Metal Or Metal Containing Compound Sorbed Patents (Class 95/133)
  • Patent number: 7267710
    Abstract: An apparatus for regenerating an adsorbent includes an electrolytic cell filled with an electrolyte and an electrode unit that includes a first electrode made from the adsorbent in which a substance is adsorbed and a second electrode. The first electrode and the second electrode are soaked in the electrolyte. The apparatus also includes a power source that supplies a voltage applied between the first electrode and the second electrode.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: September 11, 2007
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kiyoshi Tatsuhara, Akinori Yasutake, Takashi Kurisaki, Norihisa Kobayashi, Tomoaki Sugiyama, Masahiko Nagai
  • Patent number: 7252768
    Abstract: The invention relates to a method for eliminating metal halides which are present in a liquid or gaseous, organic or non-organic effluent. According to the invention, the elimination is carried out by absorption of said metal halides on alumina agglomerates. The inventive method is characterised in that: the specific surface area of said agglomerates is between 50 and 350 m2/g, preferably between 70 and 300 m2/g and, better still, between 80 and 250 m2/g; and the V80? thereof is greater than or equal to 20 ml/100 g, preferably greater than or equal to 25 ml/100 g, better still greater than or equal to 30 ml/100 g and, optimally, greater than or equal to 35 ml/100 g.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: August 7, 2007
    Assignee: AXENS
    Inventor: Christophe Nedez
  • Patent number: 7122065
    Abstract: An adapter for use with a low volume PUF sampler is described. The adapter is affixed over the open end of a PUF (polyurethane foam) sample cartridge. Sample tubing is affixed to an aperture in the adapter, and the free end of the sample tubing is then positioned at a desired sample location such as within an aircraft interior. As a vacuum is applied to the PUF cartridge, the adapter allows air collected at the sample point to pass through the tubing and through the interior of the PUF cartridge while preventing air surrounding the PUF cartridge from being drawn into the PUF cartridge except through the sample tubing. In this manner the sample point of a desired air sample can be selected at a point remote from the PUF cartridge. Additionally, use of multiple PUF cartridges and adapters allows the simultaneous collection of separate air samples.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: October 17, 2006
    Assignee: Honeywell International, Inc.
    Inventor: Richard B. Fox
  • Patent number: 7121276
    Abstract: An oxygen separator for separating oxygen from ambient air utilizing a vacuum swing adsorption process has a mass of less than 2.3 kg. A carrier is mountable on a person to support the oxygen separator for ambulatory use.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: October 17, 2006
    Assignee: Vbox, Incorporated
    Inventors: Theodore W. Jagger, Nicholas P. Van Brunt, John A. Kivisto, Perry B. Lonnes
  • Patent number: 7101415
    Abstract: A continuous method of producing a process fluid gas from a feed stream that includes the process fluid and impurities. The method includes: (a) providing a first and second vessel, each vessel containing one or more regenerable purifier materials for removing at least one of the impurities from the feed stream; (b) removing at least one of the impurities by passing the feed stream through one or the other of the vessels to provide a purified process fluid gas, with the vessel being maintained at a first temperature during the removal of impurities; and (c) regenerating the purifier materials in the vessels at a second temperature and during the time when it is not purifying the feed stream by flowing a portion of the purified process fluid or the feed stream or a separate source of the process fluid gas therethrough.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 5, 2006
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Robert Torres, Jr., Joseph Vivinski, David Lawrence
  • Patent number: 7074257
    Abstract: A solid ion-exchange material useful for removing heavy metals or radionuclides from an aqueous or gaseous solution comprising a modified clinoptilolite, and methods of using same are provided.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: July 11, 2006
    Assignee: Synlite Chemical Company, LLC
    Inventors: James M. Lockwood, Fred H. Green
  • Patent number: 7033419
    Abstract: A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 25, 2006
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Evan J. Granite, Henry W. Pennline
  • Patent number: 6991671
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: January 31, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers
  • Patent number: 6911065
    Abstract: A fluid purifying apparatus that includes a manifold that includes a first branch and a second branch, a first check valve coupled to the first branch of the manifold, and a purifier unit that includes a first end and a second end, wherein the first end is coupled to the second branch of the manifold. Also, a fluid purifying apparatus that includes a vessel that includes a first interior compartment for containing a purifier material and a second interior compartment for containment of a fluid containing impurities, wherein the first interior compartment is separated from the second interior compartment by a fluid permeable support, and a rupturable seal.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: June 28, 2005
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Tadaharu Watanabe, Robert Torres, Jr., Joseph Vininski
  • Patent number: 6899746
    Abstract: A granular composite material for recovering platinum particles from reaction gas flow in nitric acid production, comprising 50-75% calcium oxide by weight; 20-35% of magnesium oxide by weight; and 5-15% by weight of at least one chloride selected from the group consisting of calcium chloride and magnesium chloride; and a method of recovering platinum particles from reaction gas flow in nitric acid production comprising passing the reaction gas through a layer of a sorbent to absorb platinum particles, the sorbent being formed by the granular composite material described above, and extracting the absorbed platinum particles from the sorbent.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: May 31, 2005
    Assignee: Pryvatna Firma “Sit”
    Inventors: Antonina Oleksandrivna Lavrenko, Dleksiy Yakovych Loboyko, Grygoriy Ivanovych Gryn, Tetyana Viktorivna Fedorchenko, Pavlo Anatoliyovych Kozub
  • Patent number: 6887302
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: May 3, 2005
    Assignee: NanoScale Materials, Inc.
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6843830
    Abstract: An apparatus and method for abating toxic and/or hazardous gas species in a diluent gas stream line deriving from a by-pass line of a semiconductor process tool, comprising contacting the diluent gas stream with a dry resin sorbent material having an affinity for the toxic and/or hazardous gas species to effect the removal of at least a portion of the toxic and/or hazardous gas species by a chemisorbent or physisorbent reaction between the sorbent bed and the toxic gas component effectively reduces the concentration of the toxic gas component in the process diluent stream to below TLV.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: January 18, 2005
    Assignee: Advanced Technology Materials, Inc.
    Inventor: John Michael Sherer
  • Patent number: 6843831
    Abstract: A process for the purification of flue gas, comprising the step of contacting flue gas with a carbonaceous material comprising a solid carbonaceous residue of synthetic rutile production from titaniferous ores.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: January 18, 2005
    Assignee: Norit Nederland B.V.
    Inventors: Dirk van de Kleut, Robert Jan de Jonge
  • Patent number: 6818043
    Abstract: A method for efficiently removing vapor-phase contaminants from gas streams is described. A powdered adsorbent such as activated carbon is ground into a fine powder by wet grinding to form a slurry. Chemicals are added to the slurry to impregnate the sorbent to enhance sorbent effectiveness. The slurry chemical mixture is sprayed into the gas stream in the form of small droplets which evaporate to produce an aerosol of fine adsorbent particles. Vapor-phase contaminants in the gas stream adsorb onto the fine adsorbent particle surfaces and the adsorbent particles are removed from the gas stream by a conventional particle collection method.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: November 16, 2004
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Ramsay Chang, Frank Meserole, Carl Richardson
  • Patent number: 6805728
    Abstract: An apparatus and process for abating at least one acid or hydride gas component or by-product thereof, from an effluent stream deriving from a semiconductor manufacturing process, comprising, a first sorbent bed material having a high capacity sorbent affinity for the acid or hydride gas component, a second and discreet sorbent bed material having a high capture rate sorbent affinity for the same gas component, and a flow path joining the process in gas flow communication with the sorbent bed materials such that effluent is flowed through the sorbent beds, to reduce the acid or hydride gas component. The first sorbent bed material preferably comprises basic copper carbonate and the second sorbent bed preferably comprises at least one of, CuO, AgO, CoO, Co3O4, ZnO, MnO2 and mixtures thereof.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: October 19, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Joseph D. Sweeney, Paul J. Marganski, W. Karl Olander, Luping Wang
  • Patent number: 6770117
    Abstract: Apparatus and method for utilizing recirculated exhaust gas in semiconductor manufacturing system, in a manner substantially reducing the effluent burden on the exhaust treatment system and infrastructure of the semiconductor process facility.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: August 3, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventor: W. Karl Olander
  • Publication number: 20040144250
    Abstract: Sorption agent and method for removing heavy metals from a gas containing heavy metal(s), with which a better removal rate of heavy metals from gases containing heavy metal(s) is made possible, and which can also be used in a broad temperature range. This is achieved in that the sorption agent contains at least one solid, which is a carrier material onto which at least one polysulfide is fixed and, in the case of the method, in which the gas containing heavy metal(s) is brought into contact with a sorption agent. A sorption agent is used that contains at least one solid, which is a carrier material onto which at least one polysulfide is fixed.
    Type: Application
    Filed: September 15, 2003
    Publication date: July 29, 2004
    Applicant: Donau Carbon GmbH & Co.KG
    Inventors: Gabriele Neuroth, Wolfgang Willing, Lutz-Peter Nethe, Holger Fuchs, Ralf Neumann
  • Publication number: 20040129138
    Abstract: A cleaning process of harmful gas containing at least one kind selected from trimethylgallium, triethylgallium, trimethylindium, triethylindium, trimethylaluminum and triethylaluminum as a harmful component by bringing into contact with a cleaning agent comprising a metallic oxide essentially containing copper (II) oxide and manganese (IV) oxide; and an alkali metal compound, thereby removing the harmful component from the harmful gas. According to the invention, a cleaning process of harmful gas containing harmful component such as trimethylgallium exhausted from manufacturing process of gallium nitride-based compound semiconductor, which efficiently cleans with superior cleaning capacity without reducing the removing efficiency of harmful component and without generating new harmful component of nitrogen oxides, etc., even in the case where the harmful gas to be treated is dry, or even in the case where the harmful gas contains ammonia is realized.
    Type: Application
    Filed: December 22, 2003
    Publication date: July 8, 2004
    Inventors: Kenji Otsuka, Takashi Kasaya, Toshio Akiyama
  • Publication number: 20040123736
    Abstract: A continuous method of producing a process fluid gas from a feed stream comprising the process fluid and impurities is provided, comprising: (a) providing a first and second vessel, each vessel containing one or more regenerable purifier materials for removing at least one of said impurities from said feed stream; (b) removing at least one of said impurities by passing said feed stream through one or the other of said vessels to provide said purified process fluid gas, said vessel being maintained at a first temperature during said removal of said at least one of said impurities; and (c) regenerating said one or more purifier materials in each of said vessels at a second temperature and during the a time when it is not purifying said feed stream by flowing a portion of said purified process fluid or said feed stream or a separate source of said process fluid gas therethrough.
    Type: Application
    Filed: August 28, 2003
    Publication date: July 1, 2004
    Inventors: Robert Torres, Joseph Vininski, David Lawrence
  • Patent number: 6743278
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 1, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Patent number: 6716271
    Abstract: A germane storage and dispensing system, in which germane gas is sorptively retained on an activated carbon sorbent medium in a vessel containing adsorbed and free germane gas. The activated carbon sorbent medium is deflagration-resistant in relation to the germane gas adsorbed thereon, i.e., under deflagration conditions of 65° C. and 650 torr, under which free germane gas undergoes deflagration, the activated carbon sorbent medium does not sustain deflagration of the adsorbed germane gas or thermally desorb the germane gas so that it undergoes subsequent deflagration. The deflagration-resistance of the activated carbon sorbent medium is promoted by pre-treatment of the sorbent material to remove extraneous sorbables therefrom and by maintaining the fill level of the sorbent medium in the gas storage and dispensing vessel at a substantial value, e.g., of at least 30%.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: April 6, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jose Arno, Edward Sturm, Luping Wang, James Dietz
  • Publication number: 20030226443
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Application
    Filed: June 7, 2002
    Publication date: December 11, 2003
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6660063
    Abstract: A capacity increase and/or pressure decrease of gas in a gas storage and dispensing vessel is achieved by use of a physical adsorbent having sorptive affinity for the gas. Such approach enables conventional high pressure gas cylinders to be redeployed with contained sorbent, to achieve substantial enhancement of safety and capacity.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: December 9, 2003
    Assignee: Advanced Technology Materials, Inc
    Inventors: Glenn M. Tom, James V. McManus, Luping Wang, W. Karl Olander
  • Publication number: 20030154858
    Abstract: The present invention is directed to a process for the purification of flue gas, wherein flue gas is contacted with a carbonaceous material, said carbonaceous material comprising the solid carbonaceous residue of synthetic rutile production from titaniferous ores.
    Type: Application
    Filed: April 11, 2003
    Publication date: August 21, 2003
    Inventors: Dirk Van De Kleut, Robert Jan de Jonge
  • Patent number: 6558642
    Abstract: A method and adsorption powder useful for the removal of mercury and other metals, as well as furans, dioxins and other organic compounds from high temperature and high moisture gaseous streams. The method utilizes an adsorption powder characterized as containing a carbon-based powder and an effective amount of cupric chloride suitable to remove metals and organic compounds. The powder may contain calcium hydroxide, sulfur, potassium permanganate, potassium iodide, and combinations thereof.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: May 6, 2003
    Assignee: Merck & Co., Inc.
    Inventors: Youssef El-Shoubary, Rudy Maes
  • Patent number: 6511527
    Abstract: A method of removing dioxins from an exhaust gas, including the steps of introducing carbon nanotubes into a stream of the dioxin-containing exhaust gas, and sorbing dioxins on the carbon nanotubes.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: January 28, 2003
    Assignee: NGK Insulators, Ltd.
    Inventors: Ralph T. Yang, Ruiqiang Long, Tomonori Takahashi
  • Publication number: 20020134242
    Abstract: A method of removing dioxins from an exhaust gas, including the steps of introducing carbon nanotubes into a stream of the dioxin-containing exhaust gas, and sorbing dioxins on the carbon nanotubes.
    Type: Application
    Filed: February 6, 2001
    Publication date: September 26, 2002
    Applicant: NGK Insulators, Ltd.
    Inventors: Ralph T. Yang, Ruiqiang Long, Tomonori Takahashi
  • Patent number: 6447576
    Abstract: A cleaning agent and a cleaning process for cleaning a harmful gas containing, as a harmful component, an organometallic compound represented by the general formula: Rm—M—Hn wherein R is alkyl; M is As, P, S, Se or Te; and m and n are each positive integer satisfying the relation: m+n=valence of M are described. The cleaning agent contains, as an effective component, copper (II) oxide or a mixture of copper (II) oxide and manganese dioxide. The copper (II) oxide has a BET specific surface area of 10 m2/g or greater which is extremely larger than that of copper (II) oxide conventionally used as the effective component of known cleaning agents. With such an extremely large BET specific surface area, the cleaning agent strongly and stably adsorbs the harmful organometallic compound, thereby efficiently cleaning the harmful gas without causing desorption of the adsorbed organometallic compound.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: September 10, 2002
    Assignee: Japan Pionics Co., Ltd.
    Inventors: Kenji Otsuka, Yutaka Amijima, Ryuji Hasemi, Youji Nawa
  • Patent number: 6406519
    Abstract: A gas supply system including a gas cabinet defining an enclosure including therein a gas dispensing manifold and one or more adsorbent-based gas storage and dispensing vessels mounted in the enclosure and joined in gas flow communication with the gas dispensing manifold. The enclosure may be maintained under low or negative pressure conditions for enhanced safety in the event of leakage of gas from the gas storage and dispensing vessel(s) in the enclosure. The gas supply system may be coupled to a gas-consuming unit in a semiconductor manufacturing facility, e.g., an ion implanter, an etch chamber, or a chemical vapor deposition reactor.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: June 18, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, James V. McManus
  • Patent number: 6309446
    Abstract: Activated carbon having a specific surface area of 700 to 1,500 m2/g, a pore volume of pores having a pore diameter of 10 nm or less of 0.20 to 0.8 cc/g, a proportion of a pore volume of pores having a pore diameter of 0.6 to 0.8 nm to a pore volume of pores having a pore diameter of 10 nm or less of 75% by volume or more, a grain bulk density of 0.4 to 1.1 g/cc, a packing density of 0.30 to 0.70 g/cc, an ash content of 1.0% or less, and a tensile strength of activated carbon grains of 30 kg/cm2 or more.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: October 30, 2001
    Assignees: Kanebo, Ltd., Takachibo Chemical Industry Co., Ltd.
    Inventors: Tsutomu Nakanoya, Yuji Shibsawa, Kazuhiro Hasumi, Koji Ishimori, Satoshi Ibaraki, Akira Takauchi
  • Patent number: 6277342
    Abstract: A method for delivering a gas having a proton affinity of less than 866 kJ/mol is disclosed. A support including at least one polymer sufficiently acidic to protonate the gas is contacted with the gas to protonate the gas. The protonated gas condenses to form a solid salt which is sorbed by the support. The gas is dispensed by deprotonating the sorbed solid salt to regenerate said gas. The at least one polymer of the support has a first Hammett acidity value greater than a second Hammett acidity value of a conjugate acid of the gas. Also provided is an apparatus for performing the method. The invention is especially useful for storing, transporting and delivering hazardous gases, such as arsine and phosphine. The polymer can be polymeric sulfonic acids, polymeric perfluoroalkylsulfonic acids, fluorinated sulfonic acid polymers, cross-linked sulfonated polystyrene-divinylbenzene macroreticular copolymers, carboxylic acid polymers, halogenated carboxylic acid functionalized polymers and mixtures thereof.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: August 21, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Ronald Martin Pearlstein, Steven Arthur Rogers
  • Patent number: 6221241
    Abstract: A process for the purification of a fluid stream containing a sulphur contaminant, such as hydrogen sulphide, and mercury, phosphine, stibine, and/or arsenic compounds as a second contaminant wherein said fluid stream is passed through a bed of a particulate absorbent containing a sulphide of a variable valency metal, especially copper, that is more electropositive than mercury, to remove said second contaminant and then the sulphur contaminant is removed from at least part of the effluent from that bed by passing that part of the effluent through a bed of a particulate sulphur absorbent comprising a compound selected from oxides, hydroxides, carbonates and basic carbonates of said variable valency metal is disclosed. The removal of the sulphur contaminant converts said variable valency metal compound to the corresponding sulphide. The resulting bed of variable valency metal sulphide is subsequently used for the removal of the second contaminant.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: April 24, 2001
    Assignee: Imperial Chemical Industries PLC
    Inventors: Peter John Herbert Carnell, Edwin Stephen Willis
  • Patent number: 6165428
    Abstract: A process is provided for the removal of metal carbonyl from gaseous streams in the presence of hydrogen sulphide and/or water using a hydrophobic porous adsorbent with an accessible pore volume for pore sizes between 0.55 and 4 nm of at least 0.005 ml/g.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: December 26, 2000
    Assignee: Shell Oil Comapny
    Inventors: Roger Eijkhoudt, John Wilhelm Geus, Cornelis Jacobus Smit
  • Patent number: 6110257
    Abstract: A low concentration gas delivery system utilizing a sorbent-based gas storage and delivery unit including a gas storage and dispensing vessel joined in flow communication with a permeation structure. The storage and dispensing vessel contains a solid-phase physical sorbent medium holding a fluid, which is selectively dispensed from the vessel by pressure differential, concentration differential and/or thermal desorption techniques. The dispensed gas flows to the permeation structure, wherein the desorbed fluid is diffusionally released either as a neat fluid, or into a carrier gas in which the desorbed fluid has a precisely maintained concentration, for applications such as calibration of instruments monitoring fluid concentrations, delivery of dopants for fabrication of microelectronic device structures, or other end use application requiring a precise low concentration of fluid.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: August 29, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Glenn M. Tom
  • Patent number: 6093236
    Abstract: Pelletized adsorbent compositions and methods of adsorbing toxic target compounds are provided for the destructive adsorption or chemisorption of toxic or undesired compounds. The pelletized adsorbents are formed by pressing together powder nanocrystalline particles comprising a metal hydroxide or a metal oxide at pressures of from about 50 psi to about 6000 psi to form discrete self-sustaining bodies. The pelletized bodies should retain at least about 25% of the surface area/unit mass and total pore volume of the starting metal particles.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: July 25, 2000
    Assignee: Kansas State University Research Foundation
    Inventors: Kenneth J. Klabunde, Olga Koper, Abbas Khaleel
  • Patent number: 6051053
    Abstract: A trapping device that performs a regeneration operation efficiently so as to raise the overall operational reliability by improving the service life as well as to lower the capital and operation cost of the processing system. The trapping device includes an exhaust path for evacuating a spent gas from a hermetic chamber through a vacuum pump; a trap section for trapping component substances from the spent gas flowing through the exhaust path; a cleaning path disposed adjacent to the exhaust path for flowing a cleaning solution for cleaning the trap section; and driving device for transposing the trap section to communicate either with the exhaust path or with the cleaning path.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: April 18, 2000
    Assignee: Ebara Corporation
    Inventors: Nobuharu Noji, Norihiko Nomura, Tetsuro Sugiura
  • Patent number: 6027547
    Abstract: A fluid storage and dispensing system, comprising: a fluid storage and dispensing vessel constructed and arranged for selective dispensing of fluid therefrom; a solid-phase support in the vessel; and an affinity medium on the solid-phase support, wherein the affinity medium reversibly takes up the fluid when contacted therewith, and from which the fluid is disengagable under dispensing conditions. The affinity medium may be a liquid, oil, gel, or solid (porous solid, thin film solid, or bulk solid). The system of the invention may be employed for the storage and dispensing of fluids such as hydride, halide and dopant gases for manufacturing of semiconductor products.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: February 22, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Duncan W. Brown
  • Patent number: 6007706
    Abstract: A process for the purification of a fluid stream containing a sulphur contaminant, such as hydrogen sulphide, and mercury, phosphine, stibine, and/or arsenic compounds as a second contaminant wherein said fluid stream is passed through a bed of a particulate absorbent containing a sulphide of a variable valency metal, especially copper, that is more electropositive than mercury, to remove said second contaminant and then the sulphur contaminant is removed from at least part of the effluent from that bed by passing that part of the effluent through a bed of a particulate sulphur absorbent comprising a compound selected from oxides, hydroxides, carbonates and basic carbonates of said variable valency metal is disclosed. The removal of the sulphur contaminant converts said variable valency metal compound to the corresponding sulphide. The resulting bed of variable valency metal sulphide is subsequently used for the removal of the second contaminant.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: December 28, 1999
    Assignee: Imperial Chemical Industries PLC
    Inventors: Peter John Herbert Carnell, Edwin Stephen Willis
  • Patent number: 5980608
    Abstract: An apparatus for storage and dispensing of a gas, comprising a gas storage and dispensing vessel holding a physical sorbent medium and gas adsorbed on the physical sorbent medium, wherein a carrier gas, e.g., helium, hydrogen, argon, etc., is flowed through the vessel to effect desorption of the sorbate gas and entrainment of the desorbed gas in the carrier gas stream. The storage and dispensing system of the invention may be employed to provide the dispensed sorbate gas to a downstream locus of use in applications such as epitaxial film formation and ion implantation, in the manufacture of semiconductor devices.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: November 9, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: James Dietz, James V. McManus
  • Patent number: 5897688
    Abstract: The present invention relates to a method of removing a metal from a stream of hot gas, wherein a particulate material comprising calcium and aluminum-silicate is contacted in the hot gas to absorb metal present in the hot gas. According to the invention, a meta-kaolin-containing substance is introduced in the hot gas, said meta-kaolin-containing substance being formed by thermally converting a material chosen from the group of I) waste paper, and ii) residue from the paper industry. The invention may be used to remove metals before, during or after the combustion or gasification of fossil fuels, biomass and organic waste.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: April 27, 1999
    Assignee: CDEM Holland, BV
    Inventors: Nicolaas Voogt, Joseph Jan Peter Biermann
  • Patent number: 5837027
    Abstract: A fill system and methodology for the manufacture of fluid storage and dispensing vessels containing sorbent material for holding a sorbable fluid, for on-demand dispensing of the fluid in the use of the vessel. The fill system and methodology are directed to minimizing the processing time required to dissipate the heat of sorption incident to the loading of the sorbable fluid onto the sorbent material, so that thermal equilibration time in the manufacture of the vessels is substantially reduced in relation to the use of only ambient convective air cooling for dissipation of the heat of sorption from the fluid-filled vessel.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: November 17, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, James V. McManus
  • Patent number: 5704965
    Abstract: An adsorption-desorption apparatus, for storage and dispensing of a sorbable gas, wherein a carbon physical sorbent medium bearing the adsorbed gas to be selectively dispensed is delivered by pressure differential desorption and/or thermal desorption of the sorbate gas from the sorbent material. The carbon sorbent material preferably comprises a material which is characterized by a Sorbent Working Capacity, measured for arsine at 40 Torr and at 650 Torr, of at least 100 grams arsine per liter of bed of the sorbent material, e.g., a carbon sorbent material having the adsorption isotherm characteristic of curve A in FIG. 1 herein.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: January 6, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, James V. McManus, W. Karl Olander
  • Patent number: 5599456
    Abstract: A method for treating a fluid or gas containing contaminants wherein the fluid or gas is passed through a contactor having at least one reticulated foam structured fluid treatment element formed from metal particles bound together in an interconnected form and capable of promoting a reduction/oxidation reaction between the contaminants and the reticulated foam structured fluid treatment element. The metal particles employed in the fabrication of the reticulated foam structured fluid treatment element are selected from a group of particles comprising zinc, copper or combinations thereof.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: February 4, 1997
    Assignee: Advanced Waste Reduction
    Inventor: Chris E. Fanning
  • Patent number: 5531807
    Abstract: An apparatus and method for supplying oxygen to passengers on board an aircraft in the form of a portable machine including a housing having a shape and size allowing it to be positioned under a seat on the aircraft, an air separation device in the housing for separating oxygen from the air inside the aircraft, a self-contained compressed air supply in the housing including a compressor operatively connected to the air separation device and a brushless d-c motor for driving the compressor, and a circuit for connecting the d-c motor to the aircraft electrical power source including converting the a-c voltage and current on board the aircraft to d-c voltage and current for operating the motor. The brushless motor insures compliance with airline requirements that the machine generates a low level of electrical interference. The machine includes an intake resonator and a muffler associated therewith for reducing the level of noise generated to a value acceptable for airline use.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: July 2, 1996
    Assignee: AirSep Corporation
    Inventor: Norman R. McCombs
  • Patent number: 5519122
    Abstract: 16-membered macrolide derivatives represented by the formula (I): ##STR1## wherein R.sup.1 represents a hydrogen atom or a COR.sup.6 group, wherein R.sup.6 represents a straight-chain alkyl group having 1 to 3 carbon atoms; R.sup.2 represents a hydrogen atom or a COR.sup.6 group, wherein R.sup.6 is as defined above; R.sup.3 represents a hydrogen atom or a COR.sup.6 group, wherein R.sup.6 is as defined above; R.sup.4 represents a straight-chain alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted allyl group; and R.sup.5 represents a substituted or unsubstituted, straight-chain or branched alkyl, alkenyl or aralkyl group having 1 to 10 carbon atoms;and pharmaceutically acceptable salts thereof are disclosed. These compounds show excellent and long-acting antimicrobial activities. A novel process for producing these 16-membered macrolide derivatives is further disclosed.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: May 21, 1996
    Assignee: Meiji Seika Kaisha, Ltd.
    Inventors: Keiichi Ajito, Ken-ichi Kurihara, Akira Shimizu, Shuichi Gomi, Nobue Kikuchi, Minako Araake, Tsuneo Ishizuka, Aiko Miyata, Osamu Hara, Seiji Shibahara
  • Patent number: 5482536
    Abstract: An apparatus for containing and scrubbing toxic or corrosive gases from a leaking pipe or cylinder is provided. A gas passageway attaches at one end to a leakage location on a pipe or cylinder, and at the other end to an air operated exhauster. The air operated exhauster, through the input of a non-flammable purge gas, creates an exhaust flow from the leakage location to a drum which is attached to the air operated exhauster. The drum contains a scrubbing media which, when it contacts the leaked gas, cleans or removes the harmful component, thus allowing release to the atmosphere of the cleaned air.
    Type: Grant
    Filed: April 12, 1994
    Date of Patent: January 9, 1996
    Assignee: Solvay Specialty Chemicals, Inc.
    Inventors: Eugene Y. Ngai, Lester S. Gerver
  • Patent number: 5480556
    Abstract: A process is described by which a chemical species is sorbed into the channels of a host phase which is then heated to affect an irreversible phase transformation of the host phase which seals the chemical species within its crystal structure. The host phase is an insoluble solid, non-toxic and stable both to the chemical species it encases and its environment.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: January 2, 1996
    Inventor: Judith G. Ulan
  • Patent number: 5458784
    Abstract: A process for removing contaminants, particularly organic and metal contaminants, from aqueous and gaseous streams by contacting a contaminated stream with graphitic carbon filaments (nanofibers) characterized as having; (i) a surface area from about 50 to 800 m.sup.2 /g, (ii) an electrical resistivity from about 0.3 .mu.ohm.multidot.m to 0.8 .mu.ohm.multidot.m, (iii) a crystallinity from about 5% to about 100%, (iv) a length from about 1 .mu.m to about 100 .mu.m; and (v) a distance from about 0.335 nm to about 0.700 nm between graphite platelets.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: October 17, 1995
    Assignee: Catalytic Materials Limited
    Inventors: R. Terry K. Baker, Nelly M. Rodriguez
  • Patent number: 5451384
    Abstract: A process for substantially removing the metal carbonyl content of a gas stream, such as a stream of synthesis gas, by contacting the gas stream with lead oxide, PbO, dispersed upon a support.
    Type: Grant
    Filed: April 23, 1993
    Date of Patent: September 19, 1995
    Assignee: Den Norske Stats Oljeselskap A.S.
    Inventor: Norman L. Carr
  • Patent number: 5354363
    Abstract: A scrubber for industrial exhaust systems advantageously employs liquid gallium to adsorb vapor phase mercury as well as sub-micron sized particulates such as other trace metal constituents from a hot gas exhaust stream in an industrial exhaust system. The temperature of the liquid gallium is elevated for optimum adsorption efficiency, and subsequently lowered to separate the adsorbed mercury and other species.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: October 11, 1994
    Inventors: Jesse J. Brown, Jr., Nancy R. Brown