Having Particular Operator Interface (e.g., Teaching Box, Digitizer, Tablet, Pendant, Dummy Arm) Patents (Class 700/264)
  • Patent number: 9043031
    Abstract: Provided is a device for wirelessly controlling robots suitable for competition or educational purposes, the device including: an input module configured to receive commands from a human user interface, the human user interface sending signals indicative of inputs by a user to control a robot; a protocol translator configured to translate the received commands into a protocol to which the robot is responsive; a wireless output module configured to wirelessly transmit the translated commands to the robot such that the robot executes the commands.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: May 26, 2015
    Assignee: Westlake & Eanes Science & Technology Association
    Inventors: Rachel Gardner, Akshay Prakash, Benjamin Jared Gorr, Eric J. Rothfus
  • Patent number: 9043018
    Abstract: A medical device used in a medical robotic system has a conduit and an orientable tip. An optical fiber coupled to a laser source and/or a catheter coupled to one or more biomaterial sources extends through the conduit and tip so that the tip of the medical device may be robotically directed towards a target tissue for laser and/or biomaterial application as part of a medical procedure performed at a surgical site within a patient. A protective sheath covers the fiber as it extends through the conduit and tip. A first coupler adjustably secures at least the sheath to the medical device and a second coupler adjustably secures the fiber to at least the sheath. A similar dual coupler mechanism may be used to secure the sheathed catheter to the medical device.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: May 26, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventor: Catherine J. Mohr
  • Patent number: 9037297
    Abstract: A system for operation of a robot including a substantially transparent display configured such that an operator can see a portion of the robot and data and/or graphical information associated with the operation of a robot. Preferably, a controller in communication with the robot and the transparent display is configured to allow the operator to control the operation of the robot.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 19, 2015
    Assignee: Persimmon Technologies Corporation
    Inventor: Martin Hosek
  • Patent number: 9031698
    Abstract: A robotic crawler having a non-dedicated smart control system is disclosed. Such a crawler can include a first drive subsystem, a second drive subsystem, a multi-degree of freedom linkage subsystem coupling the first and second drive subsystems, and a non-dedicated, smart control device removably supported about one of the first drive subsystem, the second drive subsystem, and the linkage subsystem. The smart control device is configured to initiate and control operational functionality within the robotic crawler upon being connected to the robotic crawler. The crawler can also include a communication subsystem functionally coupled between the smart control device and the serpentine robotic crawler, the communication subsystem facilitating control by the smart control device of at least one of the first drive subsystem, the second drive subsystem, and the linkage subsystem.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 12, 2015
    Assignee: Sarcos LC
    Inventor: Fraser M. Smith
  • Patent number: 9026250
    Abstract: A robotic arm is mounted on a personal mobility device, such as a wheelchair, scooter or the like, and is controlled with a user input interface, also mounted on the personal mobility device. The user input interface has a grip operable by the user to move in a plurality of orthogonal directions, both spatially and angularly, having articulating arms supporting a housing with a pivot member.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 5, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher, Laurance H. Davis, III
  • Publication number: 20150120059
    Abstract: In an axis angle determination method, an angle or a position of each axis of a six-axis robot is determined. The robot is capable of taking an attitude of a singular point being a state in which rotation axes of fourth and sixth axes match. Based on teaching results of a position and attitude of a hand by point-to-point teaching, the method judges whether an attitude of the robot in which the angle or the position of each angle is to be determined next is a singular point. If judged that the attitude is the singular point, angles of the fourth and sixth axes required for the six-axis robot to move to the singular point are determined such that an angle of one of the fourth and sixth axes is fixed to a current value and an angle of the other axis is determined based on the fixed angle.
    Type: Application
    Filed: September 15, 2014
    Publication date: April 30, 2015
    Inventors: Satoshi IDE, Naoya KAGAWA, Daisuke KAWASE
  • Publication number: 20150120060
    Abstract: The apparatus control method includes the steps of designating at least one notification apparatus, determining notification information, judging a status of the designated notification apparatus, and transmitting the notification information to the designated notification apparatus in accordance with a judgment result obtained in the status judging step.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Yasunori YAMASHITA, Masafumi HIRATA, Hideaki KIZUKI, Makoto SHINKAI
  • Patent number: 9020644
    Abstract: An end effector controller that is gripped by an operator in one hand, including a pistol-grip housing configured to fit in the palm of an operator's hand when gripped and having mounted thereon a plurality of switching mechanisms with pivoting, dual-acting switch triggers each configured for independent actuation by multiple fingers of the hand when said controller is gripped, and a method for controlling a robotic end effector remotely using the operator hand-gripped controller, the method including switching between preset operating modes of the end effector using a single, control input element, easily actuated by a finger in the operator's gripping hand; and providing continuous fine adjustment between preset modes using a second, control input element also easily actuated by a finger on the operator's gripping hand.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: April 28, 2015
    Assignee: Barrett Technology, Inc.
    Inventors: Daniel Greeley, Daniel Fourie, Bryce Lee, Yevgeniy Kozlenko, David Wilkinson, William T. Townsend
  • Patent number: 9008835
    Abstract: A method of scheduling a robotic device enables the device to run autonomously based on previously loaded scheduling information. The method consists of a communication device, such as a hand-held remote device, that can directly control the robotic device, or load scheduling information into the robotic device such that it will carry out a defined task at the desired time without the need for further external control. The communication device can also be configured to load a scheduling application program into an existing robotic device, such that the robotic device can receive and implement scheduling information from a user.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: April 14, 2015
    Assignee: iRobot Corporation
    Inventors: Zivthan Dubrovsky, Gregg Landry, Michael John Halloran, James Kenneth Lynch
  • Publication number: 20150100461
    Abstract: Mobile robotic system allows multiple users to visit authentic places without physically being there. Users with variable requirements are able to take part in controlling a single controllable device simultaneously; users take part in controlling robot's movement according to their interest. A system administrator selects and defines criteria for robot's movement; the mobile robot with video and audio devices on it is remotely controlled by a server which selects the robot's movement according to the users and system administrator criteria. The server provides information to users; the robot's location influences the content of the information. Such robotic system may be used for shopping, visiting museums and other public touristic attractions over the Internet.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Inventors: Dan Baryakar, Andreea Baryakar
  • Patent number: 9002520
    Abstract: A user interface device of a remote control system for a robot and a method using the same are provided. The user interface device includes: a radio frequency (RF) unit for receiving, from a remote control robot, camera data and at least one sensor data detecting a distance; a display unit having a main screen and at least one auxiliary screen; and a controller having an environment evaluation module for determining whether the received camera data are in a normal condition, and having a screen display mode change module for displaying, if the received camera data are in a normal condition, the camera data on the main screen and displaying, if the received camera data are in an abnormal condition, the sensor data on the main screen.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soon Hyuk Hong, Gi Oh Kim, Jong Ho Park, Ji Hyun Park, Seung Hyun Baek
  • Patent number: 9002482
    Abstract: A cleaning robot (1) is provided with: a main body housing (2) that moves along a floor in a self-propelled manner with a suction port (6) and an exhaust port (7) open; a motor fan (22) positioned inside the main body housing (2); a dust collection part (30) driven by the motor fan (22) so as to collect airflow dust that has been suctioned from the suction port (6); an infrared remote controller (60) that specifies an arbitrarily-defined location in space for setting up the main body housing (2) by emitting infrared rays; and an infrared sensor (18) that detects the specified location specified by the infrared remote controller (60). The cleaning robot moves to the specified location detected by the infrared sensor (18) and then carries out a cleaning operation, or carries out a cleaning operation while moving to the specified location.
    Type: Grant
    Filed: September 3, 2012
    Date of Patent: April 7, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masanori Tsuboi
  • Publication number: 20150094853
    Abstract: An apparatus for inputting teaching data for a robot includes a first input interface configured to input teaching data of a path layer; and a second input interface configured to input teaching data of a task layer.
    Type: Application
    Filed: February 28, 2014
    Publication date: April 2, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hoo Man LEE, Joong Bae Kim
  • Patent number: 8996177
    Abstract: Adaptive controller apparatus of a robot may be implemented. The controller may be operated in accordance with a reinforcement learning process. A trainer may observe movements of the robot and provide reinforcement signals to the controller via a remote clicker. The reinforcement may comprise one or more degrees of positive and/or negative reinforcement. Based on the reinforcement signal, the controller may adjust instantaneous cost and to modify controller implementation accordingly. Training via reinforcement combined with particular cost evaluations may enable the robot to move more like an animal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: Brain Corporation
    Inventor: Olivier Coenen
  • Patent number: 8996173
    Abstract: In a minimally invasive surgical system, a hand tracking system tracks a location of a sensor element mounted on part of a human hand. A system control parameter is generated based on the location of the part of the human hand. Operation of the minimally invasive surgical system is controlled using the system control parameter. Thus, the minimally invasive surgical system includes a hand tracking system. The hand tracking system tracks a location of part of a human hand. A controller coupled to the hand tracking system converts the location to a system control parameter, and injects into the minimally invasive surgical system a command based on the system control parameter.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 31, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Tao Zhao
  • Patent number: 8989903
    Abstract: End effectors with closing mechanisms, and related tools and methods to facilitate clamping, are provided. An example surgical tool comprises a first and second jaw movable between a closed grasped or clamped configuration and an open configuration. The tool further comprises a soft grip mode for grasping the tissue at a first force during which a separation parameter between the jaws is measured, and a therapeutic clamping mode in which the jaws clamp on the body tissue at a force greater than the grasping force. The methods comprise grasping the body tissue between jaw members, measuring the separation parameter between jaws, indicating on a user interface the separation parameter for comparison to a desired separation parameter, and then releasing the body tissue for repositioning or therapeutically clamping the body tissue in response to the separation parameter indication.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: David Weir, Grant Duque, Kevin Durant, Patrick Flanagan, Maggie Nixon, David Robinson, John Zabinski
  • Patent number: 8989904
    Abstract: A method for controlling a robot includes the step of controlling operation of the robot with a robot controller executing a control program having a plurality of process instructions. Associated process data for each of predetermined ones of the process instructions executed by the robot controller is then collected. The collected process data is subsequently stored in a form uniquely identified by at least one unique identifier. The at least one unique identifier may include both the program identifier and the process instruction identifier. The collected process data may be stored on the robot controller.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 24, 2015
    Assignee: Fanuc Robotics America Corporation
    Inventors: Scott Dreslinski, Bradley O. Niederquell
  • Publication number: 20150081097
    Abstract: A method for operating an industrial robot by means of an operating device, including a step of touching a virtual operating element on a touch-sensitive display of a graphical user interface, said display being surrounded by a frame, wherein a function associated with the operating element is triggered when the virtual operating element is touched. In order to increase the safety of the operation of the industrial robot and to be able to adjust the position of the industrial robot in the desired range, the speed or distance of a deflection of a finger of an operating person during the touching of the virtual operating element of the touch display is detected.
    Type: Application
    Filed: April 5, 2013
    Publication date: March 19, 2015
    Inventor: Franz Som
  • Patent number: 8983663
    Abstract: The present invention provides a medical diagnostic device with an automatic moving mechanism. The device comprises an input interface for receiving instructions from an operator or from a remote device. A motion controller is coupled to the input interface for controlling movements of the diagnostic device based on the instructions received through the input interface. A moving assembly is coupled to the motion controller for moving the diagnostic device under control of the motion controller. In an embodiment, a method of guiding a portable imaging system through various locations in a hospital is disclosed. Also the invention discloses a self-guided portable imaging system.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: March 17, 2015
    Assignee: General Electric Company
    Inventor: Rajeev Ramankutty Marar
  • Publication number: 20150073598
    Abstract: A mobile human interface robot including a drive system having at least one drive wheel driven by a corresponding drive motor, a localization system in communication with the drive system, and a power source in communication with the drive system and the localization system. The robot further including a touch response input supported above the drive system. Activation of the touch response input modifies delivery of power to the drive system to reduce a drive load of the corresponding drive motor of the at least one drive wheel white allowing continued delivery of power to the localization system.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Applicant: iRobot Corporation
    Inventors: Michael T. Rosenstein, Chikyung Won, Geoffrey Lansberry, Steven V. Shamlian, Michael Halloran, Mark Chiappetta, Thoma P. Allen
  • Patent number: 8977398
    Abstract: A controllable robotic arm system comprises a base unit and a moveable torso coupled to the base unit. The moveable torso is capable of moving in at least one degree of freedom independently of movement of the base unit. At least one robotic slave arm is moveably coupled to the torso. A master control system is operable to control the robotic slave arm and the moveable torso. The master control system includes an input interface by which a user can cause control signals to be communicated to the robotic slave arm and the moveable torso.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 10, 2015
    Assignee: Sarcos LC
    Inventors: Stephen C. Jacobsen, John McCullough, Marc X. Olivier
  • Publication number: 20150066209
    Abstract: The invention relates to a method for operating an industrial robot by means of an operating device comprising a graphical user interface having a touch display. To improve the operating safety of the industrial robot, at least one virtual operating element representing a function of the industrial robot is displayed on the touch display, a control signal associated with said virtual operating element is sent to a safety controller, and an image is produced by means of the safety controller, which image is then displayed on the touch display. If the image is touched on the touch display, feedback is given to the safety controller so that a function of the industrial robot can be carried out if the displayed image and touching of said image on the touch display match.
    Type: Application
    Filed: April 5, 2013
    Publication date: March 5, 2015
    Inventor: Franz Som
  • Patent number: 8972055
    Abstract: Methods and systems for selecting a velocity profile for controlling a robotic device are provided. An example method includes receiving via an interface a selection of a robotic device to control, and receiving via the interface a request to modify a velocity profile of the robotic device. The velocity profile may include information associated with changes in velocity of the robotic device over time. The method may further include receiving a selected velocity profile, receiving an input via the interface, and determining a velocity command based on the selected velocity profile and the input. In this manner, changes in velocity of the robotic device may be filtered according to a velocity profile selected via the interface.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: March 3, 2015
    Assignee: Google Inc.
    Inventors: Munjal Desai, Ryan Hickman, Thor Lewis, Damon Kohler
  • Publication number: 20150057804
    Abstract: A method for operating an industrial robot by means of an operating device, including a step of touching a virtual operating element of a touch display of a graphical user interface. A function associated with the operating element is triggered when the virtual operating element is touched, the movement of the industrial robot being carried out relative to a robot coordinate system and the movement on the touch display being carried out relative to a display coordinate system. In order to be able to simply align the coordinate systems of the operating device and of the industrial robot with each other, the display coordinate system is recalibrated after a relative movement of the operating device with respect to the robot coordinate system.
    Type: Application
    Filed: April 5, 2013
    Publication date: February 26, 2015
    Inventor: Franz Som
  • Publication number: 20150057805
    Abstract: The robotic activity system described herein provides for efficient communications between the robotic device and the board without the establishment of a wired or radio-frequency connection. In particular, through the simulation of touch events by the robotic device on the touch display of the board using capacitive elements on the robotic device, information/data may be communicated from the robotic device to the board, including the location of the robotic device relative to the touch display, the orientation of the robotic device relative to the touch display, status information of the robotic device (e.g., battery level, motor voltages, or wheel speed), and/or other similar pieces of information. Since this information is communicated using the conductive elements, a dedicated data connection, including separate radios and/or interfaces, is not needed. This communicated information may be used for conducting an interactive game involving the robotic device and the board or another activity.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 26, 2015
    Inventors: Armen Kroyan, Ondrej Stanêk, Nader Hamda
  • Patent number: 8965575
    Abstract: In a robot simulator, a central processing unit (CPU) determines whether or not a portion of an operable area set for each of a right-hand system and a left-hand system of a robot overlaps. If it is determined that the portion of the operable area overlaps and that an obstacle is positioned within the operable areas, the CPU color-codes and displays an image of the operable area of each of the right-hand system and the left-hand system reset in adherence to the obstacle in a display. As a result the operable areas in a periphery of the obstacle, differing for each of the right-hand system and the left-hand system, are displayed in a clearly discernable state.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: February 24, 2015
    Assignee: Denso Wave Incorporated
    Inventor: Koji Kamiya
  • Patent number: 8965582
    Abstract: A real-time method for controlling a system, the system including a plurality of controlling means each having at least one variable parameter (q) and a controlled element having a trajectory which is controlled by the controlling means, wherein the trajectory is related to the variable parameters by a variable matrix, the method comprising defining a control transfer matrix (K) relating the variable parameters dq to the trajectory dx, and using a feedback loop in which a feedback term is computed that is dependent on an error (e) which is the difference between the desired trajectory (dxd) which can have an arbitrary dimension specified as (m) and a current trajectory (dx).
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 24, 2015
    Assignee: The University of Surrey
    Inventor: Alexandre Nikolov Pechev
  • Patent number: 8965583
    Abstract: The invention relates to a robot (R), a medical work station, and a method for projecting an image (20) onto the surface of an object (P). The robot (R) comprises a robot arm (A) and a device (18) for projecting the image (20) onto the surface of the object (P), said device (18) being mounted on or integrated into the robot arm (A).
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: February 24, 2015
    Assignee: KUKA Laboratories GmbH
    Inventors: Tobias Ortmaier, Dirk Jacob, Georg Passig
  • Publication number: 20150051736
    Abstract: A bracket of a robot demonstrator for supporting a tablet computer is disclosed. The bracket includes a bar linkage assembly, a first clamping member pivoted with the bar linkage assembly, and a second clamping member positioned opposite to the first clamping member and pivoted with the bar linkage assembly. A distance between the first clamping member and the second clamping member can be adjusted via adjusting a length of the bar linkage assembly for clamping and supporting the tablet computer.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 19, 2015
    Inventors: SHAO-LONG MU, CHUN-TIAN FAN, CHI MING HSU
  • Patent number: 8958916
    Abstract: A robotic arm module includes a chassis having at least one arm pod. At least one arm connected to the chassis is movable between a stowed position within the at least one arm pod and a deployed position extending from the at least one arm pod. Each arm has a gripping mechanism for gripping articles of work. An attachment structure is configured to allow a host robot to grip and manipulate the robotic arm module. An electrical interface is configured to receive electronic signals in response to a user moving remote manipulators. The electronic signals cause the at least one arm to mimic the movement of the user moving the remote manipulators.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 17, 2015
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Mark Setrakian, Peter Abrahamson, Randall Adam Yates, Shi-Ping Hsu
  • Publication number: 20150045949
    Abstract: A robot control apparatus includes a first storage section to associate information of work performed by a robot with a work program indicating content of the work, and to store the information in association with the work program. A second storage section associates robot identification information for identifying the robot with a coordinate position of the robot, and stores the robot identification information in association with the coordinate position of the robot. A display control section controls a display section to display, in order, setting windows respectively corresponding to work steps of the work. In response to an operator selecting the work, a path preparation section prepares a movement path of the robot in the work based on the work program corresponding to the work selected by the operator and based on information of the coordinate position of the robot to perform the work.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yukio HASHIGUCHI, Shinji MURAI, Tomoyuki SHlRAKI
  • Publication number: 20150045955
    Abstract: A robot control apparatus includes a storage section, a display control section, and a work program preparation section. The storage section associates information of work performed by a robot with a template to prepare a work program indicating content of the work, and stores the information in association with the template. The display control section controls a display section to display, in order, setting windows respectively corresponding to work steps of the work. In response to an operator selecting the work, the work program preparation section prepares the work program indicating the content of the work selected by the operator based on the template corresponding to the work selected by the operator and based on setting information that the operator inputs on at least one setting window among the setting windows.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yukio HASHIGUCHI, Shinji MURAI, Tomoyuki SHlRAKI
  • Patent number: 8954195
    Abstract: System (100) and methods (500) for remotely controlling a slave device (102). The methods involve: using a Hybrid Hand Controller (“HHC”) as a full haptic controller to control the slave device when the HHC (406) is coupled to a docking station (460); detecting when the HHC is or is being physically de-coupled from the docking station; automatically and seamlessly transitioning an operational mode of at least the HHC from a full haptic control mode to a gestural control mode, in response to a detection that the HHC is or is being de-coupled from the docking station; and using at least the HHC as a portable gestural controller to control the slave device when the HHC is de-coupled from the docking station.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 10, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher
  • Publication number: 20150038983
    Abstract: A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Inventors: Yulun Wang, Marco Pinter, Kevin Hanrahan, Daniel Steven Sanchez, Charles S. Jordan, David Bjorn Roe, James Rosenthal, Derek Walters
  • Patent number: 8942846
    Abstract: A method for controlling a tele-operated robot agile lift system is disclosed. The method comprises manipulating a human-machine interface of a master robot located on a mobile platform. The human machine interface is kinematically equivalent to a user's arm with a plurality of support members. A position value and a torque value is measured for each support member. The position value and torque value are communicated to support members of a kinematically equivalent slave arm to position the support members to correspond with a position of the human-machine interface.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: January 27, 2015
    Assignee: Raytheon Company
    Inventors: Stephen C. Jacobsen, Fraser M. Smith, Marc X. Olivier, Shane Stilson
  • Publication number: 20150019011
    Abstract: This disclosure discloses a robot system including one or more work facilities, and a central information processor. The work facilities comprise a robot, a robot controller, and a sensor. The robot performs predetermined work. The central information processor includes an information accepting part, an algorithm storage part, an information analysing part, and an analytical information output part. The information accepting part accepts detection information of the sensor of each work facility. The algorithm storage part stores a processing algorithm for the detection information. The information analysing part analyses the detection information accepted based on the processing algorithm stored in the algorithm storage part. Then analytical information output part outputs analytical information of the detection information to the robot controller of a corresponding the work facility. The robot controller controls a movement of the robot based on the analytical information.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Taro NAMBA, Tomohiro UENO, Osamu YOSHIDA
  • Patent number: 8935006
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialog with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 13, 2015
    Assignee: iRobot Corporation
    Inventors: Clara Vu, Matthew Cross, Tim Bickmore, Amanda Gruber, Tony L. Campbell
  • Publication number: 20150012137
    Abstract: A production apparatus ensures wireless communication without interference. An antenna portion 310 at a robotic arm includes a transmitting antenna portion 311 having a plurality of transmitting antennas 321 to 328 and a receiving antenna portion 312 having a plurality of receiving antennas 331 to 338. A transmitting side switcher circuit 361 changes over a transmitting antenna to be connected to a transmitter 351 among the plurality of transmitting antennas 321 to 328 in conjunction with an attitude information of the robotic arm, and changes an effective direction of a directional characteristic of the transmitting antenna portion 311. A receiving side switcher circuit 362 changes over a receiving antenna to be connected to a receiver 352 among the plurality of receiving antennas 331 to 338 in conjunction with the attitude information of the robotic arm and changes the effective direction of the directional characteristic of the receiving antenna portion 312.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 8, 2015
    Inventors: Toshihiko Mimura, Keita Dan, Tadashi Eguchi, Tomoyuki Takada
  • Publication number: 20150005942
    Abstract: A portable operation panel having a vibration motor capable of tactually providing an operator information, wherein a problem due to failure of the vibration motor is solved. An operation panel has a controlling part, a plurality of vibration motors and an inputting part to which an operator can input information, wherein the controlling part controls the behaviors of the operation panel based on the information input into the inputting part. When the vibration motors are operated based on a command from the controlling part, the operation panel at least partially vibrates due to the motion of the vibration motor, whereby the operator tactually feels the vibration. When the operator inputs information into the inputting part for switching the vibration motor while the first vibration motor is in use, a vibration motor to be used is switched from the first vibration motor to the second vibration motor.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 1, 2015
    Applicant: FANUC CORPORATION
    Inventor: Ryoutarou Inaba
  • Patent number: 8918216
    Abstract: A robot system includes a robot, a robot controller, and a portable remote operating device. The portable remote operating device includes a display unit, an acquiring unit, and a display switching unit, and is connected to the robot controller. The acquiring unit acquires a reception/transmission process and a customized screen, which are created by a user. The display switching unit switches between the customized screen and a previously-prepared standard screen at a predetermined time during the operation of the robot.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: December 23, 2014
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Yumie Kubota, Seishiro Sakaguchi
  • Patent number: 8918213
    Abstract: A mobile human interface robot that includes a base defining a vertical center axis and a forward drive direction and a holonomic drive system supported by the base. The drive system has first, second, and third driven drive wheels, each trilaterally spaced about the vertical center axis and having a drive direction perpendicular to a radial axis with respect to the vertical center axis. The robot further includes a controller in communication with the holonomic drive system, a torso supported above the base, and a touch sensor system in communication with the controller. The touch sensor system is responsive to human contact. The controller issues drive commands to the holonomic drive system based on a touch signal received from the touch sensor system.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 23, 2014
    Assignee: iRobot Corporation
    Inventors: Michael Rosenstein, Chikyung Won, Geoffrey B. Lansberry, Steven V. Shamlian, Michael Halloran, Mark Chiappetta, Thomas P. Allen
  • Patent number: 8918214
    Abstract: Method and system for telematic control of a slave device. Displacement of a user interface control is sensed with respect to a control direction. A first directional translation is performed to convert data specifying the control direction to data specifying a slave direction. The slave direction will generally be different from the control direction and defines a direction that the slave device should move in response to the physical displacement of the user interface. A second directional translation is performed to convert data specifying haptic sensor data to a haptic feedback direction. The haptic feedback direction will generally be different from the sensed direction and can define a direction of force to be generated by at least one component of the user interface. The first and second directional translation are determined based on a point-of-view of an imaging sensor.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer, Loran J. Wilkinson, William S. Bowman
  • Patent number: 8918215
    Abstract: Method and system for telematic control of a slave device. A stiffness of a material physically contacted by a slave device (202) is estimated based on information obtained from one or more slave device sensors (216, 217). Based on this stiffness estimation, a motion control command directed to the slave device is dynamically scaled. A data processing system (204) is in communication with a control interface (203) and the slave device. The data processing system (204) is configured to generate the motion control commands in response to sensor data obtained from the control interface. The system (200) also includes a stiffness estimator (602) configured for automatically estimating a stiffness of a material physically contacted by the slave device based on information obtained from the slave device sensors. A scaling unit (607) is responsive to the stiffness estimator and is configured for dynamically scaling the motion control command.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer
  • Publication number: 20140371912
    Abstract: A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. The remote controller may comprise multiple control elements configured to activate respective portions of the robot platform. Based on training, the remote controller may configure composite controls configured based two or more of control elements. Activation of a composite control may enable the robot to perform a task.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Jean-Baptiste Passot, Oleg Sinyavskiy, Filip Ponulak, Patryk Laurent, Borja Ibarz Gabardos, Eugene Izhikevich, Vadim Polonichko
  • Publication number: 20140372116
    Abstract: A method and apparatus for moving an object. A verbal instruction for moving the object is received. The verbal instruction is converted into text. A logical representation of the verbal instruction is generated. A movement of a robotic system that corresponds to the verbal instruction for moving the object using a model of an environment in which the object and the robotic system are located is identified. A set of commands used by the robotic system for the movement of the robotic system is identified. The set of commands is sent to the robotic system.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Inventors: Scott D. G. Smith, Ronald Carl Provine, Mario A. Mendez
  • Patent number: 8909370
    Abstract: An interactive system for interacting with a sentient being. The system includes a robotic companion of which the sentient being may be a user and an entity which employs the robot as a participant in an activity involving the user. The robotic companion responds to inputs from an environment that includes the user during the activity. The robotic companion is capable of social and affective behavior either under control of the entity or in response to the environment. The entity may provide an interface by which an operator may control the robotic companion. Example applications for the interactive system include as a system for communicating with patients that have difficulties communicating verbally, a system for teaching remotely-located students or students with communication difficulties, a system for facilitating social interaction between a remotely-located relative and a child, and systems in which the user and the robot interact with an entity such as a smart book.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: December 9, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Walter Dan Stiehl, Cynthia Breazeal, Jun Ki Lee, Allan Z Maymin, Heather Knight, Robert L. Toscano, Iris M. Cheung
  • Patent number: 8909374
    Abstract: A robot arm includes a grip part which is structured to be separated from an end effector attached to the robot arm. When the grip part is gripped by the user and shifted, the robot arm shifts tracking the grip part. Further, the grip part includes contact sensors, and a tracking control method is switched according to the value of the contact sensors.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 9, 2014
    Assignee: Panasonic Corporation
    Inventors: Yudai Fudaba, Masaki Yamamoto, Yuko Tsusaka, Taichi Sato
  • Publication number: 20140358284
    Abstract: Apparatus and methods for training of robotic devices. A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. User interface of the remote controller may be reconfigured based on the detected phenotype and/or operational changes.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Patryk Laurent, Jean-Baptiste Passot, Mark Wildie, Eugene M. Izhikevich
  • Patent number: 8903546
    Abstract: An articulated instrument is controllably movable between areas of different work space limits, such as when it is extendable out of and retractable into a guide tube. To avoid abrupt transitions in joint actuations as the joint moves between areas of different work space limits, a controller limits error feedback used to control its movement. To provide smooth joint control as the instrument moves between areas of different work space limits, the controller imposes barrier and ratcheting constraints on each directly actuatable joint of the instrument when the joint is commanded to cross between areas of different work space limits.
    Type: Grant
    Filed: August 15, 2009
    Date of Patent: December 2, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nicola Diolaiti, Paul E. Lilagan
  • Patent number: 8897917
    Abstract: An electronic controller defining an autonomous mobile device includes a self-location estimation unit to estimate a self-location based on a local map that is created according to distance/angle information relative to an object in the vicinity and the travel distance of an omni wheel, an environmental map creation unit to create an environmental map of a mobile area based on the self-location and the local map during the guided travel with using a joystick, a registration switch to register the self-location of the autonomous mobile device as the position coordinate of the setting point when the autonomous mobile device reaches a predetermined setting point during the guided travel, a storage unit to store the environmental map and the setting point, a route planning unit to plan the travel route by using the setting point on the environmental map stored in the storage unit, and a travel control unit to control the autonomous mobile device to autonomously travel along the travel route.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: November 25, 2014
    Assignee: Murata Machinery, Ltd.
    Inventors: Shoji Tanaka, Tsuyoshi Nakano