Time Regulated Operations Patents (Class 701/66)
  • Patent number: 8560190
    Abstract: A control device for an automatic transmission including a neutral control unit that executes neutral control for bringing the automatic transmission into a neutral state by reducing an engagement force for an engaged frictional engagement element; a speed ratio specifying unit that specifies an actual speed ratio of the automatic transmission on the basis of a rotating speed of an input shaft and a rotating speed of an output shaft; and a first failure determination unit that determines whether or not a failure is occurring in the automatic transmission on the basis of the actual speed ratio during execution of the neutral control. The first failure determination unit determines that a failure is occurring in the automatic transmission in the case where the actual speed ratio coincides with the speed ratio of any one of a plurality of shift speeds over a predetermined time.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: October 15, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yukio Sugiura, Masaki Nishide
  • Patent number: 8560153
    Abstract: A method and a system for controlling a vehicle is provided. The vehicle has first and second propulsion devices. The vehicle determines a calculated decline in state of charge (SOC) for a charge depleting mode for a battery coupled to the first propulsion device. The vehicle is operated to achieve the calculated decline in SOC. The vehicle operates the second propulsion device for at least a predetermined time after the second propulsion device is turned on during the charge depleting mode.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 15, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Bernard D. Nefcy, Ming Lang Kuang, William Paul Perkins, Brandon R. Masterson, Derek Hartl
  • Patent number: 8543311
    Abstract: A method for controlling a drive train with at least one drive unit, in particular for a vehicle is disclosed. A setpoint value for a torque of the at least one drive unit can be predefined. The actual value of this torque is detected and a first signal is generated which ensures reliable operation of the drive train if the deviation of the actual value from the setpoint value is greater than a predefinable absolute value of the deviation value and/or the deviation of the actual value from the setpoint value lasts for longer than a predefinable absolute value of the deviation time period.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: September 24, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Andreas Heyl
  • Patent number: 8498790
    Abstract: The driving output of the electric oil pump during an engine automatic stop is learnt by gradually increasing the driving output of the electric oil pump after an engine automatic stop and discriminating a state immediately before engagement on the basis of the behavior of an input shaft rotation number and a turbine rotation number. Thereby, the working oil pressure supplied by the electric oil pump during an engine automatic stop immediately after an engine automatic stop can be made suitable even if a vehicle is in a stopped state without adding an oil pressure sensor and an oil pressure switch, and a vain increase in power consumption, a deterioration of acceleration responsiveness at the time of an engine restart, generation of shock, or a soaring of the number of engine rotations can be prevented.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: July 30, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Michitaka Fujiwara, Tsuneo Tanabe
  • Patent number: 8494730
    Abstract: A power transmitting apparatus includes a clutch that operates based on pressure of a fed fluid to adjust a mode of power transmission of an engine or/and a motor/generator on a power transmission route, a first driving pump that feeds the fluid to the clutch by being driven in accordance with rotation of the motor/generator, and a second driving pump that feeds the fluid to the clutch by being driven in accordance with electric power, wherein a first engagement unit and a second engagement unit can be caused to engage rapidly or slowly by selecting one of the first driving pump and the second driving pump as a source of the fluid, and when a drive request of the clutch is present and a rotation speed of the motor/generator is lower than a predetermined rotation speed, the first engagement unit and the second engagement unit are caused to engage rapidly by feeding the fluid from the second driving pump.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masato Yoshikawa
  • Patent number: 8478501
    Abstract: Methods, software codes, and devices for determining an emission flow rate of one or more CO2 equivalent gases from an exhaust system of an internal combustion engine of a vehicle and a method of determining a vehicle efficiency factor of the vehicle are provided. The vehicle efficiency factor is compared in real time to the corresponding point on a vehicle efficiency map based on at least one of current vehicle conditions, driving conditions, environmental conditions, and energy flow visualization data to derive a driver efficiency factor.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: July 2, 2013
    Assignee: Greendrive Pty, Ltd
    Inventor: Danny Hyland Stewart Adams
  • Patent number: 8467947
    Abstract: A method for operating a hydraulic system of an automatic transmission, in particular in a hybrid drivetrain, in which the hydraulic system comprises a main pump that is powered by an internal combustion engine and/or an electric drive motor, an electric auxiliary pump and a system pressure valve for setting a system pressure, to ensure various operating functions. In addition to the main pump, the electric auxiliary pump also supplies the hydraulic system with a volume flow of an operating medium. The loading of the electric auxiliary pump is determined in an electronic control unit with regard to the value of the system pressure and the loading of the electric auxiliary pump is limited, by the electronic control unit, with regard to the selected operating function.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: June 18, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Tobias Zollner, Bernd Allgaier, Christian Schwemer
  • Publication number: 20130138311
    Abstract: Noise may be prevented from being generated while providing smooth shift operability by preventing the overshoot phenomenon in which rpm of the electric oil pump is unexpectedly increased as the load decreases at the time when shifting ends in controlling the rpm of the electric oil pump to increase in order to increase the line pressure of the transmission as the shifting operation from step N to step D is performed in the hybrid vehicle having the electric oil pump.
    Type: Application
    Filed: June 11, 2012
    Publication date: May 30, 2013
    Applicants: Kia Motors Corp., Hyundai Motor Company
    Inventors: Seung Jae Kang, Jong Hyun Kim, Young Chul Kim, Jang Mi Lee
  • Publication number: 20130125684
    Abstract: The present invention provides a system for controlling a vehicle comprising a prime mover, a first sensor, a transmission, a second sensor, and a transmission controller. The first sensor outputs a first signal that indicates a speed of an input shaft of the transmission and the second sensor outputs a second signal that indicates a speed of the prime mover. The transmission controller includes control logics that control the transmission using the first signal, perform a diagnostic check on the first sensor, determining whether the diagnostic check of the second control logic indicates that the first sensor meets a predefined performance characteristic, instruct the transmission controller to use the second signal of the second sensor to control the transmission if the third control logic indicates that the first sensor does not meet the predefined performance characteristic, and control the transmission using the second signal of the second sensor.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Jesse B. Bradley
  • Patent number: 8423253
    Abstract: A torque applying device is provided for applying a driving torque to at least a pair of wheels, and a torque restraining device is provided for restraining the torque created on the wheels to be applied with the torque by the torque applying device. A friction braking device is provided for applying a braking torque to each wheel in response to operation of a brake pedal. An automatic braking control device automatically actuates the friction braking device independently of operation of the brake pedal, to apply the braking torque to each wheel. And, a torque restraining cancellation device is provided for cancelling the torque restraining operation for a time period determined in response to a vehicle speed decreasing state, after a condition for initiating the automatic braking control was fulfilled.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 16, 2013
    Assignee: Advics Co., Ltd.
    Inventors: Yukio Mori, Koicho Kokubo
  • Patent number: 8412427
    Abstract: When the change speed is instructed, without changing value of a suppressing vibration flag set to value 1 as initial value, a fast fill as the preparation of a brake to be engaged when the change speed is executed and low pressure standby of hydraulic pressure to set the brake in a half-engaged state. Then the suppressing vibration flag is set to value 0 when a predetermined time passed since the change speed is instructed, a sum of a drive torque required for driving and a suppressing vibration torque, which is in the same direction as suppressing rotational fluctuation of a drive shaft, is output from a motor when the suppressing vibration flag is set to value 1.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 2, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kiyoshiro Ueoka, Hiroki Tsutsumi, Yoichi Tajima, Takeshi Aoki
  • Patent number: 8401767
    Abstract: Various systems and methods are described for controlling combustion stability in an engine driving a transmission. One example method comprises limiting airflow to the engine in response to a spark timing retarded beyond a spark retard threshold, the limiting airflow to the engine reducing engine torque output and compensating for the reduction in engine torque output by adjusting a transmission operating parameter.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 19, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Michael Howard Shelby, Tobias John Pallett
  • Patent number: 8392079
    Abstract: Damping control, by which an engine is controlled to output torque for reducing up-and-down vibrations such as pitching and bouncing of a vehicle, is performed. When the damping control is interrupted, the behavior of engine torque after the damping control is interrupted is predicted. Shift of an automatic transmission is controlled in accordance with the predicted behavior of the engine torque.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Oda, Atsushi Ayabe, Tomohiro Asami
  • Patent number: 8380403
    Abstract: A vehicle including an internal combustion engine and a stepped transmission including an input shaft and an output shaft, wherein the stepped transmission speed-changes power input to the input shaft while changing a shift speed and outputs the speed-changed power to the stepped transmission output shaft; a control unit that controls the engine and the stepped transmission in accordance with an output request from an operator. The vehicle also including input and output shaft rotation speed detecting units and an output limiting unit that limits the output of the engine by comparing the deviation of the input and output shaft rotation speed to a predetermined rotation speed relationship range. The vehicle also including an abnormality determining unit to determine that an abnormality has occurred in the stepped transmission when the rotation speed relationship exceeds the range of the predetermined rotation speed relationship for at least a first predetermined time period.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: February 19, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventor: Hideaki Ogasawara
  • Patent number: 8374756
    Abstract: A control device for an automatic transmission includes a speed change controller configured to generate a speed change instruction. A temperature calculator is configured to calculate a temperature of at least one frictional engagement element among frictional engagement elements. A rotation difference calculator is configured to calculate a rotation difference between an input and an output of the at least one frictional engagement element. A determining unit is configured to determine whether the frictional engagement element is engageable or non-engageable based on the temperature and the rotation difference of the frictional engagement element and a pattern of the speed change instruction. The delay unit is configured to delay engagement until the determining unit determines that the frictional engagement element is engageable, if the determining unit determines that the frictional engagement element is non-engageable when the speed change controller generates the speed change instruction.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 12, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuma Sasahara, Takashi Satoyoshi, Ryuta Suzuki
  • Patent number: 8370057
    Abstract: The invention provides six different display modes illustrating interaction and relative locations of two or more aerial vehicles (AVs), with at least one of the AVs being controllable by a ground-based or airborne-based controller of an unmanned aerial vehicle (UAV) or a pilot of a standard manned aircraft. Some display modes also indicate a predicted distance of closest approach of two AVs, the possibility of conflict or collision, and a remaining time, measured relative to the present time, before this conflict occurs. An audio and/or visual indicator advises the AV controller if this conflict event is likely to occur and recommends an acceleration or deceleration increment that may avoid such conflict.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: February 5, 2013
    Inventor: Stanley Robert Herwitz
  • Patent number: 8364361
    Abstract: A method for controlling a clutch assembly includes controlling an actual clutch fill pressure using open-loop pressure controls when an active fill phase is detected, and using closed-loop pressure controls when the active fill phase is complete or when an overfill condition is detected. The method supplies the actual clutch pressure according to a second set of open-loop pressure controls when a step in commanded clutch pressure is detected. The method monitors a fill pressure and time during the step, and applies the clutch pressure according to the closed-loop pressure controls when either value equals a corresponding threshold value. A clutch assembly has a piston for compressing clutch disks to initiate a shift event, an algorithm for controlling the shift event, and a sensor for determining an actual clutch pressure during the shift phases. The algorithm switches between closed-loop and open-loop pressure controls in response to different shift phases.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: January 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Bret M. Olson, Robert L. Moses, Randall B. Dlugoss
  • Publication number: 20130017928
    Abstract: Disclosed is a method and power delivery system for controlling creep torque in a hybrid or electric vehicle. More specifically, a brake signal is detected and a creep torque output is controlled based on the brake signal. The creep torque is outputted for a predetermined time from a point when a brake on signal is first generated. Accordingly, a creep torque is generated for a predetermined time when a brake is being operated and backlash is eliminated between gears so as to prevent a backlash shock from the gears when the brake is released. Additionally, the vehicle may be propelled forward or backward by the creep torque in the creep torque control method of a vehicle according to an exemplary embodiment of the present invention.
    Type: Application
    Filed: December 6, 2011
    Publication date: January 17, 2013
    Applicants: Kia Motors Corporation, Hyundai Motor Company
    Inventors: Jonghan Oh, Jeongeun Kim
  • Patent number: 8352141
    Abstract: A method for actuating a clutch in the drive train of a motor vehicle, including: generating a respective position setpoint for each predetermined target interval to actuate the clutch; in each predetermined target interval, actuating the clutch in a plurality of predetermined controller sampling intervals; discretizing a respective position setpoint change into a plurality of intermediate position setpoints; determining a number of intermediate position setpoints in the plurality of intermediate position setpoint depending on the ratio of the target interval to the controller sampling interval; and specifying the respective position setpoint changes in steps to actuate the clutch.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: January 8, 2013
    Assignee: Schaeffler Technologies AG & Co., KG
    Inventor: Michael Schuhen
  • Patent number: 8352139
    Abstract: An apparatus comprises a changeover mechanism which is able to change a connection state of an electric motor output shaft to any one of “an IN-Connection State” in which a power transmission path is provided between a transmission input shaft and the electric motor output shaft, “an OUT-Connection State” in which a power transmission path is provided between the transmission output shaft and the electric motor output shaft, and “a neutral state” in which no transmission path therebetween is provided. When a kick-down-condition is satisfied, a changeover operation for changing an electric motor connection state to the OUT-Connection State is firstly performed. Thereafter, a gear position shifting operation for increasing a transmission reduction ratio is performed. After the kick-down-condition satisfied, an E/G side output torque Te and a M/G side output torque Tm is adjusted in such a manner that a sum Ts of Te and Tm continues to increase.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: January 8, 2013
    Assignee: Aisin AI Co., Ltd.
    Inventors: Hiroki Hatori, Takeshige Miyazaki, Kan Sasaki, Toshio Tanba, Yousuke Hayashi
  • Patent number: 8346446
    Abstract: A clutchless transmission apparatus and control method thereof. The transmission apparatus comprises a motor (10) and a transmission (20), said motor (10) is connected to said transmission (20) and supplies power to said transmission (20) via an input shaft of the transmission (20), wherein said apparatus further comprises a control device (30), which is electrically connected to said motor (10) and said transmission (20), wherein said control device (30) is configured to determine whether a gear-position shifting is required based on rotation speed of said transmission (20), if a gear-position shifting is required, regulates torque of said motor (10) to control said transmission (20) to disengage, and then regulates the rotation speed of said motor (10) based on the rotation speed of said transmission (20) to control said transmission (20) to engage for shifting gear-position.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: January 1, 2013
    Assignee: BYD Co. Ltd.
    Inventors: Kai Liu, Jian Gong, Xuguang Zhou, Bo Zu, Guangming Yang, Axi Qi, Xiaohua Tang, Bo Zhou, Xunjin Xu
  • Patent number: 8340877
    Abstract: An engine speed synchronizer for a manual transmission with an engine clutch, synchronizes rotation of the engine side of the engine clutch with rotation of the transmission side of the engine clutch by engine speed control with reference to operation of a shift lever under condition that the engine clutch is disengaged. The engine speed synchronizer determines whether or not a transmission input speed has started to change in a direction conforming to the operation of the shift lever; permits the synchronization in response to determination that the transmission input speed has started to change in the conforming direction; and inhibits the synchronization in response to determination that the transmission input speed has not started to change in the conforming direction.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 25, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masami Murayama, Masahiro Iriyama
  • Patent number: 8335622
    Abstract: A vehicle device control device includes an automatic drive control device for executing an automatic drive control by controlling at least a driving torque generating device, which applies a driving torque on a vehicle, so that a vehicle speed reaches a preset target vehicle speed, and a shift position determination portion for determining a shift position of a gear lever of the vehicle, wherein in a case where the shift position determination portion determines that the gear lever is set at a neutral position on the basis of a determination result of the shift position determination portion while the automatic drive control is executed, the automatic drive control device controls the driving torque generating device so that the driving torque applied to the vehicle becomes zero while continuously executing the automatic drive control.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: December 18, 2012
    Assignee: Advics Co., Ltd.
    Inventors: Yasuhito Ishida, Gen Inoue
  • Publication number: 20120316741
    Abstract: A control system for a transmission includes an actuator module, a timer module, and a pulse module. The actuator module engages N hydraulic clutches and disengages M hydraulic clutches to operate the transmission in a gear ratio, wherein N and M are integers greater than zero. The timer module determines a first period starting when the transmission begins operating in the gear ratio. The pulse module selectively supplies a pressure pulse to P of the M hydraulic clutches based on the first period, wherein P is an integer greater than zero. A method for controlling a transmission is also provided.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Steven Dietz, Gabriel M. Gibson, David Szpara, Brandon E. Hancock
  • Patent number: 8332121
    Abstract: Methods, software codes, and devices for determining an emission flow rate of one or more CO2 equivalent gases from an exhaust system of an internal combustion engine of a vehicle and a method of determining a vehicle efficiency factor of the vehicle are provided. The vehicle efficiency factor is compared in real time to the corresponding point on a vehicle efficiency map based on at least one of current vehicle conditions, driving conditions, environmental conditions, and energy flow visualization data to derive a driver efficiency factor.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 11, 2012
    Assignee: Greendrive PTY. LTD
    Inventor: Danny Hyland Stewart Adams
  • Patent number: 8332090
    Abstract: A hybrid vehicle and a method for operating a hybrid vehicle are provided, the vehicle including at least a first drive unit and a second drive unit coupled to the first drive unit, wherein the second driving unit recovers kinetic energy during braking the hybrid vehicle, a transmission unit which can be coupled to the first and/or second drive unit and a drive axle. It is proposed to change the transmission ratio of the transmission unit depending on a desired amount of energy recovered by the second drive unit during regenerative braking or a predetermined time period before the anticipated start of regenerative braking.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: December 11, 2012
    Assignee: Volvo Technology Corporation
    Inventors: Per Rutquist, Lisa Ehrlich
  • Patent number: 8326475
    Abstract: A hybrid drive device includes a transfer torque estimation unit for estimating a transfer torque transferred by the lock-up clutch with the lock-up clutch slipping; and a target rotational speed determination unit for determining the target rotational speed of the rotary electric machine to be achieved in the rotational speed control on the basis of the transfer torque estimated by the transfer torque estimation unit, a target transmission device input torque of the transmission device determined on the basis of an operating state of a vehicle, and a turbine speed of the turbine runner, wherein the engine startup control device starts up the engine by controlling the rotational speed of the rotary electric machine to the target rotational speed determined by the target rotational speed determination unit.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: December 4, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Takashi Yoshida, Yomei Hakumura, Hideki Hisada, Yoshinori Ono
  • Patent number: 8321071
    Abstract: A method and systems for controlling a speed of a vehicle are provided. The control system includes an input device configured to receive a required time of arrival (RTA) at a waypoint and a processor communicatively coupled to said input device, said processor programmed to automatically determine a dynamically adjustable range for an autothrottle control using an RTA error and a speed control tolerance, the RTA error representing a difference between an estimated time of arrival (ETA) and the RTA, the speed control tolerance representing a tolerance range about the vehicle speed profile. The control system also includes an output device communicatively coupled to said processor, said output device is configured to transmit at least one of a thrust control signal and a drag control signal to a speed control system of the vehicle.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: November 27, 2012
    Assignee: GE Aviation Systems, LLC
    Inventor: Joel Kenneth Klooster
  • Patent number: 8308608
    Abstract: A method of filling a clutch chamber of an automatic transmission includes determining an engage pressure to engage a clutch of the automatic transmission. The method determines a reactive pressure of a return spring of the clutch. The method also estimates a fill pressure based on the engage pressure and the reactive pressure. The method estimates a flow rate based on the engage pressure, and generates a fill pressure command signal to fill the clutch chamber based on the fill pressure, the flow rate and a flow rate limit.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 13, 2012
    Inventors: Nathaniel E. Wilke, Todd R. Berger, Joel H. Gunderson
  • Patent number: 8308611
    Abstract: A transmission shift control system includes a transmission shift control module that executes an upshift or a closed-throttle downshift, a shift stage determination module, and a clutch control module. The stage determination module determines a stage of the upshift or the closed throttle downshift when a downshift is requested. The clutch control module determines a downshift type based on the stage of the upshift or the closed throttle downshift and selectively executes a downshift before the upshift or the closed throttle downshift is completed.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 13, 2012
    Inventors: Shashikanth Rangaraju, Robert L. Williams, Matthew D. Whitton
  • Publication number: 20120283922
    Abstract: A vehicle includes an engine, an automatic transmission, and a controller. The transmission includes a neutral idle (NI) state and a designated NI clutch which is selectively actuated to exit the NI state. The controller executes instructions from tangible memory to shift out of the NI state and into a drive state. The controller includes a slip model which generates a desired clutch slip profile as a differentiable time function, and a desired slip derivative of the desired slip profile. The desired profiles are used to calculate a clutch pressure command for controlling the designated NI clutch. The time function may be at least a third order/cubic equation. A method includes executing the slip model to generate the desired clutch slip profile, calculating a desired slip derivative of the desired slip profile, and using the desired slip profile derivative to calculate a clutch pressure command for the designated NI clutch.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Andrew W. Phillips, David W. Wright, Ronald F. Lochocki, JR.
  • Patent number: 8306713
    Abstract: An in-gear oil pressure correcting section corrects engagement control oil pressure set up by an oil pressure supply control section over the entire range to be reduced by first predetermined pressure. An engagement determining section determines, on the basis of a torque converter slip ratio calculated by a calculating section, whether a frictional engagement element of a destination gear starts to engage or not. An addition correcting control section corrects the corrected engagement control oil pressure to add second predetermined pressure thereto in the case where engagement of the frictional engagement element has not been started yet when a timer measures first predetermined time. The addition correcting control section further corrects the corrected engagement control oil pressure to add third predetermined pressure thereto in the case where the engagement of the frictional engagement element has not been started yet when the timer measures second predetermined time.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: November 6, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shinsaku Mayumi, Kazuhiko Kitano, Yoshikazu Nemoto
  • Patent number: 8301352
    Abstract: A cubic metric calculator performs a calculation of a time average of power of the amplitude of a transmission signal when a cubic metric value is calculated as a product-sum operation between a transmission power-dependent term including an amplitude value depending on the transmission power of a transmission signal and a time average term including only a modulation parameter not depending on the transmission power of the transmission signal. When the transmission signal is transmitted, the operator inputs the amplitude value to calculate the transmission power-dependent term, reads the value of the time average term from coefficient memory, and performs the product-sum operation using an operation result of the transmission power-dependent term and the read value of the time average term, thereby calculating a time average of the power of the amplitude of the transmission signal.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: October 30, 2012
    Assignee: Fujitsu Limited
    Inventors: Akira Ito, Takashi Dateki, Masahiko Shimizu
  • Patent number: 8287431
    Abstract: When shifting an automatic transmission into a higher gear, it is determined that an inertia phase has started when an input rotation speed of the automatic transmission has started to decrease. Here, if throttle opening amount reduction control is being performed to reduce the output torque of the engine when it is determined that the inertia phase has started, it is highly likely that that determination is erroneous because that control causes the input rotation speed of the automatic transmission (i.e., the engine speed) to decrease. When it is highly likely that the determination that the inertia phase has started is erroneous in this way, learning of a hydraulic pressure command value is prohibited. As a result, erroneous learning of the hydraulic pressure command value can be prevented.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobufusa Kobayashi, Toshio Sugimura, Tomohiro Asami, Takaaki Tokura, Yoshio Hasegawa
  • Publication number: 20120253601
    Abstract: A bicycle component control apparatus is basically provided with a power supply sensor and a controller. The power supply sensor detects a power level of a power supply being supplied from the power supply to two electrical bicycle components. The controller operates the two electrical bicycle components in response to receiving at least one signal from at least one input member. The controller operates the two electrical bicycle components at different starting times while the power level is below a prescribed power level. The controller is configured to simultaneously operate the two electrical bicycle components while the power level is above the prescribed power level.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: SHIMANO INC.
    Inventors: Tadashi ICHIDA, Toyoto SHIRAI, Yoshiyuki KASAI, Ryuichiro TAKAMOTO
  • Publication number: 20120253600
    Abstract: A bicycle component control apparatus is basically provided with a controller and a detecting member. The controller is configured to control an operation of an electrical bicycle component by selectively outputting a control parameter. The detecting member detects an electrical connecting state between the controller and a manually operated input member for changing a setting of the electrical bicycle component. The controller outputs a predetermined control parameter based on the electrical connecting state.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: SHIMANO INC.
    Inventors: Tadashi ICHIDA, Toyoto SHIRAI
  • Publication number: 20120232765
    Abstract: Method and apparatus for an electronic override of the brake shift interlock in a motor vehicle can provide for the vehicle to be manually pushed while it is parked without keys. A timed window is initiated upon detection of a parked state of the vehicle with its transmission in a park position and ignition key removable or removed. Selection of an out-of-park position is inhibited. The invention monitors activation of the brake pedal during the timed window. Override of the brake shift interlock is enabled while the brake pedal is activated during the timed window, thereby allowing selection of an out-of-park shifter position. The timed window ends after a predetermined time or event (e.g., after the driver's door is opened) to inhibit any further shifter movement from the park position until the next ignition key-cycle.
    Type: Application
    Filed: January 18, 2010
    Publication date: September 13, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Patrick K. Holub, John R. Van Weimeersch, Steven Y Schondorf, George F. MacDonald, Johannes Huennekens, Graham Mace
  • Patent number: 8265843
    Abstract: A control system and method for an electromagnetic clutch brake, including an electromagnetic clutch brake actuator coil surrounding a power input shaft for a multiple-ratio transmission in a vehicle powertrain. A protective circuit of the control system normally monitors data inputs from a databus that may indicate conditions that are not favorable for clutch brake actuation. The protective circuit prevents actuation of the clutch brake under such conditions. In the event the data inputs are not available from the databus, the protective circuit permits operation in a fall-back mode in which a brake ON timer is checked prior to clutch brake actuation. A primary counter is incremented with each normal clutch brake actuation and a secondary counter is incremented with each fall-back clutch brake actuation.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: September 11, 2012
    Assignee: Eaton Corporation
    Inventors: Michael J. Hornbrook, Yeidei Wang
  • Patent number: 8265840
    Abstract: A control device for an automatic transmission is disclosed wherein a shift point depending on a variation in vehicle acceleration is modified on a real time basis in accordance with not only a corrected result on a shift point depending on piece-to-piece variations of automatic transmissions, but also actual acceleration for shortening a time required for learning with high precision with no need to be matched. Shift point real-time modifying means is provided for modifying the altered shift point based on a value of a ratio between a value of actual engine-rotation acceleration at an upshift-determining timing during a power-on running and a value of reference engine-rotation acceleration obtained by substituting a value of actual engine-rotation acceleration to a value for a reference running state having no impact on acceleration of a vehicle, and a target maximum engine rotation speed.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: September 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Watanabe, Masato Kaigawa, Ichiro Kitaori, Masakazu Owatari
  • Patent number: 8229637
    Abstract: A shift controller for a motor vehicle includes an electric motor configured to rotate a shift drum associated with a transmission. An oil temperature sensor is configured to detect temperature of lubricating oil for the transmission. A controller is configured to control the electric motor. The controller controls the electric motor to operate in a preset first motor duty until a first predetermined time elapses after operation of the electric motor is started when the shift drum is turned from a first predetermined position to a second predetermined position. The controller is also configured to operate the electric motor in a second motor duty calculated based upon oil temperature after the first predetermined time elapses.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaki Kobayashi, Kenichi Machida, Eiji Kittaka, Seiji Hamaoka
  • Patent number: 8229636
    Abstract: A method and unit for shifting gear in a power-assist transmission; to shift gear, a series of operations are performed in sequence, and each of which must be completed prior to completion of the next operation; for each operation, a predicted time delay is estimated corresponding to the time lapse between the instant the operation is commanded and the instant the operation is actually completed; and the operations are commanded successively as a function of the predicted delay times, so that an operation is commanded before the preceding operation has actually been completed.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 24, 2012
    Assignee: Ferrari S.p.A.
    Inventors: Franck Baldet, Luca Poggio, Amedeo Visconti
  • Patent number: 8224536
    Abstract: The method according to the invention for shift point control in automatic transmissions by means of an electronic control device, which receives a performance requirement value and the vehicle speed as input signals and triggers up-shifts and down-shifts, by means of a functional module. The functional module controls the shift point, by using characteristic shift curves stored in the control device as a function of the performance requirement value and the vehicle speed. When predetermined operating conditions apply, a speed range is defined below a defined vehicle speed, in which range an instantaneous down-shift is performed, which is independent of the currently applicable characteristic shift curve. As soon as the performance requirement value or an operating value proportional to the performance requirement value falls below a threshold, an up-shift subsequent to the down-shift is delayed by a first predetermined time period after the instantaneous down-shift.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: July 17, 2012
    Assignee: Beyerische Motoren Werke Aktiengesellschaft
    Inventors: Markus Pfisterer, Arman Kara
  • Patent number: 8222997
    Abstract: Disclosed herein is a method of preventing collisions between readers in an RFID system. The method includes a first step of RFID readers selecting transmitting channels by examining channels, a second step of transmitting signals via the selected transmitting channels, a third step of receiving signals via channels having the same frequencies as the selected transmitting channels; a fourth step of determining whether a collision has occurred by examining the status of the signals that are received via the transmitting channels; a fifth step of, if, as a result of the determination at the fourth step, it is determined that a collision between the readers has occurred, repeating the first to fourth steps after delays of random time periods based on a predetermined equation, and a sixth step of, if, as a result of the fourth step, no collision between readers is detected, communicating with the corresponding RFID tags.
    Type: Grant
    Filed: January 7, 2007
    Date of Patent: July 17, 2012
    Assignee: KT&C Co., Ltd.
    Inventor: Kwang-Yoon Shin
  • Patent number: 8219290
    Abstract: When a gear change has been decided, the coil resistance value of a motor which manipulates the transmission is measured. The coil temperature of the motor is estimated from the measured coil resistance value of the motor. In a case where the estimated coil temperature of the motor has been decided to be a predetermined temperature or above, the speed change inhibition time period of the transmission is calculated, and the speed change of the transmission is inhibited during the calculated speed change inhibition time period.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 10, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yasufumi Ogawa, Shiro Yonezawa, Takeru Okabe, Osamu Ishikawa, Tomohisa Shoda, Nozomu Kamioka, Masaki Horii
  • Patent number: 8219293
    Abstract: In gear shift control apparatus and method for an automatic transmission, a first frictional engagement element is, in turn, released, a second frictional engagement element is, in turn, engaged to perform the gear shift to another gear stage, a command hydraulic pressure to the second frictional engagement element is temporarily reduced when a parameter indicating a degree of progress of the gear shift detected during the gear shift to the other gear stage has reached to a predetermined value representing an inertia phase finish immediate prior region at a time of an inertia phase developed during a replacement gear shift, an reduction quantity of the command hydraulic pressure is set whenever a predetermined time has elapsed on a basis of the parameter detected whenever the predetermined time has elapsed in the inertia phase finish immediate prior region to progressively reduce the command hydraulic pressure.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 10, 2012
    Assignee: Jatco Ltd
    Inventors: Osamu Sato, Seiji Okazaki, Goh Endo
  • Publication number: 20120173102
    Abstract: The present invention relates to a method for determination of one or more shift points for a gearbox in a motor vehicle which comprises an engine connected to, in order to drive, said gearbox, where a shift point represents an engine speed at which said gearbox is adapted to effecting a downshift or upshift, said one or more shift points are determined on the basis of an engine target speed ?T and a first engine speed difference ??TT, said target speed ?T is a desired speed for said engine, said first engine speed difference ??TT is a difference between a first engine speed at a first time t1 and said target speed ?T at a second time t2, and said first and second times t1 and t2 are separated by a time period T. The invention relates also to a system, a motor vehicle, a computer programme and a computer programme product thereof.
    Type: Application
    Filed: September 10, 2010
    Publication date: July 5, 2012
    Inventors: Fredrik Swartling, Anders Kjell, Tom Nystrom
  • Patent number: 8214118
    Abstract: A control apparatus for an automatic transmission including an automatic speed change mechanism that has an input shaft connected to a drive source, an output shaft connected to driving wheels, and a plurality of friction engagement elements, and that performs a shifting operation among a plurality of shift speeds by changing engagement/disengagement states of the plurality of friction engagement elements.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: July 3, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Shinichiro Murakami, Masaki Nishide, Tatsuya Oba
  • Publication number: 20120150401
    Abstract: A system for control of a gearbox: At least one control unit controls the gearbox in a motor vehicle which comprises an engine connected to drive the gearbox. The system responds to receiving an indication by choosing for the gearbox a gear among various possible gears which causes the engine to reach a desired speed ?KD in a shorter time than with any other gear from among the various possible gears. Also, a method, a motor vehicle, a computer program and a computer program product thereof for performing the method are disclosed.
    Type: Application
    Filed: September 10, 2010
    Publication date: June 14, 2012
    Inventors: Fredrik Swartling, Mikael Oun
  • Patent number: 8190340
    Abstract: In a shift control device for an automatic transmission according to this invention, when the engine load increases such that a shift to a first gear position on a low speed side of a current gear position is required, control is performed to calculate an estimated vehicle speed following the elapse of a time required to shift to the first gear position and set a second gear position from the estimated vehicle speed and the engine load on the basis of the shift map. When the first gear position is on the low speed side of the second gear position, a shift is performed to a gear position on a high speed side of the first gear position.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: May 29, 2012
    Assignee: JATCO Ltd
    Inventor: Naohiro Yamada
  • Patent number: 8165766
    Abstract: A method for controlling a vehicles drivetrain including an engine and automatic transmission, such that transmission ratios are shifted within a range of transmission ratios in a continuous and/or stepped manner as function of preset target speeds that are adjustable via a vehicle speed control and actual vehicle inclinations in relation to the vehicles longitudinal axis. When the actual speed of the vehicle differs from a preset threshold speed, a request to change an actual ratio of the transmission is generated, if it has been determined that the output torque is smaller than a threshold value or an output torque required to adjust the preset threshold speed of the vehicle. The ratio of the transmission is shifted so the torque applied to the output is modified toward the output torque required to adjust the threshold speed.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 24, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Norbert Müller, Franz-Josef Schuler, Clemens Kuhn