality of sensors providing messages to the network, where the messages are indicative of processed information. Each processor executed software that schedules and/or coordinates an action of the actor corresponding to the processor in accordance with the sensor messages representative of attributes of an audience viewing the show and the readiness of the corresponding actor. Actions of the corresponding actor can include animation movements of the actor, responding to another actor and/or responding to a member f the audience. The actions can result in movement of at least a component of the actor caused by control of the motor.
    Type: Application
    Filed: September 22, 2011
    Publication date: June 14, 2012
    Applicant: DISNEY ENTERPRISES, INC.
    Inventor: Alexis Paul Wieland
  • Patent number: 8199151
    Abstract: A method of detecting an occurrence of an event of an event type during an animation, in which the animation comprises, for each of a plurality of object parts of an object, data defining the respective movement of that object part at each of a sequence of time-points for the animation, the method comprising: indicating the event type, wherein the event type specifies: one or more of the object parts; and a sequence of two or more event phases that occur during an event of that event type such that, for each event phase, the respective movements of the one or more specified object parts during that event phase are each constrained according to a constraint type associated with that event phase; and detecting an occurrence of an event of the event type by detecting a section of the animation during which the respective movements defined by the animation for the specified one or more object parts are constrained in accordance with the sequence of two or more event phases.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: June 12, 2012
    Assignee: Naturalmotion Ltd.
    Inventor: Nicholas MacDonald Spencer
  • Publication number: 20120116584
    Abstract: An apparatus for providing robot interaction services using an interactive behavior model for interaction between a user and a robot includes: a control module having a behavior model engine for receiving an observation signal from the outside and determining and outputting an interactive behavior signal based on previously stored behavior and policy models; a robot application module for executing a robot application service and applying the behavior signal to provide the service; a robot function operating module having sensors for observing an external circumstance and a function operating means for performing behavior or function of the robot; and a middleware module for extracting external circumstance observation information and service history information and inputting the information to the control module as the observation signal, and for analyzing the behavior signal to generate and provide motion and function operating signals to the robot function operating module.
    Type: Application
    Filed: May 25, 2011
    Publication date: May 10, 2012
    Applicant: KT CORPORATION
    Inventors: Jong-Cheol KIM, Hyun-Ho KIM, Joo-Won SUNG, Myoung-Wan KOO
  • Publication number: 20120101679
    Abstract: A mechanism for optimizing behavior of an autonomous mobile robotic device. A first set of robotic behaviors is created based on a set of work area parameters and a behavior selection. The autonomous mobile robotic device is controlled using the first set of robotic behaviors. Performance data indicative of a performance of the autonomous mobile robotic device when controlled by the first set of robotic behaviors is collected. The performance data is analyzed to create a second set of robotic behaviors having enhanced performance relative to the first set of robotic behaviors. The first set of robotic behaviors is replaced with the second set of robotic behaviors to control the autonomous mobile robotic device using the second set of robotic behaviors.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 26, 2012
    Inventors: Noel Wayne Anderson, Mark Bodwell, Alex Foessel, Thomas K. Hein
  • Patent number: 8160883
    Abstract: Controls are provided for a web server to generate client side markups that include recognition and/or audible prompting. The controls comprise elements of a dialog such as a question, answer, confirmation, command or statement. A module forms a dialog by making use of the information carried in the controls. The dialog follows a selected order of prompting and receiving input from a user as related to the order of the controls, and departs from the selected order as a function of responses from the user.
    Type: Grant
    Filed: January 10, 2004
    Date of Patent: April 17, 2012
    Assignee: Microsoft Corporation
    Inventor: Renaud J. Lecoeuche
  • Publication number: 20120089253
    Abstract: A guiding device for guiding a mobile robotic vacuum cleaner to a charging base is composed of a central sensor, a left sensor, and a right sensor. The mobile robotic vacuum cleaner is composed of a main processor and a driving system. The charging base includes an optical emitter for emitting optical signals toward a predetermined direction. The central sensor, the right sensor, and the left sensor are electrically connected with the main processor and mounted to a charging sensor set zone. In this way, the main processor can judge whether the mobile robotic device correctly moves toward the charging base according to the signals detected by the sensors and then adjustably control the moving direction of the mobile robotic vacuum cleaner via the driving system to guide the mobile robotic vacuum cleaner to accurately move toward the charging base.
    Type: Application
    Filed: January 11, 2011
    Publication date: April 12, 2012
    Inventors: Gary LI, Wen-Jang Lai
  • Publication number: 20120078416
    Abstract: A robot and a behavior control system for the same are capable of ensuring continued stability while carrying out a specified task by a motion of a body of the robot. Time-series changing patterns of first state variables indicating a motional state of an arm are generated according to a stochastic transition model such that at least one of the first state variables follows a first specified motion trajectory for causing the robot to carry out a specified task. Similarly, time-series changing patterns of second state variables indicating a motional state of the body are generated according to the stochastic transition model such that the second state variables satisfy a continuously stable dynamic condition.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 29, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Soshi Iba, Tadaaki Hasegawa
  • Patent number: 8140184
    Abstract: A system for managing liquid supply suitable for a process equipment with a liquid tank is disclosed. The system includes a host, a data-reading tool, a system controller and a tank-locking device. The host stores a built-in liquid database. The data-reading tool used for reading data related to the liquid tank is electrically connected to the host. The host receives the data related to the liquid tank from the data-reading tool, and the received data mapped with the liquid database. The system controller drives the tank-locking device according to the signal from the host to whether or not allow replacement of the liquid tank.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: March 20, 2012
    Assignee: Powerchip Technology Corporation
    Inventors: Yen-Liang Chen, Yuh-Shyang Su, Sou-Yung Hsieh
  • Patent number: 8108071
    Abstract: A method for coordinating cooperative robots is provided. The method includes following steps. An abnormal event is detected by a sensor disposed in an environment or in a robot. The abnormal event is broadcasted to the cooperative robots. Each robot determines whether the priority of the abnormal event is higher than that of its currently executing task. If the answer is “yes,” whether function attributes of the robot meet attributes of the abnormal event is then determined. If the function attributes of the cooperative robot do not meet the attributes of the abnormal event, the robot broadcasts to acquire help from other robots, thereby constituting an instantly designated task team. The instantly designated task team goes to where the abnormal event takes place to process the abnormal event. After the abnormal event has been eliminated, the instantly designated task team is dismissed and these robots resume their original tasks.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: January 31, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yen-Chun Lin, Jen-Hua Wu, Kuo-Tsung Tseng
  • Patent number: 8108069
    Abstract: A robotic instrument system and method, comprising at least two instrument drive assemblies each detachably coupled to a respective instrument assembly. Each instrument assembly comprising an elongate, flexible guide instrument configured to be inserted into a patient's body. The instrument drive assemblies comprise one or more motors configure to operate a respective instrument assembly. One or more controllers are operatively coupled to the instrument drive assemblies. The method comprises maneuvering a distal end of each of the respective guide instruments into a patient's heart by actuating the respective drive assembly performing a procedure controlled by the one or more controllers.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: January 31, 2012
    Assignee: Hansen Medical, Inc.
    Inventors: Gregory J. Stahler, Frederic H. Moll
  • Patent number: 8095237
    Abstract: A method of three-dimensional object location and guidance to allow robotic manipulation of an object with variable position and orientation using a sensor array which is a collection of one or more sensors capable of forming a single image.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 10, 2012
    Assignee: RoboticVISIONTech LLC
    Inventors: Babak Habibi, Simona Pescaru, Mohammad Sameti, Remus Florinel Boca
  • Patent number: 8090474
    Abstract: An apparatus and a method for controlling at least one machine, such as an industrial robot, having drives, safety peripheral components and a controller for a machine, and also having a safety controller. In this arrangement, the safety controller has superordinate access over the respective machine controller both to the machine drives and to the safety peripherals. This achieves the most easily configurable integration of the safety control loop into the operating control loops.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: January 3, 2012
    Assignee: KUKA Laboratories GmbH
    Inventor: Bernd Fiebiger
  • Patent number: 8090470
    Abstract: A method for optimizing the position of a plurality of containers in a block, including at least one crane configured to move the containers is provided. A crane control unit (CCU) is provided in which the following steps are performed: identifying a selected container to be moved from a current position CP within a sub-section of said block to a new position NP within the sub-section; calculating a number of container moves required facilitating the move of the selected container in previous step; arranging the required number of container moves in a queue for each crane; and performing the container moves as arranged in the queue by controlling said at least one crane. Also provided is a computer program, a computer-readable medium encoded with the computer program, and a system for optimizing the position of a plurality of containers in a block.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: January 3, 2012
    Assignee: ABB Research Ltd.
    Inventors: Erik Lindeberg, Claes Heidenback, Bjorn Henriksson, Alf Isaksson, Stefan Israelsson Tampe
  • Patent number: 8086351
    Abstract: Disclosed are methods and systems that include a method for controlling movement of a first unmanned vehicle (UV) to search an area, where the method includes generating a first trace associated with prior positions in which the first UV has been located, determining a direction in which the first UV is to move using the first generated trace, and causing the first UV to move in the determined direction. The trace may be a numerical value that decreases as a function of the time that has elapsed since the first trace was generated. The methods and systems may also include receiving data relating to a second trace, and using that second trace to determine the direction. The second trace may be generated by a second UV. The second trace may be associated with a position within a predetermined radius from a position associated with the first UV.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: December 27, 2011
    Assignee: Icosystem Corporation
    Inventors: Paolo Gaudiano, Benjamin Shargel, Eric Bonabeau
  • Publication number: 20110301755
    Abstract: The different illustrative embodiments provide a method and system for watering plants. A map of an area is received and a determination is made using a processing unit as to whether the area needs water. If the area needs water, current constraints are identified and a determination is made using the processing system as to whether the current constraints allow for watering. If the current constraints allow for watering, a watering solution application plan is generated using the processing system, and the watering solution application plan is executed using a mobile utility vehicle.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 8, 2011
    Inventor: Noel Wayne Anderson
  • Patent number: 8060251
    Abstract: Systems and methods are presented that enable a higher-level software application to control a robot's motion through a generic motion interface. In one embodiment, a system includes a controller, an interface, and a set of robot driver modules. The interface receives a command from the controller and translates the command into another command to send to the driver modules. The interface includes a client, a server, and a network. The server includes two interfaces: a client interface to communicate with the client and a driver interface to communicate with the driver modules. The server also includes two buffers: a command queue and a reply queue. The command queue stores commands received from the controller (via the client). The reply queue stores replies received from the driver modules.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: November 15, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hector H. Gonzalez-Banos, Victor Ng-Thow-Hing, Allen Y. Yang