Volume Of Flow, Speed Of Flow, Volume Rate Of Flow, Or Mass Rate Of Flow Patents (Class 73/1.16)
  • Publication number: 20150020570
    Abstract: A device for determining a gas mass flow rate includes a first sensor unit comprising at least one first temperature measuring element and a first heating element. A second senor unit comprises at least one second temperature measuring element and a second heating element. A control unit is configured to adjust the first heating element to a first controlled excessive temperature. The control unit is connected to the second heating element so that the second heating element is adjustable to a second controlled excessive temperature.
    Type: Application
    Filed: January 22, 2013
    Publication date: January 22, 2015
    Applicant: PIERBURG GMBH
    Inventors: Karl Wuebbeke, Lars Baumeister, Dirk Kamarys, Manfred Schrammek
  • Patent number: 8919181
    Abstract: A multiple flow conduit flow meter (200) is provided according to an embodiment of the invention. The multiple flow conduit flow meter (200) includes a first flow conduit (201) conducting a first flow stream and a pair of first pickoff sensors (215, 215?) affixed to the first flow conduit (201). The multiple flow conduit flow meter (200) further includes at least one additional flow conduit (202) conducting at least one additional flow stream and at least one pair of additional pickoff sensors (216, 216?) affixed to the at least one additional flow conduit (202). The at least one additional flow stream is independent of the first flow stream. The multiple flow conduit flow meter (200) further includes a common driver (220) configured to vibrate both the first flow conduit (201) and the at least one additional flow conduit (202) in order to generate a first vibrational response and at least one additional vibrational response.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: December 30, 2014
    Assignee: Micro Motion, Inc.
    Inventors: Charles Paul Stack, Andrew Timothy Patten, Gregory Treat Lanham, Mark James Bell
  • Publication number: 20140366607
    Abstract: An air flow rate adjusting apparatus adjusts an output of an air flow meter based on a dimension of a gap between a back surface of a sensor chip and a bottom surface of a recess of a support plate.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Hidehito TSUJII, Takao Ban
  • Patent number: 8904882
    Abstract: A method and device for determining the flow rate of a flowing medium according to the plummet principle is characterized by a simplified determination of the calibration data sets in that at least one set of calibration data is recorded with at least one reference medium under at least one reference measurement condition. Then, a position of a plummet which is dependent on the flowing medium is determined under a measurement condition which differs from the reference condition. Here, the set of calibration data is converted from the reference measurement condition to the measurement condition, and from a determined position of the plummet, a measure for the flow rate of the medium is then determined.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: December 9, 2014
    Assignee: KROHNE Messtechnik GmbH
    Inventor: Philipp Mertmann
  • Patent number: 8887549
    Abstract: A method is disclosed for determining leakby in a flow controller (100) comprising a flow sensor (102), a flow control valve (106) and electronics (104). The electronics are coupled to the flow sensor, the flow control valve and configured to adjust the flow control valve in response to the signal of the flow sensor indicating the flow rate of the material such that a set flow rate of material through the flow controller is maintained. The steps of the method comprise determining (302) a zero drift (Qdrift) value for the flow sensor (102). Determining (304) a flow rate (Qflow) through the flow controller (100) when the control valve (106) is in the fully closed position. And determining (306) the leakby through the flow controller (100) where the leakby is equal Qflow-Qdrift.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: November 18, 2014
    Assignee: Brooks Instrument, LLC
    Inventors: Jay J. Mendelson, Christopher A. Mazza, Scott Amsbaugh, Gary Francis Conner, Edward T. Fisher
  • Patent number: 8880224
    Abstract: An airflow managing system for monitoring airflow of a HVAC system, a HVAC system and a method of monitoring the airflow in a HVAC system is provided. In one embodiment, the airflow managing system includes: (1) an air pressure sensor configured to obtain an air pressure measurement directly from a scroll of an air blower of the HVAC system and (2) a HVAC controller configured to determine an airflow rate for the HVAC system based on the air pressure measurement and corresponding parameters associated with the air blower.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: November 4, 2014
    Assignee: Lennox Industries Inc.
    Inventors: Erroll L. Eaton, Mark D. Hess, Richard A. Mauk, Stephen A. Walter, David M. Wynnick
  • Publication number: 20140318210
    Abstract: A method for calibrating liquid flow measurements in a printing apparatus that includes a liquid flow line having a flow meter therein comprises the steps of: (a) using a positive displacement liquid pump operable while connected in fluid communication with the flow meter, pumping a liquid at a directly measured, precisely dispensed flow rate through the flow meter; (b) using the flow meter, measuring the volumetric flow rate of a liquid passed through the flow meter; (c) comparing the volumetric flow rate dispensable by the pump to a volumetric flow rate measurable by the flow meter; and (d) modifying the calibration parameters of the flow meter in accordance with the flow rate dispensed from the pump.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 30, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: JAMES DANIEL TREMEL
  • Patent number: 8868357
    Abstract: Temperature compensation is applied to correct for temperature mismatch between a reference chamber and a disposable chamber in a pneumatic pumping system for dialysis fluid for peritoneal dialysis. The mismatch creates an error in the calculation of pumping volume of dialysate fluid. Applying a correction for the temperature mismatch helps to more precisely control the volume of dialysate that is metered to the patient. Also disclosed are ways to keep temperatures constant and to use temperature sensors to accurately measure the temperatures of the chambers. In other aspects, the temperature of the dialysate fluid itself may be measured and used to apply a correction to the volume of fluid that is pumped to the patient.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: October 21, 2014
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Bruce E. Huitt, Douglas E. Vincent, Gideon Hecht
  • Publication number: 20140305184
    Abstract: A technique for calibrating a fluid flow sensor includes generating fluid flow at a first speed. A first temperature of the fluid flow is determined using a first temperature sensor that is positioned upstream of the fluid flow sensor. A first power is supplied to a main heater of the fluid flow sensor to adjust a second temperature of a first plate of the fluid flow sensor to be substantially equal to the first temperature, A second power is supplied to a guard heater of the fluid flow sensor to adjust a third temperature of a second plate of the fluid flow sensor to be substantially equal to a fourth temperature of the first plate. The first and second plates are separated by a spacer and the first speed and the third temperature provide a calibration point on a calibration curve for the fluid flow sensor.
    Type: Application
    Filed: September 30, 2013
    Publication date: October 16, 2014
    Inventors: Arden L. Moore, Katie L. Pizzolato, Carrie Sitten Westmark
  • Publication number: 20140305183
    Abstract: An air-flow sensor is configured to be positioned in an air-flow and attached to a surface in a manner that allows air to flow over an extremity of the sensor. The air-flow sensor includes a base plate, a first heater, a first temperature sensor, a spacer, a second heater, a second temperature sensor, and a cap. The base plate is configured to be the coupled to the surface. The first heater is positioned on the base plate and is configured to heat the base plate. The first temperature sensor is positioned to measure a first temperature of the first heater. The spacer is positioned on the first heater and the second heater is positioned on the spacer. The second temperature sensor is positioned to measure a second temperature of the second heater. The cap is positioned on the second heater, which is configured to heat the cap.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: INTERNATIONAL BUSINESS MACHINES CORPORATION
  • Publication number: 20140298882
    Abstract: A time correlated dual chronometric interpolated prover apparatus with temporal reconciliation assembly is operable for producing signals for selecting a corrected time interval B of the flowmeter output signal for comparison with the time interval A. The temporal reconciliation assembly being configured for detecting a plurality of frequencies of pulses of the flowmeter output signal, and being further configured for selecting the time interval B utilizing the plurality of frequencies. A possible non-limiting embodiment includes the temporal reconciliation assembly being operable for utilizing an anticipated frequency for locating a first pulse.
    Type: Application
    Filed: August 8, 2013
    Publication date: October 9, 2014
    Inventor: GALEN MARION COTTON
  • Patent number: 8852110
    Abstract: The velocity of fluids containing particles that scatter ultrasound can be measured by determining the Doppler shift of the ultrasound scattered by the particles in the fluid. Measuring fluid flow in cylindrical vessels such as blood vessels is an important use of Doppler ultrasound. This invention teaches using various configurations of cylindrical diffraction-grating transducers and cylindrical non-diffraction-grating transducers that suppress the Doppler shift from non-axial components of fluid velocity while being sensitive to the Doppler shift produced by axial velocity components. These configurations thus provide accurate measurement of the net flow down the vessel, even when the fluid flow is curved or not parallel to the vessel wall.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 7, 2014
    Assignee: DVX, LLC
    Inventor: David Vilkomerson
  • Publication number: 20140276346
    Abstract: A shunt including an implantable housing having a proximal end and a distal end. A pressure sensitive valve is contained within the housing at a position between the proximal end and the distal end, and the pressure sensitive valve is capable of controlling a flow of fluid between the fluid inlet port and the fluid outlet port. The shunt further including a sensor assembly fluidly coupled to the pressure sensitive valve, wherein the sensor assembly is mechanically actuated and capable of detecting the flow of fluid through the pressure sensitive valve. A condition of the shunt can be detected by detecting a flow of fluid through the shunt and generating a signal indicative of a period of fluid flow through the implantable shunt based on the detecting. The signal can be output to an external device capable of determining, from the signal, whether the shunt is malfunctioning.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventor: Siddharth Sadanand
  • Patent number: 8826716
    Abstract: One embodiment of an electromagnetic flow rate measurement system includes electromagnetic flowmeters arranged at intervals from one another in the peripheral direction of an annular flow passage 1 in which an electric conductive fluid flows. Each of the electromagnetic flowmeters comprises: an excitation member that has magnets arranged at intervals from one another in the outer peripheral surface of the annular flow passage so as to form a magnetic field in the direction perpendicular to the outer peripheral surface of the annular flow passage; and electrodes that are provided between the magnets of the excitation member and between the magnets of the excitation member so as to measure voltage generated when the electric conductive fluid crosses the magnetic field. The polarities of the magnets at the end portions of the closest excitation members of the adjacent electromagnetic flowmeters are opposed to each other.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: September 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takatoshi Asada, Daigo Kittaka, Yasuko Oyamatsu, Masafumi Komai, Hiroyuki Oota
  • Publication number: 20140230519
    Abstract: A method for correcting offset drift effects of a thermal measurement device (10) which comprises at least one temperature sensor (15a, 15b) arranged at a defined distance from a heating device (12) for a fluid to be measured, for measuring at least one measurement variable describing the temperature and/or temperature profile during operation of the heating device (12), in which a reference measured value (35) is measured at a reference time in a first measurement of the measurement variable with the heating device (12) turned off, in which a drift measured value (36) is measured at at least one later time in a second measurement of the measurement variable with the heating device (12) turned off, and in which a drift correction is carried out during the measurement by using the heating device (12) on the basis of a difference between the drift measured value (36) and the reference measured value (35).
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Applicant: HYDROMETER GMBH
    Inventors: Thomas KLEINER, Philippe PRETRE, Andreas KEMPE, Hans-Michael SONNENBERG
  • Publication number: 20140216126
    Abstract: A device for measuring a fuel flow in a test stand comprises a measuring module (10) for measuring a fuel flow guided through the measuring module (10) as well as a conditioning module (11) arranged downstream of the measuring module (10) for conditioning the fuel. Moreover, a verification module (19) is provided downstream of the measuring module (10) for checking the measuring precision of the measuring module (10). The fuel may be guided optionally to the conditioning module (11) or to the verification module (19). The verification module (19) is an integral part of the device may have an injector (26) as a dosing unit for extracting an exactly defined reference fuel quantity.
    Type: Application
    Filed: March 15, 2012
    Publication date: August 7, 2014
    Applicant: HORIBA EUROPE GMBH
    Inventors: Rainer Thuering, Guenter Hagemann
  • Patent number: 8798943
    Abstract: A measurement device measures a liquid flow discharged from a funnel in a lower branch and/or a side branch. A modelling function is established between liquid flows received with the funnel and/or liquid flows discharged through the lower branch and/or the side branch. In drainability measurement, a sensor measures the flow through a wire out of a measurement chamber at least at two points in time. A processor establishes a parameter descriptive of the drainability from flows measured at the different points in time based on a modelling function stored in a memory.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: August 5, 2014
    Assignee: Metso Automation Oy
    Inventor: Matti-Paavo Sarén
  • Publication number: 20140202228
    Abstract: Motion is induced in a conduit that contains a fluid. The motion is induced such that the conduit oscillates in a first mode of vibration and a second mode of vibration. The first mode of vibration has a corresponding first frequency of vibration and the second mode of vibration has a corresponding second frequency of vibration. At least one of the first frequency of vibration or the second frequency of vibration is determined. A phase difference between the motion of the conduit at a first point of the conduit and the motion of the conduit at a second point of the conduit is determined. A quantity based on the phase difference and the determined frequency is determined. The quantity includes a ratio between the first frequency during a zero-flow condition and the second frequency during the zero-flow condition. A property of the fluid is determined based on the quantity.
    Type: Application
    Filed: February 12, 2014
    Publication date: July 24, 2014
    Applicant: Invensys Systems, Inc.
    Inventor: Michael S. Tombs
  • Patent number: 8757009
    Abstract: Methods and systems for detecting fraud caused by tampering with a fuel flow meter. In one embodiment, the method comprises providing a fuel flow meter for measuring the flow of liquid fuel. The flow meter has at least one shaft supporting a rotor. The method further comprises providing the flow meter with a rotary displacement sensor. Also, the method comprises measuring a first angular position of the shaft upon termination of a first fueling transaction and measuring a second angular position of the shaft upon initiation of a second fueling transaction. Finally, the method comprises comparing data indicative of the first and second shaft angular positions to determine whether fraud has occurred.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 24, 2014
    Assignee: Danaher UK Industries Limited
    Inventor: Michael Lawrence Jennings
  • Patent number: 8757010
    Abstract: A fuel flow meter assembly for detecting fraud caused by tampering. The fuel flow meter assembly includes a fuel flow meter comprising a shaft and a displacement sensor operatively connected to the fuel flow meter shaft for generating information representative of an amount of fuel delivered through the fuel flow meter. At least one transponder is coupled with one of the fuel flow meter shaft and the displacement sensor. At least one interrogator electronics is coupled with the other of the fuel flow meter shaft and the displacement sensor. The at least one interrogator electronics is configured for remote electronic communication with the at least one transponder.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: June 24, 2014
    Assignee: Gilbarco Inc.
    Inventors: Rodger K. Williams, Edward A. Payne, Christopher E. Scott
  • Publication number: 20140137626
    Abstract: A vibratory flow meter (5, 300) is provided. The vibratory flow meter (5, 300) includes a flow meter assembly (10, 310) including at least two vibration sensors (170L and 170R, 303 and 305) that generate at least two vibrational signals and meter electronics (20, 320) that receives the at least two vibrational signals, generate a new time difference (?t) using multiple time difference measurements obtained for a flow material, and determine if the new time difference (?t) is within predetermined bounds of an old time difference (?t0).
    Type: Application
    Filed: June 27, 2011
    Publication date: May 22, 2014
    Applicant: Micro Motion, Inc.
    Inventors: Andrew Timothy Patten, Paul J. Hays, Stephanie A. Lane
  • Publication number: 20140137625
    Abstract: A liquid proving system is provided with a small volume liquid prover draining into a liquid holding tank that has capacity for multiple proving measurements. The small volume liquid prover can either be top-filled or bottom-filled, or exclusively bottom-filled. A liquid holding tank baffle assembly contains saturated vapor from an initial number of fills of the liquid holding tank within the small volume prover to improve overall accuracy of the proving measurements. When liquid is pumped into the prover evaporation of the liquid being pumped into the prover, and release of vapors from the prover, is inhibited due to the saturated vapor environment established by a saturated vapor volume in the prover, which results in a more accurate prover measurement of liquid pumped into the prover.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 22, 2014
    Applicant: Pemberton Fabricatiors, Inc.
    Inventors: Robert M. MURNANE, Jr., Christopher Lewis BRADLEY, Henry Vernon OPPERMANN, Daniel L. CLEMENS
  • Publication number: 20140137627
    Abstract: Systems and methods for the remote testing of a paddle-type flow detector, such as are common in fire protection systems. Specifically, the systems and methods provide for mechanical movement of the vane to test activation of the flow detector under a flow condition, and which measure the amount of time the vane takes to return to the ready position to verify the presence of a paddle on the vane.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Potter Electric Signal Company, LLC
    Inventors: David L. Royse, Richard L. Ulrich, Bruce LaRue, Timothy Decker
  • Publication number: 20140123727
    Abstract: A fluid flow system (300) is provided. The fluid flow system (300) includes a pipeline (302) with a flowing fluid. The fluid flow system (300) further includes a first vibrating meter (5) including a first sensor assembly (10) located within the pipeline (302) and configured to determine one or more flow characteristics, including a first flow rate. A second vibrating meter (5?) including a second sensor assembly (10?) located within the pipeline (302) is provided that is in fluid communication with the first sensor assembly (10) and configured to determine one or more flow characteristics, including a second flow rate. The fluid flow system (300) further includes a system controller (310) in electrical communication with the first and second vibrating meters (5, 5?). The system controller (310) is configured to receive the first and second flow rates and determine a differential flow rate based on the first and second flow rates.
    Type: Application
    Filed: July 7, 2011
    Publication date: May 8, 2014
    Applicant: Micro Motion, Inc.
    Inventors: Joel Weinstein, Paul J. Hays
  • Publication number: 20140122008
    Abstract: In a device and method for measuring a mass flow rate of a fluid, a housing has two hollow pipes communicating with one another and having a fluid inlet and a fluid outlet, an electromagnetic excitation unit excites vibrations in the hollow pipes, two electromagnetic adapters are associated correspondingly with the two pipes and provides signals which are proportional to a speed of vibrations of the pipes of said housing, and an electronic block connected with the electromagnetic excitation unit and with the electromagnetic adapters determines a mass flow rate of a fluid, a correction associated with inclusions in the fluid and constituted by a ratio of a voltage amplitude of the adapters and a voltage amplitude of excitation of vibrations by the electromagnetic excitation unit, and a corrected mass flow rate of the fluid based on the determined mass flow and the determined correction.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: ARGOSY TECHNOLOGIES
    Inventors: Aleksander Dondoshansky, Peter Mouler, Andrei Kaloshin
  • Publication number: 20140116107
    Abstract: A meter electronics (20) for a vibrating meter (5) is provided. The vibrating meter (5) includes a sensor assembly located within a pipeline (301). The sensor assembly (10) is in fluid communication with one or more fluid switches (309). The meter electronics (20) is configured to measure one or more flow characteristics of a fluid flowing through the sensor assembly (10). The meter electronics (20) is further configured to receive a first fluid switch signal (214) indicating a fluid condition within the pipeline (301) from a first fluid switch (309) of the one or more fluid switches. The meter electronics (20) is further configured to correct the one or more flow characteristics if the fluid condition is outside a threshold value or band.
    Type: Application
    Filed: April 27, 2012
    Publication date: May 1, 2014
    Applicant: Micro Motion, Inc.
    Inventors: Joel Weinstein, Aart R Pruysen, Steven M Jones, John Ansdell Houghton
  • Patent number: 8708004
    Abstract: A fueling control system for providing fuel from a vehicle to an aircraft, and a method of providing fuel from a fuel vehicle to an aircraft are disclosed herein. The fueling control system includes a pressure transducer for sensing back pressure in a fluid path to a fuel tank of an aircraft, and a digital controller coupled to the pressure transducer for receiving the back pressure in the fluid path and controlling fuel flow in the fluid path to the aircraft. The method includes the steps of sensing back pressure in a fluid path from the aircraft; receiving the sensed back pressure by a digital controller; and controlling fuel flow to the aircraft in the fluid path based on the sensed back pressure.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 29, 2014
    Inventor: Owen Watkins
  • Publication number: 20140109644
    Abstract: An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs and/or liquid outputs of a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser. The tool may include any number of flow meters, and may also include a flow meter connected to an outlet of a dispenser (22) for providing flow information.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Applicant: ECOLAB USA INC.
    Inventors: Henry L. Carbone, II, Richard J. Mehus, Kevin C. Tauer, Anatoly Skirda, Eugene Tokhtuev, William M. Christensen
  • Patent number: 8695396
    Abstract: A product distribution apparatus, shown in the form of an agricultural air seeder is disclosed having sensors to measure the mass flow through the distribution system, sensors to weigh the tank and the product therein, and sensors to measure the quantity of product in the tank. The sensors are used to measure the change in the quantity of product in the tank during a calibration process where the apparatus is operated over an area and the number of rotations of the meter are recorded. The data is then used to determine a mass flow rate per revolution of the meter. A monitoring method is also disclosed in which an ‘area to empty’ and ‘product needed’ to complete a field or task is displayed to the operator.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: April 15, 2014
    Assignee: Deere & Company
    Inventors: Donald K Landphair, James Z. Liu, Lawrence D. Green, James J. Phelan, Samuel Santiago
  • Patent number: 8671733
    Abstract: A method of calibrating a flow meter is provided. The method initiates with identifying a calibration fluid for a processing fluid. The calibration fluid has physical properties in common with the processing fluid with the exception of an outgassing characteristic. The method includes adding the calibration fluid to a vessel, where the vessel is in fluid communication with the flow meter and a withdrawal unit. The vessel is pressurized and the calibration fluid is withdrawn from the vessel through the flow meter and into the withdrawal unit, where the withdrawing performed by the withdrawal unit. A withdrawal volume per unit time measured by the flow meter is compared to a withdrawal volume per unit time controlled and set through the withdrawal unit.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: March 18, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Jeffrey Chih-Hou Lowe
  • Publication number: 20140069165
    Abstract: An apparatus for electrical inspection is disclosed. The apparatus comprises an inert gas delivery system that delivers inert gas near a microscope imaging element and electrical test probes. A gas supply provides an inert gas such as argon or nitrogen. The inert gas displaces oxygen to prevent premature oxidation of the test probes. In one embodiment, one or more delivery tubes deliver inert gas to the measurement area.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Inventors: Terence Lawrence Kane, Richard Walter Oldrey, Michael P. Tenney
  • Publication number: 20140060147
    Abstract: A method and system are disclosed for verifying the flow rate of gas through a mass flow controller, such as a mass flow controller used with a tool for semiconductor or solar cell fabrication. To verify the mass flow rate measured by the mass flow controller, gas passing through the mass flow controller is also passed through a mass flow meter. The measured flow rate through the mass flow controller is compared to the measured flow rate through the mass flow meter and any difference between the two measured flow rates is determined. Depending upon the magnitude of any difference, the flow of gas to the mass flow controller may be altered.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: ASM IP Holding B.V.
    Inventors: Michael Christopher Sarin, Rafael Mendez, Gregory Bartlett, Eric Hill, Keith R. Lawson, Andy Rosser
  • Patent number: 8656752
    Abstract: A body section having a main channel through which a fluid to be measured flows and sections for shunting the fluid to be measured from the main channel, and a fluid measuring section provided removably from the body section and measuring the flow rate of the fluid to be measured flowing through the main channel based on the detection results of the fluid to be measured introduced from the shunting section. The fluid measuring section is fixed to the body section and shunt ratio data, i.e. the adjustment data about measurement processing inherent to the constitution of the body section, is registered in the fluid measuring section before adjusting measurement processing.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: February 25, 2014
    Assignee: Azbil Corporation
    Inventors: Masanori Anzai, Junichi Matsuda, Manabu Muraoka
  • Patent number: 8640522
    Abstract: Systems and methods for the remote testing of a paddle-type flow detector, such as are common in fire protection systems. Specifically, the systems and methods provide for mechanical movement of the vane to test activation of the flow detector under a flow condition, and which measure the amount of time the vane takes to return to the ready position to verify the presence of a paddle on the vane.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: February 4, 2014
    Assignee: Potter Electric Signal Company, LLC
    Inventors: David L. Royse, Richard L. Ulrich, Donald Bruce LaRue
  • Patent number: 8644993
    Abstract: Integrated, stand-alone, multiple-purpose pump stands are provided for controlled pumping of different liquids from a stand-mounted tank to a downstream use location, e.g., a seed treating device. The pump stands are equipped with an operating assembly including a liquid tank, a powered pump, a liquid flow line equipped with a flow meter from the tank and pump to the use location, and a programmable digital control device. During operation, the control device serves to approach and maintain the flow rate from the pump stand at or about a desired setpoint flow rate.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: February 4, 2014
    Assignee: USC, L.L.C.
    Inventors: Timothy A. Craft, Daniel M. Tramp, Lynn E. Strahm
  • Patent number: 8631680
    Abstract: A flow rate of a fluid in a flow system is determined based on one or more parameters of the flow system, the parameters not including the flow rate itself. The flow rate is also measured with a calibration sensor, and the measured flow rate is used to calibrate how the flow rate is determined.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: January 21, 2014
    Assignee: Thoratec LLC
    Inventors: Andreas Fleischli, Thomas Gempp
  • Publication number: 20130340498
    Abstract: A system of verifying an operation of an electromagnetic flow meter, includes a plurality of comparing modules configured to compare a plurality of parameters respectively obtained from modules of the electromagnetic flow meter with threshold values respectively, to output compared results, and a determining module configured to determine in real time an operation state of a block in the electromagnetic flow meter based on at least one of the compared results output from the plurality of comparing modules.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 26, 2013
    Inventors: Seiji TANABE, Norio YASUDA
  • Patent number: 8590360
    Abstract: A method and an apparatus for diagnosis of a flowmeter are disclosed. The method includes thermally coupling a first sensor unit of the flowmeter to a fluid and thermally coupling a second sensor unit of the flowmeter to the fluid. The method also includes actively heating or cooling the first sensor unit by applying power to the first sensor unit such that its temperature is different from the temperature of the fluid, and simultaneously actively heating or cooling the second sensor unit by applying power to the second sensor unit such that its temperature is different from the temperature of the fluid, and typically from the temperature of the first sensor.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: November 26, 2013
    Assignee: ABB Research Ltd.
    Inventors: Axel Kramer, Daniel Schrag, Detlef Pape, Kai Hencken, Julio Danin Lobo
  • Publication number: 20130298635
    Abstract: The application describes techniques for monitoring the rate of flow of fluid in a conduit (205) using fibre optic distributed acoustic sensing which are especially applicable to flow in oil and gas wells. The techniques also allow for calibration of the position of the channels of a fibre optic distributed acoustic sensor arranged along a fluid carrying conduit. The techniques comprise introducing a first acoustic stimulus (303) travelling in one direction and a second acoustic stimulus (304) travelling in the opposite direction. Flow of the fluid (v) results in a difference in the propagation velocity of the two acoustic stimuli. The first and second acoustic stimuli create a standing wave and the beat effect due to the flow induced wavelength variation is detected and used to determine flow rate. The acoustic stimulus may be introduced to travel through the conduit to provide the first stimulus and to reflect from the end of the conduit and travel back as the second acoustic stimulus.
    Type: Application
    Filed: February 21, 2012
    Publication date: November 14, 2013
    Applicant: OPTASENSE HOLDINGS LIMITED
    Inventor: Alastair Godfrey
  • Publication number: 20130263640
    Abstract: Methods of correlating a monitoring device to the service life of a filter cartridge include providing a monitoring device, and calibrating the monitoring device to correspond to the service life of a filter cartridge. The monitoring device comprises a demand substance within a receptacle, a sensing element with a detection point, a reader for the sensing element, and a fluid delivery device. Calibration includes determining the ratio of the residence time of the monitoring device to the residence time of the filter cartridge, and utilizing the ratio to correlate the response of the sensor within the monitoring device to the service life of the filter cartridge. The response of the sensor is correlated to the service life of the filter cartridge by control of the fluid delivery parameters of the fluid delivery device.
    Type: Application
    Filed: August 31, 2011
    Publication date: October 10, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Neal A. Rakow, Stefan H. Gryska
  • Publication number: 20130253872
    Abstract: A method to calibrate a flow meter includes passing a predetermined volume of fluid through a flow meter for calibration and determining a time duration of calibration from a start time to a stop time. One or more characteristics of the flow rate of the fluid is measured with the flow meter during the time duration and a plurality of time stamped measurements based on the one or more measured flow rate characteristics are generated. The flow meter is then calibrated based on the start time, the stop time, and the plurality of time stamped measurements.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 26, 2013
    Applicant: THERMO FISHER SCIENTIFIC INC.
    Inventors: Anthony Curtis, Soovo Sen, Prakash Mistry, Hai Wang, Michael George Brosseau
  • Publication number: 20130228003
    Abstract: A method and Coriolis mass flowmeter, wherein the Coriolis mass flowmeter includes at least one measurement tube through which a medium flows, at least one exciter system arranged in the central region of the at least one measurement tube which causes the measurement tube to oscillate, and at least two oscillation pick-ups arranged in front of and behind the at least one exciter system. The at least two measurement tubes are additionally each provided with at least one acceleration sensor arranged in front and/or behind the exciter system. An evaluation device is configured to receive acceleration signals from the acceleration sensors and evaluate the acceleration signals to diagnose an asymmetry in the measurement tubes such that fault states, such as deposits in one of the two measurement tubes, blockage of a tube in a flow divider or asymmetrical changes in the ability of the measurement tubes to oscillate, such as due to cracks or fractures, can advantageously be detected.
    Type: Application
    Filed: August 2, 2010
    Publication date: September 5, 2013
    Applicant: Siemens Aktiengesellschaft
    Inventors: Thomas Bierweiler, Martin Borrmann, Allan Juhl Kristensen
  • Patent number: 8511138
    Abstract: A piston prover apparatus, method and system for accurately measuring the flow rate of a fluid by the measurement of the position of an internal piston. The piston can be integrated with a poppet valve arrangement located within a cylinder in order to permit fluid (e.g., cryogenic fluid) to pass through an orifice passage when the piston is drawn to an upstream position prior to proving the flow. An actuator in association with a motor and an encoder can be located inside the cylinder. The motor drives the piston to the upstream position of the cylinder when a proving run is initiated. Once the piston is released for the proving run, the initial and final positions of the piston can be accurately measured along with the transit time.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: August 20, 2013
    Assignee: Honeywell International, Inc.
    Inventors: Christopher Scott Larsen, Brian Krafthefer
  • Patent number: 8504311
    Abstract: A mass flow controller (MFC), a method for calibrating an MFC, and a method for operating an MFC are disclosed. The method for calibrating the MFC includes obtaining data relative to two signals from a thermal mass flow sensor when operating the mass flow controller at different flow rates with a calibration gas, and storing the data relating to the two signals in connection with corresponding flow-rate values. The method for operating the MFC includes obtaining data relative to the two signals from the thermal mass flow controller and accessing the calibration data to determine an unknown flow rate for a process gas that may be the same gas as the calibration gas or may be another gas that is different from the calibration gas.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 6, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Alexei V. Smirnov, Michael J. Zolock
  • Publication number: 20130174635
    Abstract: In a mass flow controller verifying system, there are provided a verifying gas line arranged in parallel to influent flow gas lines and joined into a post-confluent flow gas line, a reference volume calculating portion adapted to calculate a reference volume determined for a specified piping of a gas piping system, a verifying parameter calculating portion adapted to calculate a verifying parameter based on time series data of a measurement pressure measured by a pressure measurement unit during a control of a flow rate by a mass flow controller to be verified, and a comparing portion adapted to compare a reference parameter set based on the reference volume and the verifying parameter, whereby the verifying system can be introduced into an existing gas piping system used in a semiconductor manufacturing process and so forth at a low cost and is capable of verifying a mass flow controller quickly and accurately.
    Type: Application
    Filed: February 27, 2013
    Publication date: July 11, 2013
    Applicant: HORIBA STEC, CO., LTD.
    Inventor: HORIBA STEC, CO., LTD.
  • Publication number: 20130145816
    Abstract: A method of calibrating a flow meter is provided. The method initiates with identifying a calibration fluid for a processing fluid. The calibration fluid has physical properties in common with the processing fluid with the exception of an outgassing characteristic. The method includes adding the calibration fluid to a vessel, where the vessel is in fluid communication with the flow meter and a withdrawal unit. The vessel is pressurized and the calibration fluid is withdrawn from the vessel through the flow meter and into the withdrawal unit, where the withdrawing performed by the withdrawal unit. A withdrawal volume per unit time measured by the flow meter is compared to a withdrawal volume per unit time controlled and set through the withdrawal unit.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Applicant: Intermolecular, Inc.
    Inventor: Jeffrey Chih-Hou Lowe
  • Publication number: 20130145817
    Abstract: A flow sensor with h no moving parts and which is suitable for miniaturization into a probe for fluid measurements in remote, hostile environments. It comprises an isolation torque tube to isolate a high pressure media from an instrument environment. and a highly sensitive disc torque sensor to measure the values of torque generated by flow across a static impeller. A proportionalized electric property signal is transmitted to a value reading station.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 13, 2013
    Inventor: Leroy C. Delatorre
  • Patent number: 8448491
    Abstract: A vibratory flow meter (100) for correcting for an entrained phase in a two-phase flow of a flow material is provided. The vibratory flow meter (100) includes a flow meter assembly (10) including a driver (104) and with the vibratory flow meter (100) being configured to generate a vibrational response for the flow material. The vibratory flow meter (100) further includes and meter electronics (20) coupled to the flow meter assembly (10) and receiving the vibrational response. The meter electronics (20) is configured to generate a measured two-phase density of the two-phase flow using the vibrational response, determine the computed drive power needed by a driver (104) of the flow meter assembly (10), and calculate a density compensation factor using a liquid density of a liquid component of the two-phase flow, an entrained phase density of an entrained phase component, the measured two-phase density, and the computed drive power.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: May 28, 2013
    Assignee: Micro Motion, Inc.
    Inventors: Craig Brainerd Van Cleve, Joel Weinstein
  • Publication number: 20130125612
    Abstract: A method for validating a sensor assembly of a meter is provided. The method comprises a step of receiving one or more sensor calibration values. The method further comprises a step of comparing the received sensor calibration values to one or more known sensor calibration values. The method can then validate the sensor assembly if the one or more received sensor calibration values are within a predetermined tolerance of the one or more known sensor calibration values.
    Type: Application
    Filed: August 27, 2010
    Publication date: May 23, 2013
    Inventors: Paul J Hays, Craig B McAnally
  • Patent number: 8420014
    Abstract: The present invention is directed to a liquid droplet monitoring and measuring apparatus for use with a liquid dispensing system of the type comprising a nozzle having a liquid dispensing tip and means for delivering the dispensed liquid through the nozzle onto a receiving substrate. Further, the invention provides a method of monitoring and measuring the volume of a liquid droplet as it is being dispensed from a liquid dispensing system comprising a nozzle having a dispensing tip. The main use for the invention is in the fields of drug discovery, genomics, medical diagnostics and other life science-related applications. The invention could also be used in other areas for example in the food industry, cosmetic industry or the chemical industry.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 16, 2013
    Assignee: Allegro Research Limited
    Inventors: Igor V. Shvets, Cecilia Franken, Tomasz P. Zawada