With Sensor Housing Patents (Class 73/204.22)
  • Patent number: 11353336
    Abstract: An electronic utility gas meter using MEMS thermal mass flow sensor to meter gas custody transfer and MEMS gas thermal property sensor to compensate the metering values due to gas composition variations is disclosed in the present invention. The meter is designed to have a MEMS mass flow sensor to meter the city utility gas consumption independent of environmental temperature and pressure while a MEMS gas thermal property or dual gas thermal property sensors to compensate the tariff due to the gas composition variations for compliance with the current regulation requirements of tariff and remove the major concerns for the wide deployment of the thermal mass MEMS utility gas meters.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: June 7, 2022
    Assignee: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Patent number: 11262223
    Abstract: A flowmeter is inserted into a main passage through which a target fluid flows. The flowmeter includes a housing, a sub passage, an inlet portion, an outlet portion, a flow rate detector, and a protrusion. The housing includes a side surface and a tip end surface. A part of the target fluid flows into the sub passage from the main passage. The target fluid flows into the sub passage through the inlet portion and flows out of the sub passage through the outlet portion. The flow rate detector is configured to detect a flow rate of the target fluid flowing through the sub passage. The tip end surface includes a first end area and a second end area. The protrusion protrudes from the tip end surface and is located in both the first end area and the second end area.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: March 1, 2022
    Assignee: DENSO CORPORATION
    Inventors: Yuusuke Yoshida, Seiji Yaoko, Kazuaki Ueda, Kengo Ito
  • Patent number: 11175166
    Abstract: A flow meter includes: a flat substrate; a housing that houses the substrate and has an open in at least one surface; a cover that covers the substrate and covers an open surface of the housing; a support that supports the substrate and is in contact with the cover and the substrate; and a fixing unit that connects the substrate and the housing, in which, in a first region and a second region formed by dividing the substrate into two parts at a center in a longitudinal direction, the support is disposed in the first region, and the fixing unit is disposed in the second region.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: November 16, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hiroki Nakatsuchi, Tsutomu Kono, Shinobu Tashiro, Ryotaro Shimada
  • Patent number: 11125595
    Abstract: The flow rate measurement device according to one aspect of the present invention comprises a heating unit for heating a fluid; temperature sensing units that are provided flanking the heating unit in the direction of fluid flow, and that sense the temperature of the heated fluid; a flow rate calculation unit that calculates the flow rate of the fluid on the basis of a sensing signals outputted from the temperature sensing units; angle calculation unit for calculating the tilt angle of the temperature sensing units with respect to a specific reference plane; a storage unit that stores the relation between the flow rate, the tilt angle, and a flow rate correction value; and a flow rate correction unit that corrects the flow rate by using the flow rate correction value stored in the storage unit.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: September 21, 2021
    Assignee: OMRON Corporation
    Inventor: Katsuyuki Yamamoto
  • Patent number: 11073429
    Abstract: A process fluid temperature estimation system includes a mounting assembly that is configured to mount the process fluid temperature estimation system to an external surface of a process fluid conduit. A sensor capsule has at least one temperature sensitive element disposed therein. Measurement circuitry is coupled to the sensor capsule and is configured to detect a characteristic of the at least one temperature sensitive element that varies with temperature and provide sensor capsule temperature information. A high temperature spacer has a known thermal conductivity and is configured to be interposed between the external surface of the process fluid conduit and the at least one temperature sensitive element.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 27, 2021
    Assignee: Rosemount Inc.
    Inventor: Jason H. Rud
  • Patent number: 11067419
    Abstract: Provided is a thermal flowmeter that can achieve both measurement accuracy and antifouling performance with a simple and space-saving passage structure. In the thermal flowmeter of the invention, a housing is disposed in a main passage through which a gas to be measured flows, and the gas to be measured is taken from the main passage into an auxiliary passage provided in a housing, and a flow rate detection unit disposed in the auxiliary passage measures a flow rate of the gas to be measured. The auxiliary passage includes an inlet opening that opens to be inclined with respect to the main flow direction of the gas to be measured flowing through the main passage, and an inclined passage that extends in a direction inclined with respect to the main flow direction of the gas to be measured flowing from the inlet opening through the main passage.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 20, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomoaki Saito, Masayuki Satou, Akira Takasago, Noboru Tokuyasu
  • Patent number: 11054293
    Abstract: The present disclosure relates to a method for producing a probe of a thermal flow meter for measuring the mass flow rate of a medium in a measuring tube, the method having the following steps: introducing a probe core in the form of a material to be melted into a first probe casing, the first probe casing having an open first end and a closed second end facing away from the first end; melting the probe core; quenching the probe core to a temperature below the solidification temperature; attaching a thermoelement to a contact surface of the solidified probe core. The invention also relates to a probe obtained according to the production method and to a flow meter including the probes according to the present disclosure.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 6, 2021
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Stephan Gaberthüel, Alexander Grün, Hanno Schultheis, Tobias Baur, Martin Barth, Anastasios Badarlis, Lars Neyerlin, Martin Arnold, Oliver Popp
  • Patent number: 10944332
    Abstract: Provided is a power converter capable of being miniaturized while securing noise resistance and insulation between a power semiconductor module and a drive circuit board.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 9, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Yoichiro Furuta, Kenichirou Nakajima, Yuta Numakura
  • Patent number: 10928232
    Abstract: The purpose is to improve the measurement accuracy of a thermal air flow meter. The device has: an auxiliary passage for entraining a portion of a fluid being measured; a sensor chip arranged in the auxiliary passage, for measuring the flow rate of the fluid being measured; an electronic component having an internal resistor, for converting the fluid flow rate detected by the sensor chip to an electrical signal; and a substrate on which the sensor chip and the electronic component are mounted. The substrate is covered by a filler material, on the surface of which the electronic component is mounted.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: February 23, 2021
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Masatoshi Ogata, Norio Ishitsuka, Takayuki Yogo, Hiroaki Hoshika
  • Patent number: 10895480
    Abstract: A sensor for measuring the flow rate of a fluid in a flow tube, the sensor comprising sensing means and a sensor body, wherein a portion of the sensing means is located within the sensor body and a first portion of the sensor body is arranged to fasten the sensor body to the flow tube such that the sensor is positioned for sensing the flow rate of the fluid in the flow tube.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 19, 2021
    Assignee: Itron Global SARL
    Inventors: Michel Bottner, Daniel Catherin, Stephane Hyvernat, Anthony Renoud
  • Patent number: 10859416
    Abstract: A sensor for measuring the flow rate of a fluid in a flow tube, the sensor comprising sensing means and a sensor body, wherein a portion of the sensing means is located within the sensor body and a first portion of the sensor body is arranged to fasten the sensor body to the flow tube such that the sensor is positioned for sensing the flow rate of the fluid in the flow tube.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 8, 2020
    Assignee: Itron Global SARL
    Inventors: Michel Bottner, Daniel Catherin, Stephane Hyvernat, Anthony Renoud
  • Patent number: 10861692
    Abstract: A method includes receiving a carrier with a plurality of wafers inside; supplying a purge gas to an inlet of the carrier; extracting an exhaust gas from an outlet of the carrier; and generating a health indicator of the carrier while performing the supplying of the purge gas and the extracting of the exhaust gas.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jen-Ti Wang, Chih-Wei Lin, Fu-Hsien Li, Yi-Ming Chen, Cheng-Ho Hung
  • Patent number: 10768032
    Abstract: The present disclosure relates to a sensor for a thermal flow measuring device, to a thermal flow measuring device, as well as to a method for the manufacture of such a sensor. The sensor includes a sensor thimble, wherein a defined separation of a sensor element from a thimble floor of the sensor thimble is provided by spacers so that a temperature transfer between the sensor and a liquid flowing around the sensor is provided. Thermal contact between the thimble floor and the sensor element is provided by a solder layer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 8, 2020
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hanno Schultheis, Alexander Grün, Stephan Gaberthüel
  • Patent number: 10687443
    Abstract: The invention relates to a control unit (10; 10a to 10d), particularly for vehicle navigation, having a housing (13) that consists of at least two housing elements (11, 12; 61, 65, 72; 75), having at least one circuit carrier (16; 16a; 64; 81) on which at least one heat-generating component (1) is arranged, having a thermal transfer element (30; 61), made of metal, for dissipating the heat generated by the at least one heat-generating component (1), having at least one sensor element (40, 41) that is connected at least indirectly to the at least one circuit carrier (16; 16a; 64; 81), having at least one plug connection body (35), made of plastic, having connection elements (36) for making electrical contact with the at least one circuit carrier (16; 16a; 64; 81), wherein the plug connection body (35) is formed in the region of a frame-like or cover-like housing element (12; 65;75), made of plastic, so as to be integral therewith or as a component that is separate from the housing element (12; 65; 75).
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: June 16, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Martin Rojahn, Matthias Ludwig, Michael Hortig, Thomas Schrimpf, Wolfgang Woernle
  • Patent number: 10673309
    Abstract: An inverter-integrated motor according to the present invention is configured such that an inverter module and a motor are integrated so as to line up in an axial direction of the motor, the inverter module is configured into a single member in which are integrated: a power portion that includes an inverter; and a control portion that includes a microcomputer, and the motor includes: a rotor; a stator; and a pair of housings that include bearings that support a shaft of the rotor.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: June 2, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Satoru Akutsu, Yoshihito Asao
  • Patent number: 10655993
    Abstract: The present invention has been made to improve measurement accuracy of a thermal flow meter. In the thermal flow meter according to the invention, a circuit package (400) that measures a flow rate is molded in a first resin molding process. In a second resin molding process, a housing (302) having an inlet trench (351), a bypass passage trench on frontside (332), an outlet trench (353), and the like are formed through resin molding, and an outer circumferential surface of the circuit package (400) produced in the first resin molding process is enveloped by a resin in the second resin molding process to fix the circuit package (400) to the housing (302).
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: May 19, 2020
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Noboru Tokuyasu, Shinobu Tashiro, Keiji Hanzawa, Takeshi Morino, Ryosuke Doi, Akira Uenodan
  • Patent number: 10627275
    Abstract: A sensor for determining at least one parameter of a fluid medium, in particular an intake air mass flow of an internal combustion engine, flowing through a measuring channel is provided. The sensor includes a sensor housing, in particular a plug-in sensor that is introduced or introducible into a flow tube and in which the measuring channel is formed, and at least one sensor chip situated in the measuring channel for determining the parameter of the fluid medium. The sensor housing includes an electronics compartment for accommodating an electronic module, and an electronics compartment cover for closing the electronics compartment. The electronics compartment cover has electrically conductive properties at least in part. The electronic module is electrically conductively connected to an interior of the electronics compartment cover.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: April 21, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Axel-Werner Haag, Edda Sommer, Hans Beyrich, Reinhold Herrmann, Uwe Konzelmann, Alexander Markov
  • Patent number: 10578062
    Abstract: A system, method and device for mass airflow sensor signal processing includes a microcontroller, a mass airflow sensor and an engine PCM. An analog-to-digital converter (ADC) converts a first output signal from the mass airflow sensor to a first VDC value. A digital-to-analog converter (DAC) converts a second VDC value to a second output signal associated with the mass airflow sensor. Transfer functions are obtained from a flow bench using the mass airflow sensor, performance air intake components, and stock air intake components. The microcontroller determines, from the first VDC value, a corresponding actual flow rate. From the actual flow rate, a corresponding stock VDC value is determined. The stock VDC value is then output to the DAC for conversion to the output second signal associated with the mass airflow sensor for communication to the engine PCM.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: March 3, 2020
    Assignee: NJK Precision LLC
    Inventor: Nikolas James Wolgamott
  • Patent number: 10458825
    Abstract: A thermal flow-rate sensor includes: a first temperature sensor that detects the temperature at a specified location of the outer-wall surface of a pipe; a heat-transfer element that is arranged on the outer-wall surface of the pipe in a state separated from the first temperature sensor, and that exchanges heat with a measurement medium by heating or cooling the outer-wall surface of the pipe; a second temperature sensor that detects the temperature of a portion of the outer-wall surface of the pipe that is heated or cooled by the heat-transfer element; and a control unit that performs specified processing.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: October 29, 2019
    Assignee: DENSO CORPORATION
    Inventors: Yukikatsu Ozaki, Hirohito Matsui, Toshikazu Harada
  • Patent number: 10423172
    Abstract: A device for measuring a volume flow in a ventilation pipe (1) comprises a sensor element (13) disposed on the mounting (8) and configured as a thermal anemometer. Upstream of the sensor element is a turbulence-generating element, which is configured and disposed at a distance from the sensor surface (18.1) such that highly turbulent flow is generated in the region of the sensor surface in a targeted manner. Downstream of the sensor surface is a flow element (20), which widens in the cross-section thereof in the flow direction (L), wherein starting from a height level of the sensor surface a height is reached that is greater than the height of the break-away edge (17.1) opposite the sensor surface.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: September 24, 2019
    Assignee: BELIMO HOLDING AG
    Inventors: Urs Niederhauser, Frank Lehnert, Egli Egli, Phillip Holoch
  • Patent number: 10371552
    Abstract: To improve measurement stability of a flow rate detection unit in a physical quantity detection device, a periphery of a synthetic resin material is provided with a protruding section protruding to a cover side. A physical quantity detection device includes a housing, a front cover fixed to the housing, a circuit board housed in the housing, a flow rate detection unit that detects, in a sub-path, the flow rate of a gas to be measured by being attached to the circuit board, a connecting wire that electrically connects the flow rate detection unit to the circuit board, and a synthetic resin material that seals a connecting wire-included connection portion between the circuit board and the flow rate detection unit, the front cover having a protruding section covering at least a part of the synthetic resin material by protruding into the sub-path.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: August 6, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Takahiro Miki, Hiroaki Hoshika, Takayuki Yogo, Takahiro Yamamoto
  • Patent number: 10330519
    Abstract: In order to reduce a flow rate error over the entire range of a sensor output value even when the relationship between the sensor output value and a flow rate value is poor in linearity, a flow rate sensor correction device includes: a sensitivity setting part adapted to set a sensitivity coefficient on the basis of an initial value and a sensitivity correction value and adjust the sensitivity of the flow rate sensor; a function calculation part adapted to calculate a corrected flow rate characteristic function on the basis of a function correction value, which is determined on the basis of the flow rate value, and a standard flow rate characteristic function; and a function modification part adapted to make a function storage part store, as a flow rate characteristic function, a final flow rate characteristic function based on the corrected flow rate characteristic.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 25, 2019
    Assignee: HORIBA STEC, CO., Ltd.
    Inventor: Hiroyuki Okano
  • Patent number: 10260921
    Abstract: A connection terminal is on a flange of a thermal flow meter. A terminal connection part has a first and a second bent part. The first bent part is bent from a first direction to a second direction. The second bent part has is bent from the first bent part to a third direction. The first and second bent parts are formed such that when connection pin parts of a plurality of the connection terminals and terminal connection parts of the plurality of connection terminals are projected onto a first imaginary plane, an imaginary line L extending along a first direction passing through the projection areas of each of the terminal connection parts of the plurality of connection terminals passes between the projection areas of the connection pin parts from among the connection pin parts of the plurality of connection terminals, that are positioned on both sides.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: April 16, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Jiro Taniguchi, Keiichi Nakada, Yasuhiro Asano, Hiroshi Hirayama, Kazunori Suzuki
  • Patent number: 10190897
    Abstract: The present invention has been made to improve measurement accuracy of a thermal flow meter. In the thermal flow meter according to the invention, a circuit package (400) that measures a flow rate is molded in a first resin molding process. In a second resin molding process, a housing (302) having an inlet trench (351), a bypass passage trench on frontside (332), an outlet trench (353), and the like are formed through resin molding, and an outer circumferential surface of the circuit package (400) produced in the first resin molding process is enveloped by a resin in the second resin molding process to fix the circuit package (400) to the housing (302).
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: January 29, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Noboru Tokuyasu, Shinobu Tashiro, Keiji Hanzawa, Takeshi Morino, Ryosuke Doi, Akira Uenodan
  • Patent number: 10107662
    Abstract: A sensor may include a substrate defining a flow channel that extends through the substrate, and a plurality of bond pads on the substrate. A first housing may be disposed along the substrate and may permit at least some fluid to flow from a fluid inlet to a fluid outlet along at least part of the flow channel. A second housing may be disposed along the substrate. A sense die may be disposed between the second housing and the substrate and may include a sensing side facing the substrate with a sense element in registration with the flow channel and a plurality of bond pads on the sensing side that are in registration with, and bump bonded to, the plurality of bond pads on the substrate. An adhesive or other material may be disposed between the sensing side of the sense die and the substrate.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: October 23, 2018
    Assignee: Honeywell International Inc.
    Inventors: James Cook, Craig S. Becke, Jamie Speldrich
  • Patent number: 10041823
    Abstract: A mass flow controller and mass flow meter are disclosed. The mass flow controller and mass flow meter include a sensor tube configured to transport a fluid, and an upstream heater element and a downstream heater element which are formed of heating resistance wires provided in an outer periphery of the sensor tube. At least one weld terminal is electrically connected to an end of one or more of the heating resistance wires by spot welding material. A temperature difference between the melting point of the weld terminal and a melting point of the heating resistance wires does not exceed 100 degrees Celsius, and one or more coat layer(s) is provided on a surface of the weld terminal.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 7, 2018
    Assignee: HITACHI METALS, LTD.
    Inventor: Akira Sasaki
  • Patent number: 10024701
    Abstract: The present disclosure provides a flow rate measuring device including a first chip, a second chip, and a holding body. The first chip and the second chip are disposed in an intake passage of an internal combustion engine. The first and second chips detect at least one of a flow rate of an intake air and a parameter other than the flow rate. The holding body holds the second chip and protrudes into an inside of the intake passage. The second chip is exposed inside of the intake passage in a state where the second chip is covered by a filter. The holding body includes a resin portion that forms a surface of the holding body. The portion of the filter is inserted into the resin portion. The recessed portion is recessed from a surface of the resin portion. A portion of a first surface of the filter defines a bottom of the recessed portion. The second chip is positioned on a side of a second surface of the filter that is opposite to the first surface.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: July 17, 2018
    Assignee: DENSO CORPORATION
    Inventors: Junzo Yamaguchi, Hironao Yamaguchi
  • Patent number: 10006813
    Abstract: A temperature sensor includes a sensor body and a wedge extension. The sensor body extends from a sensor base to an opposed sensor tip along a longitudinal axis. The sensor body has a leading edge and opposed trailing edge. The sensor body also has an interior flow passage with an inlet for fluid communication of fluid into the interior flow passage and an outlet for exhausting fluid out from the interior flow passage. The wedge extension is on the sensor body between the sensor tip and the sensor base on the leading edge of the sensor body.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: June 26, 2018
    Assignee: Rosemount Aerospace Inc.
    Inventors: Matthew J. T. Gmach, Robert E. Sable, John T. Otto, Scott Wigen
  • Patent number: 9952080
    Abstract: When an exposed part of a semiconductor chip is reduced in size, a tendency of development of a crack on the semiconductor chip is suppressed. A pressure of injection of a resin MR into a second space creates a gap on a contact part SEL where an elastic film LAF and a semiconductor chip CHP1 are in contact, and a resin MR2 different in constituent from the resin MR infiltrates into the gap. As a result, in an area of semiconductor chip CHP1 that is exposed from the resin MR, the resin MR2 is formed in an area other than a flow detecting unit FDU and an area around it. Hence, an area of semiconductor chip CHP1 that is exposed from the resins MR and MR2 can be reduced in size.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: April 24, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Tsutomu Kono, Keiji Hanzawa, Noboru Tokuyasu, Shinobu Tashiro, Hiroki Nakatsuchi
  • Patent number: 9945706
    Abstract: An object of the present invention is to provide a thermal-type air flow meter with a high measurement accuracy by reducing influence of a thermal stress generated in a resistor in an LSI while securing a high positioning accuracy flow rate detection unit.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: April 17, 2018
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Masatoshi Ogata, Norio Ishitsuka, Shinobu Tashiro, Noboru Tokuyasu, Takeshi Morino
  • Patent number: 9938939
    Abstract: An air flow measuring device includes a sensor assembly including a sensor portion and a sensor circuit, which are integrated with each other and configured to measure an air flow quantity. A thermistor is equipped independently from the sensor assembly and configured to measure an air temperature. The sensor circuit of the sensor assembly is equipped to a grounding end terminal in the sensor assembly. One lead wire of the thermistor is joined electrically with the grounding end terminal in the sensor assembly.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: April 10, 2018
    Assignee: DENSO CORPORATION
    Inventor: Teruaki Kaifu
  • Patent number: 9857210
    Abstract: The invention is an apparatus and method for measuring the flow rate of a liquid through a conduit. The apparatus is based on a flow rate meter which is adapted to accurately measure the volumetric flow rate of a liquid using a simple, cost and energy effective, and accurate method using only one temperature sensor. The method is based on applying a pulse of thermal energy to the flowing liquid and measuring the temperature increase as a function of time and energy input. By comparing these measurements to a calibration table made by performing similar measurements for known flow rates, the rate of flow can be determined. One application, which will be described to illustrate the features of the method and apparatus of the invention, is measurement of the flow rate of urine excreted by a catheterized patient.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: January 2, 2018
    Assignee: Renal Sense Ltd.
    Inventors: Jack Yehoshua Mantinband, Michael Adler
  • Patent number: 9857391
    Abstract: A plant water dynamics sensor usable for measuring the dynamics of water flowing in a fine point of a plant such as a distal end of a new branch or a pedicel comprises a heater-equipped temperature probe including a temperature sensor and a heater; a temperature probe including a temperature sensor; an electrical resistance probe including an electrical resistance measurement electrode; and a support that supports the probes while the probes are aligned parallel to each other. The position of a xylem XY can be detected based on an electrical resistance measured at the electrical resistance probe, so that each of the temperature sensors can be arranged correctly in a position at a phloem PH or at the xylem XY. This facilitates attachment of a plant water dynamics sensor and water dynamics in a plant can be measured with high accuracy.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: January 2, 2018
    Assignee: NATIONAL UNIVERSITY CORPORATION KAGAWA UNIVERSITY
    Inventors: Fusao Shimokawa, Hidekuni Takao, Takaaki Suzuki, Tsuyoshi Kobayashi, Ikuo Kataoka
  • Patent number: 9851234
    Abstract: A physical quantity measuring device includes a chip package and a casing. The casing fixedly stores the chip package. The casing includes a first bypass passage allowing a gas to be measured taken from a main passage, to flow in a first measuring unit, and a second bypass passage allowing the gas to be measured taken from the main passage, to flow in a second measuring unit. The chip package is configured to dispose a signal processing unit between the first and second measuring units. The casing has a cooling unit that allows the gas to be measured from the main passage to flow between the first measuring unit and the second measuring unit, and cooling the signal processing unit.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 26, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Yuki Isoya, Hiroaki Hoshika, Takayuki Yogo, Takahiro Miki
  • Patent number: 9829360
    Abstract: An air flow measuring device includes a housing, a sensing part, a temperature sensor, a supporting member, and a protective projection. The housing defines a bypass flow passage which guides a part of air flowing in a duct. The sensing part is disposed in the bypass flow passage to measure a flow rate of air in the bypass flow passage. The sensor detects temperature of air flowing in the duct outside the housing. The supporting member supports the sensor at a predetermined measurement position. The protective projection is a projection, which projects outward from a side surface of the housing and is formed by mold removal in one direction. An end of the protective projection is located outward of the sensor. The protective projection makes contact with an object approaching the sensor from outside the housing to limit contact of the object with the sensor.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: November 28, 2017
    Assignee: DENSO CORPORATION
    Inventors: Akiyuki Sudou, Keisuke Itakura
  • Patent number: 9823107
    Abstract: Embodiments described herein include a system for insulating a flow meter that includes a thermal tube sensor housing. The thermal tube sensor housing may include a housing cavity that holds a sensor tube, a temperature sensor, and a heater for determining a flow rate of a fluid. In some embodiments, the heater imparts thermal energy onto the sensor tube. In some embodiments, the housing cavity additionally holds an insulator for reducing leakage of the heat from the housing cavity. In still some embodiments, the insulator includes a plurality of beads and a binder material.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: November 21, 2017
    Assignee: Alicat Scientific, Inc.
    Inventors: Neil W. Hartman, Colin A. Roberts, Marcus A. Mitchell
  • Patent number: 9804291
    Abstract: Example methods and apparatus for determining fluid parameters are disclosed herein. An example method includes disposing a sensor in a first fluid flow passageway. The sensor has a heater and a temperature sensor. The example method further includes flowing a first fluid into the first fluid flow passageway via a second fluid flow passageway and determining a first fluid property value of the first fluid via the sensor when the first fluid is in the first fluid flow passageway. Based on the first fluid property value, a state of an operation is determined.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 31, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Abdur Rahman Adil, Elena Borisova, Tullio Moscato
  • Patent number: 9778085
    Abstract: A flow rate sensor includes: a housing made from a resin material and having a bottom base portion and a side wall, at least one surface side of the housing being open; a cover made from a resin material, covering the one surface side of the housing, welded to an upper surface of the side wall of the housing, and defining, with the bottom base portion and the side wall of the housing, an auxiliary passage within which a gas to be measured flows that is taken in from a main passage; and a flow rate detection unit disposed within the auxiliary passage. A protruding portion for height control is provided to one of the housing and the cover at least in a vicinity of the side wall around the flow rate detection unit so as to suppress sinking in of the cover during welding.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: October 3, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Satoshi Arai, Shigeharu Tsunoda, Shinobu Tashiro, Akira Uenodan
  • Patent number: 9766220
    Abstract: A method for measuring pollution that includes providing a plurality of analyte sensors arranged in a grid over a sensing area, wherein the analyte sensors measure a pollutant, and positioning at least one current sensor in the sensing area. A pollution source is localized using a pollution source locator including a dispersion model and at least one hardware processor to interpolate a location of a pollution source from variations in current measured from the current sensors and measurements of pollutants from the analyte sensors.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: September 19, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Hendrik F. Hamann, Siyuan Lu, Ramachandran Muralidhar, Theodore G. Van Kessel
  • Patent number: 9752909
    Abstract: A thermal type air flow meter that is capable of suppressing deformation of a base member at the time of molding is disclosed, to thereby secure dimension accuracy and reduce an influence of a dimension change on measuring accuracy. The meter includes a housing member placed in an intake passage of an internal combustion engine, and a base member fixed to the housing member and includes a secondary air passage into which part of air passing through the intake passage flows. The base member is a plate-like resin molded component formed of a synthetic resin material and includes a reinforcing structure integrally formed between a board fixing part to which a circuit board is fixed; and a secondary passage constituting part formed at a leading end part of the board fixing part, the reinforcing structure enhancing strength of the base member.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: September 5, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Takeshi Morino, Chihiro Kobayashi, Yuki Okamoto, Tsutomu Kono
  • Patent number: 9671295
    Abstract: A terminal head, which is provided in a sheath type temperature sensor and is for connecting the sheath type temperature sensor and a cable, is structured such that, in order for replacement of the sheath type temperature sensor to be easily performed and in order to minimize the number of replacement parts, a terminal plate (2) of the terminal head (1) and the sheath type temperature sensor 3 are coupled using a pair of plug-in connectors (4, 5) and the coupling is held by a coupling nut (6). When replacing the sheath type temperature sensor (3), the leads (31) of the sheath type temperature sensor do not need to be detached from and attached to the terminal plate (2) at the replacement worksite, and the only replaced part other than the sheath type temperature sensor (3) is the one connector (5).
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: June 6, 2017
    Assignee: OKAZAKI MANUFACTURING COMPANY
    Inventors: Makoto Terada, Masaru Yamana, Kazuhide Okazaki
  • Patent number: 9658092
    Abstract: An air mass flow meter, includes a housing made of plastic having an electrically insulating effect. A flow channel is formed in the housing. The air mass flow motion also includes a sensor element which is arranged in the housing and detects the air mass flowing in the flow channel. Conductive paths are arranged in the housing and connect the sensor element to connection pins. In order to provide a mass air flow meter which is cost-effective to produce and allows precise measurement of a mass air flow, the entire housing is made of plastic and at least one part of the flow channel has electrostatically dissipative properties.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: May 23, 2017
    Assignee: Continental Automotive GmbH
    Inventors: Rainer Frauenholz, Stephen Setescak
  • Patent number: 9625292
    Abstract: An environment sensor is mounted on a second surface of a circuit board that does not have a wire bonding pad, and is arranged in a measuring chamber that is disposed in a circuit board receiving portion. The measuring chamber has a communication port for communication with a main passage. According to this configuration, process addition attributable to integration between a flow rate measurement device and the environment sensor is not required. The environment sensor does not affect air flow in a bypass passage, and thus detection accuracy of a flow rate detection element that is arranged in the bypass passage does not decline.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: April 18, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichiro Hidaka, Yuji Ariyoshi, Masahiro Kawai, Kazuhiko Otsuka, Naoyuki Kishikawa, Naoki Morinaga
  • Patent number: 9523595
    Abstract: An objective of the present invention is, in a thermal flow meter having a structure including a resin portion formed in the vicinity of a diaphragm structural portion using a mold, to prevent destruction of the diaphragm structural portion at the time of pressing the mold, in a method of manufacturing the thermal flow meter, including: supporting a gas flow measurement element 200 on support members 102b and 111, the gas flow measurement element 200 including a cavity portion 202 surrounded by a substrate inclined portion 202a inclined to a substrate surface, a diaphragm 201 that covers the cavity portion, and an electrical resistive element formed in the diaphragm 201; and covering the gas flow measurement element 200 and the support members 102b and 111 with the resin portion 104 formed with the mold, to set the mold 14 such that an acting portion of pressure force by the mold that molds the resin portion 104 is positioned outside the substrate inclined portion 202a in the entire periphery of the diaphragm
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: December 20, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Norio Ishitsuka, Masatoshi Ogata, Tsutomu Kono, Tsubasa Watanabe, Shinobu Tashiro, Noboru Tokuyasu
  • Patent number: 9482193
    Abstract: A system for rotationally securely plugging a sensor into a through-passage of a flow channel, the sensor including a sensor housing, the through-passage having an inner wall delimiting the through-passage and first and second inside diameters extending respectively along a first axis and a second axis, perpendicular to the first axis, the first inside diameter being greater than the second inside diameter, a plug-in direction of the sensor housing into the through-passage defining a third axis essentially perpendicular to the first and second axis, the sensor housing having a longitudinal extension area along the third axis and being insertable into the through-passage. To ensure rotationally secure assembly of the sensor in its setpoint angular position, at least one protrusion is provided so that the sensor housing, in a plugged-in state, is rotatable in the through-passage by no more than 0.5° about the third axis.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: November 1, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Hans Beyrich, Lutz Westenberger, Torsten Mais
  • Patent number: 9441584
    Abstract: A sensor assembly includes a sensor chip, a circuit board, and a wire holding case. The wire holding case holds a bonding wire, which connects the sensor chip with the circuit board. The wire holding case is inserted in an insertion hole of a case. The wire holding case has a low rigidity portion and a high rigidity portion in an X direction. The low rigidity portion has a space accommodating the bonding wire. The high rigidity portion has a reference surface in contact with an inner periphery of the insertion hole to position the wire holding case in a Y direction. The high rigidity portion has a surface on the opposite side of the reference surface in the Y direction. The surface is biased from a projection, which is formed on the inner periphery of the insertion hole, in the Y direction.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: September 13, 2016
    Assignee: DENSO CORPORATION
    Inventors: Hiroshi Tagawa, Akiyuki Sudou
  • Patent number: 9234817
    Abstract: Dust with various particle diameters entering a bypass passage, particularly, relatively large dust with a particle diameter of 100 to 200 ?m or so, is reliably caused to collide with a first step-shaped part, a second step-shaped part and a plate-like member to be sufficiently decelerated and reach a flow rate detecting device with low collision energy. This can prevent the flow rate detecting device from being damaged by collision of dust. Furthermore, the placement position of the plate-like member is optimized to suppress air turbulence at a flow rate detecting part, which achieves a good balance between flow rate detection accuracy and dust tolerance.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: January 12, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naoyuki Kishikawa, Yuji Ariyoshi, Masahiro Kawai, Hiroyuki Uramachi, Kazuto Akagi
  • Patent number: 9146143
    Abstract: There is disclosed a flow sensor arrangement, comprising a main channel (1) for conveying a fluid, a bypass (2) connected to the main channel (1) for conveying a portion of the fluid supplied in the main channel (1), and a flow sensor (6) for measuring a flow of the fluid portion in the bypass (2). The bypass (2) branches off from the main channel (1) at an angle (?) of less than 90 degrees between an inlet section (21) of the bypass (2) and a supply section (11) of the main channel (1). By such design means, particles can be prevented from entering the bypass (2) by this adversely affecting the measurements.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: September 29, 2015
    Assignee: Sensirion AG
    Inventors: Mark Hornung, Felix Mayer, Claudia Kuttel
  • Patent number: 9091577
    Abstract: Flow sensor assemblies having increased flow range capabilities are disclosed. In one illustrative embodiment, a flow sensor assembly includes a housing with an inlet flow port, an outlet flow port, a fluid channel extending between the inlet flow port and the outlet flow port, and a bypass channel having a pair of taps fluidly connected to the fluid channel at separate locations. A flow sensor for sensing a measure related to a flow rate of a fluid flowing through the fluid channel can positioned in the bypass channel. A pressure differential between the two taps of the bypass channel can drive a fraction of a fluid flowing through the fluid channel through the bypass channel. The flow sensor assembly may be configured to achieve, control, and/or balance a desired fraction of fluid flow through the bypass channel and past the flow sensor.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: July 28, 2015
    Assignee: Honeywell International Inc.
    Inventors: Jamie Speldrich, Lamar Floyd Ricks, Craig Scott Becke, Feng Weichao
  • Publication number: 20150122010
    Abstract: To obtain a thermal flow meter capable of alleviating stress in an axial direction that acts on a lead according to a temperature difference between a proximal end side and a leading end portion side of a measuring portion. An air flow sensing portion 300 according to the present invention includes a bypass passage for flowing a measurement target gas 30 received from a main passage 124, and an air flow sensing portion 602 for measuring a flow rate of the measurement target gas 30 by performing heat transfer with the measurement target gas 30 flowing through the bypass passage via a heat transfer surface, and the thermal flow meter includes a circuit package 400 in which the air flow sensing portion 602 and a lead 514 are sealed by a first resin molding process and a housing 302 forming a part of the bypass passage and fixing the circuit package 400 by a second resin molding process.
    Type: Application
    Filed: May 31, 2013
    Publication date: May 7, 2015
    Inventors: Noboru Tokuyasu, Shinobu Tashiro, Keiji Hanzawa, Tsutomu Kono