Controlling Fuel Quantity Patents (Class 701/104)
  • Patent number: 8862368
    Abstract: A control device for a multi-cylinder internal combustion engine that is equipped with a variable compression ratio mechanism includes an air-fuel ratio sensor, and a controller that determines whether or not actual mechanical compression ratios in cylinders of the internal combustion engine are uniform. The controller controls the variable compression ratio mechanism by decreasing a target mechanical compression ratio from a current first target mechanical compression ratio to a second target mechanical compression ratio without changing the amount of intake air and a fuel injection amount, and determines that the actual mechanical compression ratios in the cylinders are not uniform when the target mechanical compression ratio is set at the first target mechanical compression ratio if the differences in the output air-fuel ratios from the air-fuel ratio sensor for exhaust gases from the cylinders before and after the control of the variable compression ratio mechanism are not uniform.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 14, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihiro Sakayanagi, Satoru Watanabe
  • Publication number: 20140303876
    Abstract: An object of the invention is to provide a technology pertaining to a control system for an internal combustion engine using CNG to allow an internal combustion engine to operate appropriately even when properties of CNG change. To achieve the object, in the control system for an internal combustion engine using compressed natural gas according to the invention, when air-fuel ratio feedback control that corrects the fuel injection quantity in such a way as to make the air-fuel ratio of the air-fuel mixture burned in the internal combustion engine substantially equal to a target air-fuel ratio, a control parameter relating to a condition of combustion of the air-fuel mixture is corrected based on the magnitude of the correction value in the air-fuel ratio feedback control.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 9, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi Taniguchi, Masahiko Masubuchi, Koji Kitano, Hiroshi Eto
  • Publication number: 20140303875
    Abstract: It is an object of this invention to restrain blow-by gas from reaching a catalyst during fuel cutoff, and protect the catalyst while coping with an increase in oil dilution amount resulting from the use of alcohol fuel, in an internal combustion engine that uses the alcohol fuel. An engine is equipped with a PCV mechanism that introduces blow-by gas in a crankcase into an intake system. Besides, when fuel cutoff is executed with the PCV mechanism in operation, an opening degree of a throttle valve during fuel cutoff is set on the basis of an oil dilution amount in lubricating oil. Thus, the throttle opening degree during fuel cutoff is adjusted in accordance with a generation amount of blow-by gas, so that an intake negative pressure can be appropriately reduced. Accordingly, during fuel cutoff, the amount of blow-by gas that is sucked out from the crankcase due to the intake negative pressure and introduced into the intake system can be held small.
    Type: Application
    Filed: November 2, 2011
    Publication date: October 9, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahiro Tsukagoshi, Kouji Morita, Takahiko Fujiwara, Kazuhisa Matsuda
  • Publication number: 20140303874
    Abstract: Methods and systems for utilizing heated fuel to compensate for a low cetane number, cetane number variance and sub-optimal engine cold-start performance in internal combustion engines are disclosed herein. Systems comprise a heater, a sensor, and an engine control unit (“ECU”). Methods can comprise detecting variables that affect combustion, calculating conditions inside a combustion chamber, determining the difference between current ignition delay and a desired ignition delay, estimating a cetane number of a fuel, and using the data to determine a suitable temperature that will compensate for cetane number and improve the ignition delay. Other methods comprise sending a signal to a heater in communication with a fuel injection system such that said heater warms fuel within the fuel injection system prior to injecting the fuel into a combustion chamber.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 9, 2014
    Applicant: Transonic Combustion, LLC
    Inventor: Shizuo Sasaki
  • Publication number: 20140303877
    Abstract: An object of the invention is to provide a feedback control system that calculates a P term and an I term on the basis of a deviation between a target value and a measured value of a control amount, and calculates a correction amount to be applied to an operation amount of a control subject on the basis of a PI term, which is a sum of the P term and the I term, wherein divergence of the I term in a condition where the PI term is restricted by a guard is prevented while improving a convergence property of the I term following removal of the restriction applied to the PI term by the guard.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 9, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shinsuke Aoyagi
  • Patent number: 8855893
    Abstract: A valve timing control apparatus includes a housing that is rotatable with a crankshaft; a vane rotor that is rotatable with a camshaft; and a phase controller to compulsorily change a rotation phase of the vane rotor alternately between an advance side and a retard side with respect to the housing if an engine shifts to a high rotation state after the engine continuously has a low rotation state for a predetermined period or more. The engine in the low rotation state has a rotation speed lower than a predetermined rotation speed. The engine in the high rotation state has a rotation speed equal to or higher than the predetermined rotation speed.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: October 7, 2014
    Assignees: Nippon Soken, Inc., Denso Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuhei Oe, Hiroya Andou, Jun Yamada, Takehiro Tanaka, Yoshihito Moriya
  • Patent number: 8851052
    Abstract: In a method for controlling operation of an internal combustion engine using a control device, a setpoint value of a first fuel injection quantity is specified for a first combustion cycle, and the first fuel injection quantity is injected. A combustion pressure is ascertained during the first combustion cycle, and in a further step, a setpoint value of a second fuel injection quantity is ascertained for a second combustion cycle based on the combustion pressure.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 7, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Oliver Brox
  • Publication number: 20140297071
    Abstract: Methods and systems are provided for estimating fuel volatility. During a vehicle-off condition following a refueling event, fuel volatility may be estimated. Based on estimated fuel volatility, fuel injection amount and leak test thresholds may be adjusted.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Aed M. Dudar, Robert Roy Jentz
  • Publication number: 20140297161
    Abstract: A method and system improving vehicle operation is presented. In one example, the vehicle data is transmitted between a vehicle and a cloud computer. The cloud computer adjusts engine control parameters and the vehicle is operated based on the adjusted engine control parameters.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 2, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Joe F. Stanek, Jeffrey Allen Doering, Tony Lockwood, Sam Hashemi
  • Publication number: 20140297162
    Abstract: Methods and systems are provided for controlling exhaust emissions by adjusting an injection profile for fuel injected into an engine cylinder from a plurality of fuel injectors during engine start and crank. By splitting injection of fuel during start so that a portion of fuel is port injected and a remaining portion is direct injected as one or multiple injections, the soot load of the engine can be reduced and fuel economy can be improved. The injections are adjusted based on the alcohol content of the injected fuel to take advantage of the charge cooling properties of the fuel.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 2, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Steven Schwochert, Peter C. Moilanen, Eric Krengel
  • Patent number: 8849547
    Abstract: In a common rail system having two electrically controlled actuating elements, e.g., a metering unit at the input side of a high-pressure pump and a pressure regulating valve on the common rail, different fuel delivery quantities are able to be set in the common rail system while the vehicle is stationary, independent of the current engine load, by controlling operating points via one of the actuating elements and subsequently regulating the other actuating element. Control currents of the actuating elements correspond to the operating points. These control currents, or differences of control currents, are compared to target values to enable an evaluation of the common rail system.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: September 30, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Michael Hackner, Stefan Hoerenberg
  • Patent number: 8849546
    Abstract: A method of selecting between two operation modes in a dual fuel internal combustion engine of the diesel-type is provided. The engine includes a combustion chamber at least partly delimited by a piston, a first fuel supply for a first fuel, the first fuel supply being located in or at the combustion chamber and/or in or at an inlet port thereof, and a second fuel supply for a second fuel. The engine has two different operation modes, both operation modes including the steps of pre-mixing the first fuel in the combustion chamber and/or in the inlet port, compressing the charge containing the first fuel to conditions that allow auto-ignition of the second fuel, performing a first injection of the second fuel into the combustion chamber to initiate auto-ignition of the second fuel, thereby initiating conditions for combustion of the fuel remaining in the combustion chamber after auto-ignition of the second fuel.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: September 30, 2014
    Assignee: Volvo Technology Corporation
    Inventor: Ingemar Magnusson
  • Patent number: 8849591
    Abstract: A method for processing a signal from a flow meter for measuring a gas flow in an internal combustion engine includes processing the signal according to a first logic when the engine operates in a first intake mode and processing the signal according to a second logic when the engine operates in a second intake mode. The first intake mode includes the activation of a high-pressure EGR valve. The second intake mode includes the activation of a low-pressure EGR valve.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 30, 2014
    Assignee: Renault S.A.S.
    Inventors: Alexandre Collet, Kevin Robert, Benjamin Gresiak
  • Patent number: 8849545
    Abstract: A system according to the principles of the present disclosure includes a fuel volatility module, a temperature generation module, and a fuel control module. The fuel volatility module estimates a volatility of fuel provided to an engine based on an engine torque and an engine speed. The temperature generation module generates a temperature of an intake valve of the engine. The fuel control module selectively increases an amount of fuel provided to the engine based on the temperature of the intake valve, the engine torque, and the fuel volatility.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 30, 2014
    Inventors: Brian L. O'Hear, Mark D. Carr, Layne K. Wiggins
  • Publication number: 20140288804
    Abstract: Various systems and methods are described for an engine system with an exhaust gas recirculation system and catalyzing and non-catalyzing intake oxygen sensors. In one example, the catalyzing oxygen sensor is utilized to measure and control exhaust gas recirculation while fuel vapor purge is measured and controlled based on the catalyzing and non-catalyzing sensors.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 25, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Publication number: 20140288805
    Abstract: A fuel injection controller includes an oxygen sensor that responds to an oxygen concentration inside an exhaust passage, and an injection amount control unit programmed to control a fuel injection amount based on the output of the oxygen sensor. The injection amount control unit includes an injection amount correction value computing unit that determines an injection amount correction value based on the output of the oxygen sensor, a short-time learning value computing unit that determines a short-time learning value based on the injection amount correction value, a long-time learning value computing unit that determines a long-time learning value based on the short-time learning value; a feedback correction amount computing unit that computes a feedback correction amount, an injection amount control value computing unit that computes a control value of the fuel injection amount, and a long-time learning value holding unit that holds the long-time learning value.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventor: Yoko FUJIME
  • Patent number: 8843298
    Abstract: An engine control system which may be used in automotive vehicles includes first correlation data representing correlations between performance parameters associated with different types of performances of a combustion engine and uncorrelated common factors existing among the performance parameters and second correlation data representing correlations between the common factors and combustion parameters associated with combustion states of fuel in the combustion engine. The engine control system determines target values of the common factors using the first correlation data and also determines target values of the combustion parameters using the second correlation data. The engine control system determines command values as a function of the target values of the combustion parameter and outputs them to actuators which control combustion states of fuel in the engine for achieving desired levels of the performances of the combustion engine.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 23, 2014
    Assignee: Denso Corporation
    Inventors: Yuuki Nakatsuji, Sumitaka Ikeda, Kazuhiro Higuchi, Koji Ishizuka
  • Patent number: 8839769
    Abstract: A fuel supply system of an internal combustion engine includes: a pressure adjustment device provided on a fuel flow path that connects a fuel pump and an injector; a return flow path for returning a fuel discharged from the pressure adjustment device to a fuel tank; a fuel property sensor disposed in the return flow path; a fuel pump control portion that actuates the fuel pump at a predetermined programmed timing, when the internal combustion engine is in a stopped state; and a fuel property determination portion that determines a fuel property of the fuel in the fuel tank by using an output value of the fuel property sensor, when the fuel pump is actuated during the stopped state of the internal combustion engine.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 23, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mie Sasai, Kazuhiro Wakao
  • Patent number: 8843263
    Abstract: The present invention provides an onboard system for determining vehicle emissions. The emissions are determined in real-time and may be transmitted to a remote terminal for storage and/or analysis. Data is supplied solely to an emissions unit from a vehicle diagnostic system: the vehicle diagnostic system receives vehicle data from vehicle systems and sub-systems.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: September 23, 2014
    Assignee: Lysanda Limited
    Inventor: Alexander Willard
  • Patent number: 8843286
    Abstract: A vehicle driving force suppression device is provided, and driving force suppression is conducted on the basis of existence of an obstacle which is on the opposite course to the selected shift position. Adding specific conditions related to acceleration pedal depression amount and speed, inclination of the road in the direction which an obstacle exists, or distance to the obstacle, magnitude of driving force suppression is decided.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: September 23, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shunsuke Tezuka, Rikio Kenmochi
  • Publication number: 20140278008
    Abstract: A method for operating an engine in a vehicle includes measuring a current to or from a generator mechanically coupled with the engine and determining at least one operating parameter of the engine. The method also includes providing an amount of fuel to the engine based on the current and the at least one operating parameter.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Douglas Raymond Martin, Edward Badillo
  • Publication number: 20140278006
    Abstract: A method is provided for operating a vehicular engine that comprises a plurality of pistons and a plurality of cylinders. The method comprises detecting an engine temperature and detecting an alcohol concentration of fuel. The method further comprises selecting an amount of fuel according to the engine temperature and the alcohol concentration and selectively dispensing the amount of fuel to the cylinders.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Stanley D. Lent, Joshua D. VanLandingham
  • Publication number: 20140278005
    Abstract: A method and system for improving starting of an engine that may be repeatedly stopped and started is presented. In one example, the method adjusts a port fuel injection amount in response to engine stopping position. The engine stopping position may be indicative of a fraction of injected fuel that enters a cylinder for a first combustion event since engine stop.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Alex O'Connor Gibson, Brad Alan VanDerWege, Cindy Zhou, Jianwen James Yi, John Eric Rollinger
  • Publication number: 20140278007
    Abstract: Various methods and arrangements for determining a combustion control parameter for a working chamber in an engine are described. In one aspect, an engine controller includes a firing counter that stores a firing history for the working chamber. A combustion control module is used to determine a combustion control parameter, which is used to help manage combustion in the working chamber. The combustion control parameter is determined based at least in part on the firing history.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Mark A. WILCUTTS, Xin YUAN, Joshua P. SWITKES, Li-Chun CHIEN, Steven E. CARLSON, Christopher W. CHANDLER, Christopher C. Hand, Matthew A. YOUNKINS
  • Patent number: 8838363
    Abstract: Embodiments for adjusting fuel injection are provided. In one example, a method comprises adjusting fuel injection based on fuel concentration in an engine intake manifold, and during idle and when EGR is disabled, adjusting fuel injection based on the fuel concentration and a fuel pushback amount. In this way, fuel injection may be adjusted based on fuel concentration in the intake manifold.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 16, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Richard E. Soltis, James Michael Kerns, Stephen B. Smith, Imad Hassan Makki
  • Patent number: 8838361
    Abstract: In an apparatus for controlling a general-purpose engine used as a prime mover of an operating machine, the apparatus regulating a throttle opening such that an engine speed is converged to a desired engine speed, calculating a basic fuel injection amount based on the engine speed and throttle opening, and controlling engine warm-up operation by correcting the basic fuel injection amount with a correction coefficient to calculate a warm-up time fuel injection amount after engine start is completed and injecting fuel by the calculated amount, a fuel injection amount with which the engine output becomes maximum is searched based on the throttle opening regulated in response to increase/decrease operation of the warm-up time fuel injection amount conducted when the engine speed is constant; and the correction coefficient is corrected using the searched fuel injection amount. With this, a warm-up correction coefficient appropriate for the engine warm-up condition can be calculated.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: September 16, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shigeru Saito, Tomoki Fukushima
  • Patent number: 8838364
    Abstract: A control device of a spark-ignition gasoline engine is provided. The control device includes a controller for operating the engine body by controlling at least a fuel injection valve, an ignition plug, and a fuel pressure variable mechanism. Depending on the engine load range, the controller sets the combustion mode to a compression-ignition mode or a spark-ignition mode. In each mode, the controller also controls the fuel pressure, and the timing of fuel injection and ignition. The controller may also performs external EGR control in each mode.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: September 16, 2014
    Assignee: Mazda Motor Corporation
    Inventors: Kazuhiro Nagatsu, Masahisa Yamakawa, Kouhei Iwai, Yoshihisa Nou, Noriyuki Ota, Kazutoyo Watanabe, Naoya Watanabe, Hiroyuki Kurita, Shuji Oba, Tatsuya Koga
  • Publication number: 20140257674
    Abstract: A system according to the principles of the present disclosure includes a misfire detection module and a fuel control module. The misfire detection module detects misfire in a cylinder of an engine. The fuel control module controls a first fuel system to deliver a first fuel to the cylinder and controls a second fuel system to deliver a second fuel to the cylinder. The first fuel and the second fuel are different types of fuel. The fuel control module selectively switches from delivering the first fuel to the cylinder to delivering the second fuel to the cylinder when misfire is detected in the cylinder.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Tameem K. Assaf, Louis A. Avallone
  • Publication number: 20140257673
    Abstract: A fuel control system of a vehicle includes an injection control module and a command module. The injection control module determines a first target amount of fuel for a combustion event of an engine. A command module selectively command the injection control module to provide two fuel injections when a torque request decreases. In response to the command, the injection control module: determines second and third target amounts of fuel based on the first target amount; provides a first fuel injection during the combustion event based on the second target amount; and provides a second fuel injection during a compression stroke of the combustion event based on the third target amount.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Sanjeev M. Naik, Vijay Ramappan, Martino Casetti
  • Patent number: 8826885
    Abstract: A fuel injection control system provided with a throttle by wire (TBW) system detecting an operation condition of a throttle grip and controlling, via an actuator, a throttle valve. The control system detects the throttle valve opening and controls an injector. An increased quantity correction value is determined based upon of an output of a throttle valve opening sensor and an operation condition of the throttle grip. When an acceleration condition of a vehicle is detected according to the output of the throttle valve opening sensor, an increased quantity correction of fuel is performed. The increased quantity correction value is brought to an attenuation condition in which the increased quantity correction value is gradually decreased, or a stop condition in which the increased quantity correction value is made to zero, when the throttle grip is not in drive in an opening direction, even though an acceleration condition is detected.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: September 9, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yukihiro Asada, Kenichi Machida
  • Patent number: 8831858
    Abstract: Various methods and systems are provided for operating an internal combustion engine, the engine having a plurality of cylinders including one or more donor cylinders and one or more non-donor cylinders. In one example, a method includes, during an exhaust gas recirculation cooler heating mode, operating at least one of the donor cylinders at a cylinder load sufficient to increase an exhaust temperature for regenerating an exhaust gas recirculation cooler, and operating at least one of the non-donor cylinders in a low- or no-fuel mode.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: John Stephen Roth, Kyle Craig Stott, James Robert Mischler, Paul Flynn, Kirk Heywood, Daniel Allan Moser
  • Publication number: 20140244136
    Abstract: Methods and systems are provided for adjusting combustion parameters to increase combustion stability during conditions when condensate formed in a charge air cooler may enter cylinders of an engine. In response to increased mass air flow and a condensate level in the charge air cooler, the engine may combust a rich air-fuel ratio while increasing a positive valve overlap.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Thomas G. Leone, Gopichandra Surnilla
  • Publication number: 20140244137
    Abstract: When injecting fuel from a direct injector and a port injector such that a requested fuel injection amount is obtained in an internal combustion engine, the direct injector is driven in the following manner. After a target fuel injection amount for the fuel injection with the higher priority among fuel injection in the late stage of a compression stroke and fuel injection in the early stage of an intake stroke in the direct injector has been set on the basis of the engine operating condition, the target fuel injection amount for the fuel injection with the lower priority is set on the basis of the engine operating condition. Moreover, the direct injector is driven in such a manner that the target fuel injection amount for each of the abovementioned fuel injections set in this manner is obtained.
    Type: Application
    Filed: October 26, 2011
    Publication date: August 28, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tomohiro Nakano
  • Patent number: 8818689
    Abstract: A cylinder intake air amount calculating apparatus for an internal combustion engine that calculates a cylinder intake air amount, which is an amount of fresh air sucked in a cylinder of the engine using an intake air pipe model equation which is obtained by modeling an intake pipe of the engine, is provided. An intake air flow rate is obtained. The cylinder intake air amount is calculated by applying the intake air flow rate and a preceding value of the cylinder intake air amount to the intake pipe model equation. A predicted intake air flow rate which is a predicted value of the intake air flow rate is calculated. A predicted cylinder intake air amount which is a predicted value of the cylinder intake air amount is calculated by applying the predicted intake air flow rate and the cylinder intake air amount to the intake pipe model equation.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Naoki Oie, Toshinori Tsukamoto, Todd Robert Luken
  • Patent number: 8818686
    Abstract: A purge control implementation determination unit determines whether or not to implement purge control in accordance with predetermined implementation conditions. If it is determined to implement the purge control, a purge control unit actually implements the purge control. A throttle opening degree upper limit switching unit switches an upper limit value of an opening degree of a throttle based on a determination result of the purge control implementation determination unit. A throttle opening degree control unit controls the opening degree of the throttle so as not to exceed the upper limit value set by the throttle opening degree upper limit switching unit.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Ryuta Teraya
  • Patent number: 8818676
    Abstract: An engine control system includes a torque request control module to determine a first engine torque request. An artificial neural network (ANN) torque request module determines a second engine torque request using an ANN model. A torque security check module that selectively generates a malfunction signal based on the difference between the first engine torque request and the second engine torque request.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: August 26, 2014
    Inventors: Jinchun Peng, Timothy J. Hartrey
  • Patent number: 8818692
    Abstract: A hybrid vehicle 1 includes as drive sources an internal combustion engine 20, to which fuel stored in a fuel tank 21 is supplied, and a second M/G 32, to which electricity stored in a battery 40 is supplied. The vehicle 1 also includes a battery charger 70 for charging the battery 40 from the outside of the vehicle 1. For each of a plurality of refuelings to the fuel tank 21, the history of the time of refueling and the amount of refueling are stored. Based on the history, the degree of deterioration of fuel in the fuel tank 21 is calculated.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yumi Iraha, Tomoyuki Maruyama
  • Patent number: 8807116
    Abstract: A fuel injection system for an internal combustion engine, comprising: at least one fuel electroinjector; and one electronic control unit designed to supply the fuel electroinjector, in a fuel injection phase in an engine cylinder, with at least a first electrical command to perform a pilot fuel injection, and a second electrical command to perform a main fuel injection. The first and second electrical commands are separated in time by an electrical dwell time such that the main fuel injection starts without interruption with respect to the pilot fuel injection. The electrical dwell time between the first and second electrical commands belongs to an electrical dwell time range in which the total fuel amount injected in the pilot and main fuel injections in a fuel injection phase in an engine cylinder is substantially constant.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: August 19, 2014
    Assignee: C.R.F. Societa Consortile per Azioni
    Inventors: Sergio Stucchi, Onofrio De Michele, Raffaele Ricco, Domenico Lepore, Chiara Altamura, Marcello Gargano
  • Patent number: 8812215
    Abstract: A fuel injection system for an internal combustion engine is provided which calculates the quantity of fuel required to bring the pressure in a fuel accumulator into agreement with a target pressure and then control an operation of a high-pressure pump based on the required quantity. Even in the absence of a change in pressure in the accumulator, the system controls the high-pressure pump based on the required quantity. Specifically, the system calculates a feedback fuel quantity required to compensate for a difference between the required quantity and a quantity of the fuel actually supplied to the accumulator, in other words, leans such a quantity difference to correct the required quantity, thus resulting in an enhanced response of the system to control the high-pressure pump to a change in pressure in the accumulator.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: August 19, 2014
    Assignee: Denso Corporation
    Inventors: Kouichi Sugiyama, Koji Ishizuka
  • Publication number: 20140229089
    Abstract: Various embodiments relating to air-fuel ratio control are described herein. In one embodiment a method includes adjusting fuel injection to an engine responsive to air-fuel ratio sensor feedback with a first control structure, and in response to an air-fuel ratio sensor asymmetric degradation, adjusting fuel injection to the engine responsive to air-fuel ratio sensor feedback with a second, different, control structure.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Mrdjan J. Jankovic, Stephen William Magner
  • Patent number: 8805608
    Abstract: In a crawler construction machine including an engine and a fuel adjustment dial that adjusts a speed of the engine according to operation loads of the working equipment, the fuel adjustment dial is a rotary notchless dial that is continuously variably adjustable. The crawler construction machine includes: an adjustment position detector that detects a rotation adjustment position of the fuel adjustment dial; an engine controller that is connected to the adjustment position detector and controls the speed of the engine based on an adjustment position of the fuel adjustment dial; and a display device that is connected to the engine controller and displays on a screen a percentage value of the adjustment position of the fuel adjustment dial in which the maximum rotation position of the fuel adjustment dial is defined as 100%.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: August 12, 2014
    Assignee: Komatsu Ltd.
    Inventors: Hayato Matsumoto, Hiroshi Sawada, Kazuyoshi Morimoto
  • Publication number: 20140222314
    Abstract: Methods and systems for adjusting a plurality of fuel injections supplied to a cylinder during a cycle of the cylinder are described. In one example, fuel amounts are adjusted in response to a biodiesel concentration in fuel supplied to an engine.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Eric Matthew Kurtz, Paul Joseph Tennison
  • Publication number: 20140222316
    Abstract: A control apparatus and a control method for an internal combustion engine in a vehicle in which a battery and the internal combustion engine are mounted estimate a temperature of the internal combustion engine based on battery voltage. The control apparatus estimates water temperature TWS, at the time of starting up the internal combustion engine, based on battery voltage VB before starting the startup of the internal combustion engine or minimum value VBmin of battery voltage VB during cranking. Then, the control apparatus controls a fuel injection amount and a valve timing based on water temperature TWS estimated based on battery voltage VB when a water temperature sensor has failed.
    Type: Application
    Filed: September 12, 2013
    Publication date: August 7, 2014
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventor: Atsushi MURAI
  • Publication number: 20140222317
    Abstract: A method provides for operating an engine configured to use a plurality of differing fuels. The method includes determining a fuel combustion ratio of the plurality of the fuels associated with at least one engine cylinder of the engine based at least in part on one or more of a plurality of characteristic profiles. This maintains one or more of a plurality of actual values associated with usage of the plurality of fuels relative to defined corresponding threshold values. The fuel combustion ratio includes a ratio of the plurality of fuels to be delivered to the at least one engine cylinder. A fuel delivery system delivers the plurality of fuels to the at least one engine cylinder based on the fuel combustion ratio.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 7, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Daniel George Norton
  • Publication number: 20140222315
    Abstract: A system according to the principles of the present disclosure includes a stochastic pre-ignition module and a fuel control module. The stochastic pre-ignition module determines whether operating conditions of an engine satisfy predetermined criteria associated with stochastic pre-ignition. The fuel control module enriches an air/fuel ratio of the engine when the engine operating conditions satisfy the predetermined criteria.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dean R. Kwapis, Rafat F. Hattar, Kevin M. Luchansky, J. Michael Gwidt
  • Patent number: 8798891
    Abstract: A method is provided for controlling a hybrid electric vehicle that includes an internal combustion engine having a cylinder provided with an intake valve, an exhaust valve, and a piston configured to rotate the engine's crankshaft. The method includes determining whether deceleration of the vehicle is desired and also includes ceasing supply of fuel to the cylinder when such condition is satisfied. The method additionally includes selecting a fuel-off actuation arrangement for the intake valve via a mechanism configured to provide variable valve timing and lift, such that a magnitude of compression pulses in the cylinder during deceleration is limited. A system for controlling the hybrid vehicle and a vehicle employing such a system are also provided.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Craig D. Marriott, Ben W. Moscherosch
  • Patent number: 8798913
    Abstract: An improved apparatus and method for monitoring the levels of propane or other consumable liquid in remotely located storage tanks and coordinating delivery of liquid to those tanks, including an improved method of using the remote monitoring data to identify out-of-ordinary conditions at remote tanks, optimally schedule purchases or deliveries, improve safety, and more efficiently operate a propane dealership. More accurate and timely information concerning the status of customer tanks serves to improve operational efficiencies and increase safety. Data received from remote sensors can be collected and organized so that it is easily understood and utilized through the implementation of a user interface accessible via the Internet that allows the information to be presented in an efficient graphical and contextual fashion.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: August 5, 2014
    Inventor: Richard L. Humphrey
  • Patent number: 8798893
    Abstract: A fuel injection control for an internal combustion engine includes: estimating a convergence temperature of the exhaust gas catalytic converter; calculating an OTP boost value using the estimated convergence temperature; and estimating the convergence temperature on the assumption that the temperature decrement quantity of the exhaust gas catalytic converter which is caused by the power boosting is zero when both of the OTP boosting execution condition and the power boosting execution condition are met.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kachi, Yasuyuki Takama
  • Publication number: 20140214306
    Abstract: Methods and systems are provided for reducing exhaust temperatures during high engine load conditions in engine systems configured to operate with multiple fuels. Stoichiometric cylinder operation is provided via injection of a gaseous fuel such as CNG. In response to elevated exhaust temperatures, the cylinder is enriched by injecting a liquid fuel, such as gasoline, while maintaining the injection of CNG and while maintaining spark timing at MBT.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Ed Badillo, Samuel Guido, Ross Dykstra Pursifull, Dev Saberwal
  • Patent number: RE45159
    Abstract: A system for supply of LPG/ammonia for direct-injection petrol or diesel engine includes an electronic control unit where the control unit governs a petrol/diesel pump, a supplementary petrol/diesel pump, a petrol/diesel-delivery solenoid vale, LPG/ammonia-return solenoid valve, LPG/ammonia pump, a supplementary LPG/ammonia pump, a LPG/ammonia-delivery solenoid vale and a LPG/ammonia injector, such that only one of LPG/ammonia and petrol/diesel is fed to the engine at any point in time, and a combination of i) LPG and petrol, ii) LPG and diesel, iii) ammonia and petrol, and iv) ammonia and diesel is never fed to the engine.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: September 23, 2014
    Assignee: Icomet SpA
    Inventor: Luciano Cippitani