Abstract: A multi-axial mast positioning system includes a frame having two opposed vertical sections, an axle coupled to the frame and rotatable around a first axis passing through the opposed vertical sections of the frame, and a mast coupled to the axle and rotatable about a second axis aligned with and perpendicular to the first axis. Level sensors measure the orientation of the mast along the first and second axes.
Type:
Grant
Filed:
February 26, 2016
Date of Patent:
March 7, 2017
Assignee:
US Tower Corp.
Inventors:
Robert E. Gorney, Kenneth Pereira, Jason Timothy Wadlington
Abstract: The invention is directed towards an elevation adjustment mechanism which has a mechanism for coarsely adjusting the pitch rotation comprising a lever actuated clamping assembly and a mechanism for finely adjusting the pitch rotation comprising a threaded rod mechanism.
Type:
Grant
Filed:
November 2, 2007
Date of Patent:
February 28, 2012
Assignee:
Alliant Techsystems Inc.
Inventors:
Daniel B. Shipman, Joe B. Dunning, Ernest E. Creamer, Ron Smith, Steven J. Koch
Abstract: A precision tactical mount (12) includes a horizontal controller (30) and a vertical controller (34) for determining azimuth angles and elevation angles for a sight line of the precision tactical mount (12). The horizontal controller (30) and the vertical controller (34) have friction blocks (102, 114, 196) which engage mating friction surfaces with selectable forces for providing specific resistance against azimuth and elevation angular movement, without requiring separate mechanisms for locking the tactical mount (12) in selected positions. The friction blocks (102, 114 and 196) are preferably formed of softer materials than the mating friction surfaces to conform to the shape of the mating friction surfaces with increased normal forces, providing varying surface areas. The vertical controller (34) includes a course threaded screw member (142) mounted at an angle to a centerline (6) of the precision tactical mount (12) to provide fine control adjustment for elevation.
Abstract: A rifle scope system allows adjustment of the scope while a shooter maintains the shooting posture and the scope sight picture. The scope system comprises an adjustment system comprising an electromechanical mechanism that responds to a signal from a remote controller manipulated by the shooter without having to significantly disturb the shooting posture. The adjustment system allows the shooter to adjust the scope's point of aim to coincide with a bullet's point of impact at a target. Such adjustment can be performed either by the shooter. Alternatively, such adjustment could be performed by a processor configured to adjust the point of aim based on a ballistic parameter associated with the bullet or the shooting environment. The adjustment system allows such processor-determined adjustments to be effected in a quick manner.
Abstract: A detachable mount for a telescopic sight which can be operated using only one latching mechanism. The mount uses a front base attached to the ring of a rifle receiver and a rear base attached to the bridge of a rifle receiver. The upper surfaces of both the front and rear bases open into a pair of slots. A separate scope mount is attached to a scope sight by conventional means. Two sets of lugs descend from the lower surfaces of this scope mount. These sets of descending lugs are configured to fit securely within the slots in the front and rear bases when the scope mount is placed over the bases. The forward facing surfaces of the rear set of descending lugs mate with a corresponding set of rearward facing surfaces in the slots within the rear base. These sets of mating surfaces are offset from the vertical to create a wedging effect that pulls the rear of the scope mount down when it is pushed forward relative to the rifle receiver.