Probes, Their Manufacture, Or Their Related Instrumentation, E.g., Holders (epo) Patents (Class 850/40)
  • Patent number: 8393009
    Abstract: A sensor for scanning a surface with an oscillating cantilever (12), made from piezoelectric material that is suitable for a transverse oscillation of the free end of a beam, holding an electrically conductive probe tip (14) on the free end of the beam in transverse direction, a first deflection electrode (26A, 26B) and an inversely phased second electrode (28A, 28B, 28C) being provided to collect charges that are separated within the space of the deflection electrodes (34, 36). The cantilever (12) is provided with at least one electrode (30) in addition to the deflection electrodes (26A, 26B, 28A, 28B, 28C) that provides electrical contact to the tip (14), the at least one additional electrode being located in a region on the deflecting beam where the surface charge density due to the strain caused by beam deflection (34, 36) is smaller than in the region where the deflection electrodes are located.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 5, 2013
    Inventor: Franz Josef Giessibl
  • Patent number: 8387160
    Abstract: A resist medium in which features are lithographically produced by scanning a surface of the medium with an AFM probe positioned in contact therewith. The resist medium comprises a substrate; and a polymer resist layer within which features are produced by mechanical action of the probe. The polymer contains thermally reversible crosslinkages. Also disclosed are methods that generally includes scanning a surface of the polymer resist layer with an AFM probe positioned in contact with the resist layer, wherein heating the probe and a squashing-type mechanical action of the probe produces features in the layer by thermally reversing the crosslinkages.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michel Despont, Urs T. Duerig, Jane E. Frommer, Bernd W. Gotsmann, James L. Hedrick, Craig Jon Hawker, Robert D. Miller
  • Patent number: 8381311
    Abstract: The invention relates to a method and to a device for examining a test sample using a scanning probe microscope. According to the method a first and a second measurement using a scanning probe microscope are carried out on the test sample using a measuring probe system in which a measuring probe and another measuring probe are formed on a common measuring probe receptacle. During the first measurement, in relation to the test sample, the measuring probe is held in a first measurement position and the other measuring probe is held in another non-measurement position, and the test sample is examined with the measuring probe using a scanning probe microscope. After the first measurement, by displacing in relation to the test sample, the measuring probe is displaced from the measurement position into a non-measurement position and the other measuring probe from the other non-measurement position into another measurement position.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: February 19, 2013
    Assignee: JPK Instruments AG
    Inventor: Torsten Jähnke
  • Patent number: 8371184
    Abstract: Measurement apparatus having a cantilever and a fluid flow channel, the cantilever being positioned in the channel so that it projects in a direction parallel to the direction of fluid flow. In an associated method, the cantilever is positioned in a fluid flow channel such that the cantilever extends parallel with the direction of fluid flow in the channel. Fluid is caused to flow in the channel at a known velocity. The resonant frequency of the cantilever is measured at one or more velocities of fluid flow and calculating the spring constant of the cantilever using the measured resonant frequency or frequencies. If the spring constant of the cantilever is known, the measurement of resonant frequency of the cantilever is used to determine the velocity of the fluid flow.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: February 12, 2013
    Assignee: The University Court of the University of St. Andrews
    Inventors: Georg Haehner, Gennady Lubarsky
  • Patent number: 8370960
    Abstract: A modular AFM/SPM which provides faster measurements, in part through the use of smaller probes, of smaller forces and movements, free of noise artifacts, that the old generations of these devices have increasingly been unable to provide. The modular AFM/SPM includes a chassis, the foundation on which the modules of the instrument are supported; a view module providing the optics for viewing the sample and the probe; a head module providing the components for the optical lever arrangement and for steering and focusing those components; a scanner module providing the XYZ translation stage that actuates the sample in those dimensions and the engage mechanism; a isolation module that encloses the chassis and provides acoustic and/or thermal isolation for the instrument and an electronics module which, together with the separate controller, provide the electronics for acquiring and processing images and controlling the other functions of the instrument.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: February 5, 2013
    Assignee: Asylum Research Corporation
    Inventors: Roger Proksch, Mario Viani, Jason Cleveland, Maarten Rutgers, Matthew Klonowski, Daren Walters, James Hodgson, Jonathan Hensel, Paul Costales, Anil Gannepalli
  • Publication number: 20130019351
    Abstract: A high resolution AFM tip is provided which includes an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of the semiconductor cantilever, the semiconductor pyramid having an apex. The AFM tip also includes a single Al-doped semiconductor nanowire on the exposed apex of the semiconductor pyramid, wherein the single Al-doped semiconductor nanowire is epitaxial with respect to the apex of the semiconductor pyramid.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 17, 2013
    Applicants: King Abdulaziz City for Science and Technology, International Business Machines Corporation
    Inventors: Guy M. Cohen, Mark C. Reuter, Brent A. Wacaser, Maha M. Khayyat
  • Patent number: 8347696
    Abstract: A method of forming a microchannel as well as a thin film structure including same is made by forming a first thin film on a side of a substrate, forming a fugitive second thin film on the first thin film such that the second thin film defines a precursor of the elongated microchannel and a plurality of extensions connected to and extending transversely relative to the precursor along a length thereof A third thin film is formed on the first thin film and the fugitive second thin film such that the second thin film resides between the first thin film and the third thin film. A respective access site is formed in a region of the third thin film residing on a respective extension and penetrating to the fugitive second thin film. The fugitive second thin film forming the precursor is selectively removed from between the first thin film and the third thin film using an etching medium introduced through the access sites, thereby forming the microchannel between the first thin film and the third thin film.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: January 8, 2013
    Assignee: Northwestern University
    Inventors: Horacio D. Espinosa, Nicolaie A. Moldovan
  • Publication number: 20120331593
    Abstract: A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicants: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Guy M. Cohen, Mark C. Reuter, Brent A. Wacaser, Maha M. Khayyat
  • Patent number: 8332961
    Abstract: Tips including a platinum silicide at an apex of a single crystal silicon tip are provided herein. Also, techniques for creating a tip are provided. The techniques include depositing an amount of platinum (Pt) on a single crystal silicon tip, annealing the platinum and single crystal silicon tip to form a platinum silicide, and selectively etching the platinum with respect to the formed platinum silicide.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 11, 2012
    Assignee: International Business Machines Corporation
    Inventors: Harish Bhaskaran, Michel Despont, Ute Drechsler, Abu Sebastian
  • Patent number: 8321961
    Abstract: A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 27, 2012
    Assignees: International Business Machines Corporation, King Abdulazlz City for Science and Technology
    Inventors: Guy Cohen, Mark C. Reuter, Brent A. Wacaser, Maha M. Khayyat
  • Patent number: 8312560
    Abstract: The invention relates to a multifunctional scanning probe microscope comprising: a base (1); a preliminary approach unit (3) movably mounted on the base (1); a piezo-scanner (4) disposed on the preliminary approach unit (3); an object holder (5) disposed on the piezo-scanner (4); a sample (6) which comprises a measuring area (M) and is attached to the piezo-scanner (4) with the aid of the object holder (5); a platform (9) attached to the base (1) opposite the sample (6); an analyzer mounted on the platform (9) and comprising a first measuring head (13) which is oriented towards the sample (6) and is adapted for probing the measuring area (M) of the sample (6).
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 13, 2012
    Assignee: NT-MDT Service & Logistics Ltd.
    Inventors: Andrey Bykov, Vladimir Kotov, Viktor Bykov
  • Patent number: 8307461
    Abstract: A microwave probe having a metal tip on the free end of a microcantilever. In one embodiment, a pyramidal pit is isotropically etched in a device wafer of monocrystalline silicon. Oxidation may sharpen the pit. Deposited metal forms the metal tip in the pit and a bottom shield. Other metal sandwiched between equally thick dielectric layers contact the tip and form a conduction path along the cantilever for the probe and detected signals. Further metal forms a top shield overlying the conduction path and the dielectrically isolated tip and having equal thickness to the bottom shield, thus producing together with the symmetric dielectric layers a balanced structure with reduced thermal bending. The device wafer is bonded to a handle wafer. The handle is formed and remaining silicon of the device wafer is removed to release the cantilever.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 6, 2012
    Assignee: PrimeNano, Inc.
    Inventors: Xinxin Li, Yongliang Yang
  • Patent number: 8287745
    Abstract: Disclosed is a method for fabricating a probe tip, capable of preventing a rapid increase of a surface size of a front end of the probe tip as the probe tip is worn out by a frequent contact with a wafer chip and, also, capable of improving the precision of the front end of the probe tip. The method for fabricating a probe tip includes forming a front end of the probe tip on a silicon wafer; forming a first protective layer which is patterned to expose a part of the front end of the probe tip; and forming a body of the probe tip in a portion opened by the pattern of the first protective layer.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 16, 2012
    Assignee: M2N Inc.
    Inventors: Ki Pil Hong, Jong Hyeon Chae, Hac Ju Lee
  • Publication number: 20120260374
    Abstract: Provided are atomic force microscope probes, methods for making probes for use in atomic force microscopes and systems using such probes. The probes include at least a body portion and a cantilever portion. The cantilever portion may include a first surface and a second surface opposite the first surface. The cantilever portion further includes a first material arranged on the first surface, such that the cantilever portion twists about a center axis of the cantilever portion when the cantilever portion is heated. The first material may be arranged symmetrically or non-symmetrically on a portion of the first surface, or it may be arranged non-uniformly over the first surface. The cantilever portion of the probe may also include a second material arranged on the second surface of the cantilever portion. The first and second materials have a different thermal expansion than the material forming the cantilever portion.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Inventor: Michael E. MCCONNEY
  • Patent number: 8256018
    Abstract: Faster and better methods for leveling arrays including software and user interface for instruments. A method comprising: (i) providing at least one array of cantilevers supported by at least one support structure, (ii) providing at least one substrate, (iii) providing at least one instrument to control the position of the array with respect to the substrate, (iv) leveling the array with respect to the substrate, wherein the leveling is performed via a user interface on the instrument which is adapted to have the user input positional information from the motors and piezoelectric extender when at least one cantilever deflects from the substrate. Uniform z-displacements can be achieved.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: August 28, 2012
    Assignee: NanoInk, Inc.
    Inventors: Jason Haaheim, Vadim Val-Khvalabov
  • Patent number: 8250668
    Abstract: A microcantilever system comprising a paddle, its use and a method of simultaneously acquiring the topography and measuring the tip-sample interactions of a sample with it.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: August 21, 2012
    Assignees: Forschungszentrum Karlsruhe GmbH, University of Maryland
    Inventors: Hendrik Hölscher, Santiago De Jesus Solares
  • Patent number: 8245317
    Abstract: A surface shape of a member to be measured is measured by reflecting measuring light at a reflection surface of a probe and utilizing an atomic force exerting between the probe and utilizing an atomic force exerting between the probe and the member to be measured. In addition to a first scanner for driving the probe, a second scanner for moving a focus position of an optical system is provided. Position conversion data representing a correlation between amounts of control of the first scanner and the second scanner are obtained in advance. By synchronously driving the first scanner and the second scanner, the focus position of the optical system is caused to follow the probe to improve measurement accuracy.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: August 14, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Mahito Negishi
  • Patent number: 8239968
    Abstract: An atomic force microscopy system includes an imaging probe having a first thermal displacement constant and a sample placement surface. At least a portion of the sample placement surface has a second thermal displacement constant. The sample placement surface is spaced apart from the imaging probe at a predetermined displacement. The sample placement surface is configured so that the second thermal displacement constant matches the first thermal displacement constant so that when the imaging probe and the sample placement surface are subject to a predetermined temperature, both the portion of the sample placement surface and the imaging prove are displaced by a same distance.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: August 7, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Hamdi Torun, Fahrettin L. Degertekin, Ofer Finkler
  • Patent number: 8214917
    Abstract: A microfluidic cell includes a compressible block and a cantilever. The compressible block includes a first horizontal surface, an opposite second horizontal surface and a plurality of vertical surfaces therebetween. A gasket structure depends downwardly from the second horizontal surface. The gasket structure defines an open cavity therein. The compressible block defines a fluid inlet passage and a fluid outlet passage each in fluid communication with the cavity and opening to a selected one of the first horizontal surface and one of the plurality of vertical surfaces. The cantilever includes body portion and a beam extending laterally therefrom. The body portion is embedded in the compressible block and a portion of the beam extends into the cavity defined by the gasket structure.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 3, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Todd A. Sulchek, Siping Roger Qiu, Damien J. Noga, David K. Schoenwald
  • Patent number: 8214916
    Abstract: Better leveling procedures for patterning at the small scale including the nanoscale. A method comprising: providing at least one array of cantilevers comprising tips thereon, wherein the cantilevers comprise at least one relatively bright spot, or at least two relatively bright spots, near the tip upon viewing, providing a substrate, leveling the array and the substrate with respect to each other, wherein the relatively bright spot near the tip is viewed to determine a contact of the tip and substrate.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: July 3, 2012
    Assignee: NanoInk, Inc.
    Inventors: Nabil A. Amro, Raymond Sanedrin
  • Patent number: 8205268
    Abstract: Improved actuation device useful in direct-write nanolithography and imaging including use of a pivot point for downward deflection of a cantilever with long travel path. A device comprising at least one holder, at least one cantilever, an extension of the said cantilever wherein the extension is integrated with an actuator, wherein the cantilever is adapted for actuated movement. The actuator can be electrostatic, thermal, or piezoelectric. The cantilever can comprise a tip, and material can be transferred from the tip to a surface.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 19, 2012
    Assignee: NanoInk, Inc.
    Inventor: Raymond Roger Shile
  • Patent number: 8166568
    Abstract: It is an object to provide a contact probe pin for a semiconductor test apparatus, including an amorphous carbon type conductive film formed on the probe pin base material surface. The conductive film is excellent in tin adhesion resistance of preventing tin which is the main component of solder from adhering to the contact part of the probe pin during contact between the probe pin and solder. The contact probe pin for a semiconductor test apparatus, includes an amorphous carbon type conductive film formed on the conductive base material surface. The amorphous carbon type conductive film has an outer surface with a surface roughness (Ra) of 6.0 nm or less, a root square slope (R?q) of 0.28 or less, and a mean value (R) of curvature radii of concave part tips of the surface form of 180 nm or more, in a 4-?m2 scan range by an atomic force microscope.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 24, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Hirotaka Ito, Kenji Yamamoto
  • Publication number: 20120096602
    Abstract: The present invention includes an apparatus that holds the probes to a solid support throughout the passages of the functionalisation process, thus avoiding user-dependent breakage or damage of the fragile AFM cantilevers. The apparatus allows the tips of the AFM probes to be placed face-down, which avoids the deposition of contaminants on their functional side. The device also allows functionalising the tips with small liquid volumes and cleaning. The present invention includes a functionalisation process preventing non-specific adsorption of molecules on the tip.
    Type: Application
    Filed: March 29, 2010
    Publication date: April 19, 2012
    Applicant: CTR de Investn Coop en Biomater (CIC biomaGUNE)
    Inventors: Elena Martines, Isabel Garcia Martin, Soledad Penades Ullate
  • Publication number: 20120090057
    Abstract: A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Guy M. Cohen, Mark C. Reuter, Brent A. Wacaser, Maha M. Khayyat
  • Patent number: 8104332
    Abstract: To provide a probe 1 for use in a cantilever 2 of an scanning probe microscope (SPM) manufacturable in a simple manufacturing process and usable while allowing full use of the properties of single-crystalline material and a cantilever 2 using that probe. A probe 1 disposed at the tip of beam part 2a of a cantilever 2 used for an SPM, wherein the probe 1 comprises a needle-like part 1a having a length of not less than 10 ?m or and a flat plate part 1b having a face contacting a beam part of the cantilever, the needle-like part 1a and the flat plate part 1b are integrally formed with a single-crystalline material, and at least one side face of the flat plate part 1b contains a flat surface 1c in order to indicate the crystal orientation of the single-crystalline material.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: January 31, 2012
    Assignee: Namiki Seimitsu Houseki Kabushiki Kaisha
    Inventors: Kouji Koyama, Toshiro Kotaki, Kazuhiko Sunagawa
  • Patent number: 8099792
    Abstract: Atomic force photovoltaic microscopy apparatus and related methodologies, as can be used to quantitatively measure spatial performance variations in functioning photovoltaic devices.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: January 17, 2012
    Assignees: Northwestern University, The United States of America as represented by the Secretary of the Air Force
    Inventors: Mark C. Hersam, Benjamin Leever
  • Patent number: 8099793
    Abstract: An automatic probe exchange system for a scanning probe microscope (SPM) exchanges probes between a probe mount on the SPM and a probe mount on a probe tray based on differential magnetic force. When the magnetic force on the SPM side is greater, the probe is attached to the probe mount on the SPM. When the magnetic force on the probe tray side is greater, the probe is attached to the probe mount on the probe tray. The magnetic force on the probe tray side is varied by moving the magnets that generate the magnetic force on the probe tray side closer to or further from the probe.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 17, 2012
    Assignee: Park Systems Corp.
    Inventors: Hyeong Chan Jo, Hong Jae Lim, Seung Jun Shin, Joon Hui Kim, Yong Seok Kim, Sang-il Park
  • Publication number: 20120011624
    Abstract: An all-metal microdevice or nanodevice such as an atomic force microscope probe is manufactured from a copper-hafnium alloy thin film having an x-ray amorphous microstructure.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 12, 2012
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Erik J. LUBER, Colin OPHUS, David MITLIN, Brian OLSEN, Christopher HARROWER, Velimir RADMILOVIC
  • Patent number: 8091143
    Abstract: A probe for atomic force microscopy (SM) comprising a micromechanical resonator (RMM) and a tip for atomic force microscopy (P1) projecting from said resonator, the probe being characterized in that: it also includes means (EL1) for selectively exciting a volume mode of oscillation of said resonator (RMM); and in that said tip for atomic force microscopy (P1, P1?) projects from said resonator substantially in correspondence with an antinode point (PV1) of said volume mode of oscillation. An atomic force microscope including such a probe (SM?). A method of atomic force microscopy including the use of such a probe.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: January 3, 2012
    Assignees: Centre National de la Recherche Scientifique, Universite de Bordeaux 1
    Inventors: Marc Faucher, Lionel Buchaillot, Jean-Pierre Aime, Bernard Louis Amand Legrand, Gerard Couturier
  • Publication number: 20110309265
    Abstract: In a general aspect, a system includes a plurality of diamond nanowires disposed on the surface of a diamond substrate, at least some of the nanowires including a color center. The system also includes a light source configured to illuminate at least one of the plurality of nanowires with excitation light at a wavelength corresponding to an excitation wavelength of the color center included in the illuminated nanowire; and an optical receiver configured to receive a fluorescence emitted from the color center included in the illuminated nanowire in response to the excitation light.
    Type: Application
    Filed: April 19, 2011
    Publication date: December 22, 2011
    Applicant: President and Fellows of Harvard College
    Inventors: Thomas M. Babinec, Birgit J.M. Hausmann, Mughees Khan, Yinan Zhang, Philip R. Hemmer, Marko Loncar
  • Patent number: 8079093
    Abstract: One inventive aspect is related to an atomic force microscopy probe. The probe comprises a tip configuration with two probe tips on one cantilever arm. The probe tips are electrically isolated from each other and of approximately the same height with respect to the cantilever arm. The outer surface of the tip configuration has the shape of a body with a base plane and an apex. The body is divided into two sub-parts by a gap located approximately symmetrically with respect to the apex and approximately perpendicular to the base plane. Another inventive aspect related to methods for producing such an AFM probe.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: December 13, 2011
    Assignee: IMEC
    Inventor: Marc Fouchier
  • Patent number: 8074293
    Abstract: For adjusting a positional relationship between a specimen and a probe to measure an electric characteristic of the specimen through a contact therebetween, a base table holding a specimen table holding the specimen and a probe holder holding the probe is positioned at a first position to measure the positional relationship between the probe and the specimen at the first position, and subsequently positioned at a second position to measure the positional relationship therebetween at the second position so that the probe and the specimen are contact each other at the second position, the specimen table and the probe holder are movable with respect to each other on the base table at each of the first and second positions to adjust the positional relationship between the probe and the specimen, and a measuring accuracy at the second position is superior to a measuring accuracy at the first position.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: December 6, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Eiichi Hazaki, Yasuhiro Mitsui, Takashi Furukawa, Hiroshi Yanagita, Susumu Kato, Osamu Satou, Osamu Yamada, Yoshikazu Inada
  • Patent number: 8046843
    Abstract: An instrument includes a probe having a porous tip, a tip positioning apparatus to position the tip with respect to a sample material, a probe positioning apparatus to position the probe and sample material with respect to each other, and a controller. The controller controls the probe positioning apparatus in positioning the probe over the sample and controls the tip positioning apparatus in lowering the tip into the sample material to produce an interaction between the porous tip and the sample material.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: October 25, 2011
    Assignee: General Nanotechnology LLC
    Inventor: Victor B. Kley
  • Patent number: 8028567
    Abstract: AFM tweezers that include a first probe, including a triangular prism member having a tip of a ridge which is usable as a probe tip in a scanning probe microscope, and a second probe, including a triangular prism member provided so as to open/close with respect to the first probe, are provided. The first probe and the second probe are juxtaposed such that a predetermined peripheral surface of the triangular prism member of the first probe and a predetermined peripheral surface of the triangular prism member of the second probe face substantially in parallel to each other, and the first probe formed of a notch that prevents interference with a sample when the sample is scanned by the tip of the ridge.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: October 4, 2011
    Assignees: AOI Electronics Co., Ltd., SII Nano Technology Inc.
    Inventors: Tatsuya Kobayashi, Masato Suzuki, Masatoshi Yasutake, Takeshi Umemoto
  • Patent number: 7997123
    Abstract: A dispensing device has a cantilever comprising a plurality of thin films arranged relative to one another to define a microchannel in the cantilever and to define at least portions of a dispensing microtip proximate an end of the cantilever and communicated to the microchannel to receive material therefrom. The microchannel is communicated to a reservoir that supplies material to the microchannel. One or more reservoir-fed cantilevers may be formed on a semiconductor chip substrate. A sealing layer preferably is disposed on one of the first and second thin films and overlies outermost edges of the first and second thin films to seal the outermost edges against material leakage. Each cantilever includes an actuator, such as for example a piezoelectric actuator, to impart bending motion thereto. The microtip includes a pointed pyramidal or conical shaped microtip body and an annular shell spaced about the pointed microtip body to define a material-dispensing annulus thereabout.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: August 16, 2011
    Assignee: Northwestern University
    Inventors: Horacio D. Espinosa, Nicolaie A. Moldovan, Keun-Ho Kim
  • Patent number: 7971266
    Abstract: The present invention relates to a method for providing a measuring probe (1, 1a, 2) for a probe microscopic examination of a sample in a probe microscope, in particular a scanning probe microscope, in which the measuring probe (1), which has a probe base (1a) and a probe extension (2) formed thereon, is held on a carrier device and the measuring probe (1) is processed before or after a measurement by detaching a section of the probe extension (2). The invention further relates to an arrangement having a probe microscope for the probe microscopic examination of a sample, in particular a scanning probe microscope.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: June 28, 2011
    Assignee: JPK Instruments AG
    Inventors: Torsten Jähnke, Torsten Müller, Detlef Knebel, Kathryn Poole
  • Patent number: 7966867
    Abstract: The invention provides a scanning probe microscope capable of performing highly accurate three-dimensional profile measurement in a state in which no sliding of the probe or deformation of the sample substantially occurs.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: June 28, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masahiro Watanabe, Shuichi Baba, Toshihiko Nakata
  • Patent number: 7958566
    Abstract: Disclosed is an atomic force microscope (AFM) probe for use in an AFM, and more particularly, an AFM probe suitable for testing the topography and mechanical properties of a microstructure having a size on the order of micrometers or nanometers. To this end, an AFM probe according to the present invention comprises an elastically deformable frame having a fixed end and a movable end on one axis; an AFM tip supported by the movable end to be movable against a test sample in a direction of the axis; and a stopper provided on an inner surface of the frame to control a movement of the AFM tip within a predetermined range.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 7, 2011
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Hak-Joo Lee, Seung Min Hyun, Jae Hyun Kim, Jung Yup Kim, Seung Woo Han, Jung Min Park, Byung Ik Choi
  • Patent number: 7954166
    Abstract: An improved method of loading tips and other surfaces with patterning compositions or inks for use in deposition. A method of patterning is described, the method comprising: (i) providing at least one array of tips; (ii) providing a plurality of patterning compositions; (iii) ink jet printing at least some of the patterning compositions onto some of the tips; and (iv) depositing at least some of the patterning compositions onto a substrate surface; wherein the ink jet printing is adapted to prevent substantial cross-contamination of the patterning composition on the tips. Good printing reproducibility and control of printing rate can be achieved. The surfaces subjected to ink jet printing can be treated to encourage localization of the ink at the tip. The method is particularly important for high density arrays.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: May 31, 2011
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Yuhuang Wang, Louise R. Giam, Matthew Park
  • Patent number: 7945964
    Abstract: Provided are a structure of an apparatus for analysis, inspection, and measurement in which a support structure supporting a detection unit is resistant to disturbance, suppresses a reduction in resolution during large-sample measurement, and has high rigidity, and a probe microscope using the apparatus structure. The apparatus structure supporting the detection unit which is opposed to a sample which is located on a unit movable in at least one axis direction and is an object to be analyzed has an arch shape. In the apparatus structure having the arch shape and supporting the detection unit, a surface substantially perpendicular to a flat surface portion of a sample holder located immediately under the apparatus structure is formed. The detection unit is supported on the perpendicular surface. The arch-shaped apparatus structure is a curved structure consistent with a catenary curve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 17, 2011
    Assignee: SII NanoTechnology Inc.
    Inventors: Shigeru Wakiyama, Kenichi Akamatsu
  • Patent number: 7926328
    Abstract: There is provided a sample manipulating apparatus which is an apparatus for manipulating a sample mounted on a substrate surface, in which at least position data and shape data are acquired by observing the sample. Thereafter, tweezers are positioned by moving means such that the sample is positioned between an observing probe and a grasping probe based on the two set of data. After positioning, a height of the tweezers is set to a position of being remote from the substrate surface by a constant distance by moving means while monitoring a result of measurement by displacement measuring means. Thereafter, the grasping probe is moved to a side of the observing probe while monitoring the result of measurement by the displacement measuring means at the set height and the sample is grasped while detecting a grasping start point.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: April 19, 2011
    Assignee: SII Nano Technology Inc.
    Inventors: Masatoshi Yasutake, Takeshi Umemoto, Masafumi Watanabe
  • Patent number: 7921465
    Abstract: A system (100) for characterizing surfaces can include a nanotip microscope (104) in a first pressure envelope (102) at a first pressure with an electrically conductive nanotip (110) mounted thereon for characterizing a sample surface. The system can also include an ion imaging system (122, 124, 128) within a second pressure envelope (120) at a second pressure. The second pressure can less than or equal to the first pressure and the pressure envelopes (102, 120) can be separated by a pressure limiting aperture (PLA) (132). The system can further include gas sources (116, 118) for introducing into the first pressure envelope (102) at least one gas, and a voltage supply (114) coupled to the nanotip (110) for generating an electric field between the nanotip (114) and the PLA (132).
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: April 5, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Vladimir Ukraintsev
  • Patent number: 7913544
    Abstract: The present invention is directed to scanning probes in which a cantilever contacts a stylus via an integrated stylus base pad, and methods for fabricating such probes. The probe offer many advantages over other types of scanning probes with respect to eliminating the need for a soft, reflective coating in some applications and providing for the simple fabrication of sharp stylus tips, flexibility with respect to functionalizing the tip, and minimal thermal drift due to reduced bimorph effect. The advantage of these features facilitates the acquisition of high resolution images of samples in general, and particularly in liquids.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: March 29, 2011
    Assignee: Applied NanoStructures, Inc.
    Inventor: Ami Chand
  • Patent number: 7900506
    Abstract: The present invention provides a multi-dimensional standing wave probe for microscale and nanoscale measurement, manipulation, and surface modification, including: a filament having a first free end and a second end that is attached to at least one actuator to apply oscillation cycles to the filament; wherein the oscillation of the filament during at least one complete cycle of oscillation of the actuator causes the free end to move in a multi-dimensional envelope, producing a defined virtual probe tip at the free end, wherein a shape of the virtual probe tip is defined by both a characteristic shape of the oscillation of the free end and a geometry of the filament. Optionally, the actuator includes a monolithic crystal actuator. Preferably, the monolithic crystal actuator includes a crystal having zero grain boundaries. The monolithic crystal actuator also includes a plurality of thin flexure structures.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 8, 2011
    Assignee: Insitutec, Inc.
    Inventors: Shane C. Woody, Marcin B. Bauza, Stuart T. Smith
  • Publication number: 20110055987
    Abstract: A method of producing sharp tips useful for scanning probe microscopy and related applications is described. The tips are formed by deposition into a mold(s) formed in a sacrificial crystalline semiconductor substrate with an exposed {311} surface which has been etched with a crystallographic etchant to form a 3-sided, trihedral or trigonal pyramidal mold(s) or indentation(s). The resultant tips, when released from the sacrificial mold material or substrate, are typically formed in the shape of a trigonal pyramid or a tetrahedron. Another embodiment involves starting with a {100} surface and the formation of two tips on opposite ends of a wedge at trigonal or trihedral points of the wedge. These tips are less susceptible to the tip wedge effect typical of tips formed using known methods.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 3, 2011
    Inventor: Nicolae MOLDOVAN
  • Publication number: 20110041224
    Abstract: A microcantilever used in Atomic Force Microscopy (AFM) includes an elongated cantilevered body with a probe tip placed preferably near its free end and preferably along the cantilever's axis. Some embodiments of the present invention integrate into the microcantilever body an embedded or etched paddle that rotates rigidly about an axis parallel to that of the cantilever with hinges that connect the paddle to the cantilever body. In one embodiment the resonance frequency of this paddle resonator is higher than the fundamental resonance of the microcantilever so that the paddle rotation is proportional to the vertical microcantilever acceleration at the hinge location. The motion of the paddle can be detected using radiation irradiating the paddle; the reflected beam is centered onto a four quadrant photodiode as commonly found in AFM.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 17, 2011
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Arvind Raman, Ronald G. Reifenberger, John T. Melcher
  • Patent number: 7884323
    Abstract: The present invention relates generally to atom probes, atom probe specimens, and associated methods. For example, certain aspects are directed toward methods for analyzing a portion of a specimen that includes selecting a region of interest and moving a portion of material in a border region proximate to the region of interest so that at least a portion of the region of interest protrudes relative to at least a portion of the border region. The method further includes analyzing a portion of the region of interest. Other aspects of the invention are directed toward a method for applying photonic energy in an atom probe process by passing photonic energy through a lens system separated from a photonic device and spaced apart from the photonic device. Yet other aspects of the invention are directed toward a method for reflecting photonic energy off an outer surface of an electrode onto a specimen.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: February 8, 2011
    Assignee: Cameca Instruments, Inc.
    Inventors: Thomas F. Kelly, Joseph H. Bunton, Scott A. Wiener
  • Patent number: 7861315
    Abstract: A simple method for integrating a circuit onto a probe with a handle, a cantilever and a tip is provided. By fabricating a probe whose surface has recessed patterns of the desirable profile, a circuit can be formed on one part of the handle out over the cantilever and back onto a different part of the handle without employing a circuit lithography step. The circuit material constituting the circuit is deposited orthogonally to the probe surface with a line-of-sight technique.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 28, 2010
    Assignee: Asylum Research Corporation
    Inventors: Roger Proksch, Hector Cavazos
  • Patent number: 7854015
    Abstract: A scanning probe microscope and method for operating the same are disclosed. The microscope includes a probe mount for attaching a probe, an electro-mechanical actuator, a probe position signal generator, an impulse signal generator and a servo. A probe tip is mounted on a first end of a cantilever arm, a second end of the cantilever arm being mounted on a mechanical vibrator that causes the second end to vibrate in response to a drive signal. The probe position signal generator generates a position signal indicative of a position of the probe relative to the second end of the cantilever arm. The impulse signal generator measures a quantity related to an impulse imparted to the probe tip by the interaction between the tip and the local characteristics of the sample. The servo operates the electro-mechanical actuator so as to maintain the measured quantity at a predetermined value.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 14, 2010
    Assignee: Agilent Technologies, Inc.
    Inventor: Storrs Hoen
  • Patent number: 7814565
    Abstract: Techniques for forming a nanostructure on a probe tip are provided.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 12, 2010
    Assignee: SNU R&DB Foundation
    Inventors: Yong Hyup Kim, Tae June Kang