Using Filter Patents (Class 701/479)
  • Patent number: 11650284
    Abstract: A radar sensor system and a method for operating a radar sensor system. The radar sensor system includes: at least one first sub-sensor system and a second sub-sensor system, each for generating sensor data, each sub-sensor system including an antenna array including at least one receiving antenna and at least one transmitting antenna; a control device, by which each sub-sensor system is independently transferrable from a normal operation into a silent operation; and a data fusion device, which is designed to fuse the sensor data exclusively of the sub-sensor systems during the normal operation with one another for generating output data.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 16, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Michael Schoor, Benedikt Loesch, Marcel Mayer
  • Patent number: 9891059
    Abstract: A method is disclosed involving receiving GPS data from a personal portable training device. A smoothing operation is performed on the GPS data to generate a more accurate representation of the route travelled for display to a user (504). In the smoothing operation, a cubic spine algorithm is used to obtain an initial estimate of the route representation (500). The estimate is then subjected to a refinement using at least received user motion data recorded by the personal training device (502). In addition one or more of: data indicative of the GPS accuracy; historical route data; and digital map data, such as building footprints and bodies of water, may be used in refining the estimate.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 13, 2018
    Assignee: TOMTOM GLOBAL CONTENT B.V.
    Inventors: Marcin Michal Kmiecik, Rafal Jan Gliszczynski
  • Patent number: 9638806
    Abstract: The present invention relates to a system for detecting ambiguities in a satellite signal for the GPS tracking of vessels, which includes: a GNSS receiving unit obtaining a vessel position using a plurality of satellites; a vessel position calculating unit calculating a second vessel position from a first vessel position after a specific amount of time elapses using dead-reckoning; a distance calculating unit calculating prediction distances between each of the satellites and the vessel and an error monitoring unit comparing the calculated prediction distances between the satellites and the vessel, and pseudoranges between the satellites and the GNSS receiving unit at the second vessel position, and monitoring for the occurrence of errors at the satellites on the basis of the existence of an increase in errors at each of the satellites.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: May 2, 2017
    Assignee: KOREA INSTITUTE OF OCEAN SCIENCE AND TECHNOLOGY
    Inventors: Woo Seong Shim, Deuk Jae Cho
  • Patent number: 9410808
    Abstract: A method and apparatus for detecting location information using a navigation algorithm are provided. The method includes searching for neighboring Global Positioning System (GPS) satellites, receiving, if at least one GPS satellite is detected, pseudo-range information from at least one of the detected GPS satellites and storing the received pseudo-range information, calculating a displacement of a pedestrian terminal based on step detection of a pedestrian, correcting the calculated displacement of the pedestrian terminal using the received pseudo-range information, and measuring the location of the pedestrian terminal is measured using the corrected displacement.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: August 9, 2016
    Assignees: Samsung Electronics Co., Ltd., Seoul National University R & DB Foundation
    Inventors: Kyong-Ha Park, Chan-Gook Park, Hyun-Su Hong, Sung-Min Park, Seung-Hyuck Shin
  • Patent number: 9096328
    Abstract: A method and device for automatically estimating a degradation in fuel consumption and in drag of an aircraft. The device comprises a device for calculating a numerical value of the effect of a degradation in performance on the fuel consumption and/or the drag of the aircraft, and an arrangement for displaying this numerical value on a screen in the cockpit of the aircraft.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: August 4, 2015
    Assignee: AIRBUS OPERATIONS (SAS)
    Inventors: Fabien Pitard, Yann Cros, Serge Laporte, Jean-Pierre Demortier, Mauro Marinelli, Sandrine-Mahile Leotin
  • Patent number: 9076329
    Abstract: A method for merging imprecisely localized traffic reports with precisely localized traffic data includes obtaining a plurality of possible positions (x) of the localized traffic reports having imprecise position indications. The plurality of possible positions is evaluated using overlap functions. Substantially precise positions for the localized traffic reports are defined by solving an extremum problem.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: July 7, 2015
    Assignee: DEUTSCHE TELEKOM AG
    Inventors: Ulrich Fastenrath, Markus Becker
  • Patent number: 8886394
    Abstract: Methods and systems for producing data describing states of a plurality of targets using a processor in a system having at least one onboard sensor. The method includes obtaining data from at least one onboard sensor and performing a first data fusion process on the obtained onboard sensor data to produce onboard sensor fused data. Data is also obtained from at least one off-board sensor, and a second, different data fusion process is performed on the obtained off-board sensor data and the onboard sensor fused data to produce target state data.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 11, 2014
    Assignee: BAE Systems PLC
    Inventor: Colin Anthony Noonan
  • Publication number: 20140180580
    Abstract: A positioning module is disclosed. Positioning module includes a satellite selection module and a filter. The satellite selection module is configured for selecting one or more positioning satellites among a plurality of satellites of one or more satellite navigation systems and outputting satellite information of the one or more positioning satellites. Filter coupled to the satellite selection module is configured for receiving the satellite information of the one or more positioning satellites, and calculating a position information of positioning module.
    Type: Application
    Filed: March 5, 2014
    Publication date: June 26, 2014
    Applicant: O2Micro Inc.
    Inventors: Jinghua ZOU, Weihua ZHANG, Juan GOU
  • Patent number: 8626395
    Abstract: A method is provided for processing data in an influencing device, whereby the influencing device is connectable to a vehicle control unit and to a data processing unit. If the influencing device receives a first trigger or a second trigger, the first trigger is checked for a valid assignment to a function implemented in the hardware or software. If there is a valid assignment, the assigned function is started. A first address and/or a second address and/or the value are checked for a valid assignment to a first sub-function or a second sub-function. Depending on the called sub-function, the value is checked and/or manipulated and depending on the result of the check, the checked value and/or the manipulated value are sent by the influencing device to the vehicle control unit and/or to the data processing unit and/or stored in the memory of the influencing device.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: January 7, 2014
    Assignee: dSPACE GmbH
    Inventor: Marc Dressler
  • Patent number: 8620581
    Abstract: Provided is a method of performing time synchronization using a navigation device. The method includes: (a) performing time synchronization between a GPS satellite and a navigation device by receiving GPS signals by a navigation device from at least one GPS satellite; (b) establishing an interface between the navigation device and a time-using device; (c) setting conditions for transmitting time information to the navigation device; and (d) performing time synchronization between the navigation device and the time-using device by transmission of time information from the navigation device to the time-using device.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 31, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: In-One Joo, Sang-Uk Lee, Jae-Hoon Kim
  • Patent number: 8600660
    Abstract: A state is added to a Kalman filter to model GPS multipath errors. The multipath states may be modeled as either a random walk model or a Gauss-Markov process. The choice of the model depends on the characteristics of the multi-path error and the GPS receiver. Adding this state to the Kalman filter to model multipath improves the navigation system's robustness when operating as a deeply integrated system when multipath is present.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 3, 2013
    Assignee: Honeywell International Inc.
    Inventors: Charles T. Bye, Brian W. Schipper
  • Patent number: 8594927
    Abstract: A navigation filter for a navigation system using terrain correlation delivering an estimation of the kinematic state of a carrier craft using a plurality of data includes the measurements returned by at least one terrain sensor, the model associated with the terrain sensor, the data from an onboard map, an error model for the onboard map, the measurements returned by an inertial guidance system, and a model of the inertial guidance system. The navigation filter also includes a first filter referred to as convergence filter, for example of the Kalman filter type, and a second filter referred to as tracking filter, for example of the particle filter type.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 26, 2013
    Assignee: Thales
    Inventors: Christian Louis, Sébastien Reynaud
  • Publication number: 20130282275
    Abstract: A method and apparatus for detecting location information using a navigation algorithm are provided. The method includes searching for neighboring Global Positioning System (GPS) satellites, receiving, if at least one GPS satellite is detected, pseudo-range information from at least one of the detected GPS satellites and storing the received pseudo-range information, calculating a displacement of a pedestrian terminal based on step detection of a pedestrian, correcting the calculated displacement of the pedestrian terminal using the received pseudo-range information, and measuring the location of the pedestrian terminal is measured using the corrected displacement.
    Type: Application
    Filed: January 4, 2012
    Publication date: October 24, 2013
    Applicants: SEOUL NATIONAL UNIVERSITY R & DB FOUNDATION, Samsung Electronics Co.Ltd.
    Inventors: Kyong-Ha Park, Chan-Gook Park, Hyun-Su Hong, Sung-Min Park, Seung-Hyuck Shin
  • Patent number: 8560234
    Abstract: Embodiments include systems and methods of navigation. In on embodiment, a plurality of position and motion states of a vehicle are estimated. The states may be estimated based on information received from a satellite receiver and an inertial measurement sensor. Estimating the states comprises performing one or more of a plurality of update steps at the rate that information is received from the satellite receiver. The states are estimated at a rate greater than the rate at which the update steps are performed. In one embodiment, the states are estimated using a stepped extended Kalman filter.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: October 15, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Aaron D. Kahn
  • Patent number: 8548740
    Abstract: A motion classification system comprises an inertial measurement unit configured to sense motion of a user and to output one or more channels of inertial motion data corresponding to the sensed motion; and a processing unit configured to calculate a coefficient vector for each of the one or more channels based on a wavelet transformation of the respective inertial motion data, and to select one of a plurality of gaits as the user's gait based on the calculated coefficient vector of at least one of the one or more channels and on a plurality of templates, each template corresponding to one of the plurality of gaits.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: October 1, 2013
    Assignee: Honeywell International Inc.
    Inventors: Joel Hesch, Yunqian Ma, Peter Lommel
  • Patent number: 8370063
    Abstract: A method of operation of a navigation system includes sampling a first location reading from a device; sampling a first time stamp associated with the first location reading; sampling a second location reading from the device; sampling a second time stamp associated with the second location reading; obtaining a velocity for the device between the first location reading and the second location reading; and validating the second location reading with the first location reading, the first time stamp, the second time stamp, and the velocity for displaying on the device.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: February 5, 2013
    Assignee: Telenav, Inc.
    Inventor: Jinsong Hu
  • Patent number: 8370064
    Abstract: A system for navigation and tracking may include an inertial navigation system adapted to generate a replica GNSS signal and a global navigation satellite system. The global navigation satellite system may include a module to digitize a GNSS signal received from a constellation of global navigation satellites. A correlator receives the digitized GNSS signal and the replica GNSS signal. The correlator correlates the digitized GNSS signal to the replica GNSS signal to generate a correlated GNSS signal. A coherent integration module coherently integrates the correlated GNSS signal to generate an integrated signal having a predetermined rate. A filter receives the integrated signal and generates a data signal for navigation and tracking. An output device may present the navigation and tracking information based on the data signal, or the navigation and tracking information may be used to provide guidance for a vehicle or may be used to track a target.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: February 5, 2013
    Assignee: The Boeing Company
    Inventors: Rongsheng Li, Kamran Ghassemi
  • Patent number: 8352171
    Abstract: An auxiliary satellite positioning system is applied to a first satellite positioning apparatus. The auxiliary positioning system includes a detection module, a transmission interface and a positioning module. A second satellite positioning module having a satellite data can be detected by the detection module via a wireless transmission protocol. The satellite data can be transmitted by the transmission interface to the first satellite positioning module from the second satellite positioning module. The satellite data can be used by the positioning module to implement a satellite positioning action.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 8, 2013
    Assignee: MiTAC International Corp.
    Inventor: Hung-Yi Lin
  • Patent number: 8346517
    Abstract: A method implements hybrid type simulation serving to validate an inertial unit of a moving body on board an angular movement simulator by comparing a trajectory of the moving body as calculated in a real navigation environment with at least one reference trajectory.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: January 1, 2013
    Assignee: MBDA France
    Inventor: Laurent Bourzier
  • Publication number: 20120253585
    Abstract: Methods and systems for identifying a spatial relationship between a frame of reference associated with an accelerometer mounted in a vehicle and a frame of reference associated with the vehicle Accelerometer data is received from an accelerometer and vehicle data is received from a vehicle network of the vehicle, a long term average of the accelerometer data is used to determine the direction of gravity in the frame of reference of the vehicle. In addition the vehicle date is used to determine changes in speed of the vehicle, and thus to determine the direction of the longitudinal axis of the vehicle in the frame of reference of the vehicle. From these determined directions, the spatial relationship between the frames of reference may be determined.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventor: Richard Harvie
  • Patent number: 8260552
    Abstract: System and methods of increasing reliability of determined location information by using two integration filters are provided. An exemplary embodiment integrates inertial navigation system information and global navigation satellite system (GNSS) information in a real time Kalman filter; determines a real time location of the aircraft with the real time Kalman filter based upon the INS information and the GNSS information; delays the GNSS information by an interval; integrates the INS information and the delayed GNSS information in a delay Kalman filter; determines a predictive location of the aircraft with the delay Kalman filter based upon the INS information, the delayed GNSS information, and the interval; and in response to an inaccuracy of the real time location determined from the real time Kalman filter, selects the predictive location determined from the delay Kalman filter as a new real time location of the aircraft.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Mahesh Jeerage, Fan Liu
  • Patent number: 8185309
    Abstract: An inertial system is provided. The system includes at least one inertial sensor, a processing unit and a plurality of Kalman filters implemented in the processing unit. The Kalman filters receive information from the at least one inertial sensor. At most one of the plurality of Kalman filters has processed zero velocity updates on the last cycle.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 22, 2012
    Assignee: Honeywell International Inc.
    Inventors: Kenneth S. Morgan, Helen V. Younskevicius
  • Patent number: 8150624
    Abstract: Systems and methods are provided for tracking a moving person. The system comprises a controller configured to receive acceleration data that characterizes an acceleration of the moving person in three dimensions. The controller comprises a step rate component that determines a step rate for the person based on a vertical component of the acceleration data. The controller also comprises a body offset component that determines a body offset angle based on a spectral analysis of the acceleration data and the step rate. The controller further comprises a velocity component that determines a reference velocity vector based on the body offset angle and the step rate.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: April 3, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Stephen A. Berardi, Joseph A. Fax