Pelargonium Patents (Class 800/311)
  • Patent number: 11464185
    Abstract: The present invention relates to a Pelargonium plant, in particular to a Pelargonium plant which is an interspecific crossing product between the P. hortorum (zonal) and P. peltatum (Ivy) in tetraploid level. There is a range of ploidy levels among Pelargonium type. For example, cutting geraniums are typically tetraploid while seed geraniums are diploid. The present invention relates to a Pelargonium plant, characterized in that said plant has a prostrating basket type growth habit phenotype.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 11, 2022
    Assignee: Syngenta Participations AG
    Inventors: Shifeng Pan, Mitchell E. Hanes
  • Patent number: 11134634
    Abstract: The present invention relates to novel Pelargonium hortorum-interspecific plants having dark red to burgundy or darker pigmented flower petal, qa trailing growth habit, dark leaf color and tolerance to high temperatures, high light and edema. The present invention also relates to methods for creating novel Pelargonium hortorum-interspecific hybrid plants having dark red to burgundy or darker pigmented flower petal, a trailing growth habit and tolerance to high temperatures, high light and edema.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: October 5, 2021
    Assignee: Syngenta Participations AG
    Inventor: Mitchell E. Hanes
  • Publication number: 20140373198
    Abstract: The present invention relates nucleic acid molecules that are modulated (e.g., upregulated) by nitrogen in corn, to proteins or polypeptides encoded by these nucleic acid molecules, and promoters of these nucleic acid molecules. The present invention relates to a nucleic acid construct having a nucleic acid molecule that is modulated by nitrogen in corn, as well as to expression systems, host cells, plants, and plant seeds having the nucleic acid construct. The present invention also relates to a method of expressing the nucleic acid molecule that is modulated by nitrogen in a plant by growing a transgenic plant or a plant grown from a transgenic seed transformed with the construct. The present invention further relates to an isolated DNA promoter that can be used to direct nitrogen-regulated expression of an isolated nucleic acid in plants.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 18, 2014
    Inventors: Patrick S. SCHNABLE, Sudhansu DASH
  • Publication number: 20120198589
    Abstract: A rose is produced in which an introduced gene is only present in a part of the cells thereof, such as cells of the L1 layer of flower petals, but is not present in germ cells such as pollen cells or ovule cells. Since the introduced gene is not propagated to other roses even when this rose is crossed with other roses, the possibility of dispersal of the introduced gene can be completely negated.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 2, 2012
    Applicant: SUNTORY HOLDINGS LIMITED
    Inventors: JUNICHI TOGAMI, EKATERINA MOURADOVA
  • Patent number: 7964405
    Abstract: Method for the production of young plants and/or micro-parent stock of 5 herbaceous ornamentals.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: June 21, 2011
    Assignee: Syngenta Participations AG
    Inventors: Jean-Marc Lainé, Frédéric Marie Devys
  • Publication number: 20110131688
    Abstract: The relationship between F-box proteins and proteins involved in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylene-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant having an altered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described.
    Type: Application
    Filed: January 27, 2011
    Publication date: June 2, 2011
    Inventors: Hongwei Guo, Joseph R. Ecker
  • Publication number: 20100175153
    Abstract: The relationship between F-box proteins and proteins involved in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylene-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant having an altered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described.
    Type: Application
    Filed: December 21, 2009
    Publication date: July 8, 2010
    Inventors: Hongwei Guo, Joseph R. Ecker
  • Publication number: 20100107277
    Abstract: The present invention relates generally to a genetic sequence encoding a polypeptide having flavonoid 3?,5?-hydroxylase (F3?5?H) activity and to the use of the genetic sequence and/or its corresponding polypeptide thereof inter alia to manipulate color in flowers or parts thereof or in other plant tissue. More particularly, the F3?5?H has the ability to modulate dihydrokaempferol (DHK) metabolism as well as the metabolism of other substrates such as dihydroquercetin (DHQ), naringenin and eriodictyol. Even more particularly, the present invention provides a genetic sequence encoding a polypeptide having F3?5?H activity when expressed in rose or gerbera or botanically related plants. The instant invention further relates to antisense and sense molecules or RNAi-inducing molecules corresponding to all or part of the subject genetic sequence or a transcript thereof. The present invention further relates to promoters which operate efficiently in plants such as rose, gerbera or botanically related plants.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 29, 2010
    Applicant: INTERNATIONAL FLOWER DEVELOPMENTS PTY. LTD.
    Inventors: Filippa BRUGLIERA, Yoshikazu TANAKA, John MASON
  • Publication number: 20090307801
    Abstract: Disclosed are novel genetically modified plant cells wherein a SHI (short internodes) family gene is integrated into the nuclear genome. Also disclosed are plant cells where a SHI antisense gene is integrated or plants including heterologous expression control of autologous SHI genes. The plant cells confer novel phenotypes upon plants incorporating the SHI family gene. The invention also discloses transgenic plants and methods for plant production, where the plants are dwarfed, but exhibit normal or increased flower set after induction of flowering with GA. The plants of the invention are obtained without use of any growth retardants.
    Type: Application
    Filed: June 19, 2006
    Publication date: December 10, 2009
    Applicant: Kobenhavens Universitet
    Inventor: Lilli Sander Jensen
  • Publication number: 20090178157
    Abstract: Disclosed are proteins, and nucleic acids encoding such proteins, involved in or associated with cell proliferation, senesence, differentiation, development, and stress response in plants. Also disclosed are uses for such proteins.
    Type: Application
    Filed: October 15, 2008
    Publication date: July 9, 2009
    Inventor: Bret Cooper
  • Publication number: 20090036307
    Abstract: The present invention provides compositions and methods for killing or suppressing growth of Gram-negative bacteria that infect, infest or cause disease in plants, including pathogenic, saprophytic and opportunistic microbes that cause disease in plants and food borne illness in people or in animal feed.
    Type: Application
    Filed: July 21, 2008
    Publication date: February 5, 2009
    Inventors: Dean W. Gabriel, Joseph D. Reddy
  • Publication number: 20090013433
    Abstract: This invention provides recombinant cells and transgenic plants that display selectively increased or decreased response to brassinosteroids, resulting in increased yield. Methods of modulating brassinosteroid responses, and of modulating plant phenotypes, are provided.
    Type: Application
    Filed: January 9, 2008
    Publication date: January 8, 2009
    Applicant: The Salk Institute for Biological Studies
    Inventors: Xuelu Wang, Joanne Chory
  • Publication number: 20090007301
    Abstract: The invention provides novel regulatory polynucleotide sequences useful in plant genetic engineering applications, e.g., polynucleotides having transcriptional promoter or terminator activity, are provided. The invention also provides novel gene and polypeptide sequences, for example, genes corresponding to pineapple carotenoid biosynthesis proteins, e.g., carotenoid isomerase (ISO), phytoene synthase (PSY) and lycopene ?-cyclase (LYC), which find use in producing plants with improved traits, e.g., improved nutritional value. In addition, related nucleic acids, e.g., vectors, and transformed plants that include one or more of these polynucleotides or polypeptides are also provided, as are related methods for producing such compositions.
    Type: Application
    Filed: April 17, 2006
    Publication date: January 1, 2009
    Inventors: Hsu-Ching Chen Wintz, Ebrahim Firoozabady
  • Publication number: 20080317881
    Abstract: The present invention relates to constructs and methods for improving expression of transgenes in plants, animals and humans.
    Type: Application
    Filed: May 9, 2008
    Publication date: December 25, 2008
    Applicant: Devgen N.V.
    Inventor: Bert Wim Oosthuyse
  • Publication number: 20080235824
    Abstract: Expression of esterase genes in plant cells results in the production of enzymatically active esterases that effectively resists the otherwise growth inhibitory and/or lethal effects of nonionic, fatty acid ester detergents such as Tween 20 or Span 20. Specifically, expression of a variety of esterases, including pregastric esterase, carboxyesterase, lipase and acyloxyacyl hydrolase from a wide variety of sources in plant cells is disclosed as an excellent method to protect the cells from the effects of these detergents, allowing the exposed plant cells to regenerate into whole plants in the presence of nonionic, fatty acid ester detergents, thereby providing a practical and safe method for plant transformation.
    Type: Application
    Filed: December 17, 2007
    Publication date: September 25, 2008
    Inventors: Dean W. GABRIEL, Joseph D. REDDY
  • Patent number: 6610909
    Abstract: A process for commercially propagating plants by tissue culture in such a way as both to conserve desired plant morphology and to transform the plant with respect to one or more desired genes. The method includes the steps of (a) creating an Agrobacterium vector containing the gene sequence desired to be transferred to the propagated plant, preferably together with a marker gene; (b) taking one or more petiole explants from a mother plant and inoculating them with the Agrobacterium vector; (c) conducting callus formation in the petiole sections in culture, in the dark; and (d) culturing the resulting callus in growth medium containing a benzylamino growth regulator such as benzylaminopurine or, most preferably, benzylaminopurineriboside. Additional optional growth regulators including auxins and cytokinins (indole butyric acid, benzylamine, benzyladenine, benzylaminopurine, alpha naphthylacetic acid and others known in the art) may also be present.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: August 26, 2003
    Assignee: Penn State Research Foundation
    Inventors: Wendy Oglevee-O'Donovan, Richard N. Arteca, Jeannette Arteca, Eleanor Stoots
  • Patent number: 6291746
    Abstract: Diploid Pelargonium peltatum plants containing a factor resulting in male sterility and/or in their petals at least one of the anthocyanidins pelargonidin and paeonidin, and which may be propagated by seed, as well as the introduction of said characteristics into Pelargonium peltatum using plant breeding and tissue culture techniques.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: September 18, 2001
    Assignee: Syngenta Seeds B.V.
    Inventors: Gerardus Cornelius Maria Bentvelsen, Henricus Godefriedus Wilhelmus Stemkens, Pieter Tjeertes
  • Patent number: 6235974
    Abstract: The present invention relates to a method of imparting pathogen resistance to plants. This involves applying a hypersensitive response elicitor polypeptide or protein in a non-infectious form to a plant seed under conditions where the polypeptide or protein contacts cells of the plant seed. The present invention is also directed to a pathogen resistance imparting plant seed. Alternatively, transgenic plant seeds containing a DNA molecule encoding a hypersensitive response elicitor polypeptide or protein can be planted in soil and a plant can be propagated from the planted seed under conditions effective to impart pathogen resistance to the plant.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: May 22, 2001
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Dewen Qiu, Zhong-Min Wei, Steven V. Beer
  • Patent number: 6228644
    Abstract: The present invention is directed to an isolated protein or polypeptide which elicits a hypersensitive response in plants as well as an isolated DNA molecule which encodes the hypersensitive response eliciting protein or polypeptide. This isolated protein or polypeptide and the isolated DNA molecule can used to impart disease resistance to plants, to enhance plant growth, and/or to control insects on plants. This can be achieved by applying the hypersensitive response elicitor protein or polypeptide in a non-infectious form to plants or plant seeds under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: May 8, 2001
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Adam J. Bogdanove, Jihyun Francis Kim, Zhong-Min Wei, Steven V. Beer