Movable Solid Sorbent Bed (e.g., Fluidized Bed, Etc.) Patents (Class 96/150)
  • Patent number: 6361585
    Abstract: A dehumidifier includes a circular rotor accommodating a humidity absorbing material, a disc member provided on each one of two circular end surfaces of the rotor and having a diameter identical to or greater than a diameter of the rotor, and a plurality of openings formed in the disc members, wherein the rotor rotates through a dehumidification zone and a recycle zone formed by a dividing plate disposed so as to project from each one of the disc members, the rotor circulating a first flow of air of relatively high humidity through the dehumidification zone so as to dehumidify and recycle the first flow of air, the rotor circulating a second flow of air of relatively low humidity through the recycle zone so as to dehumidify the humidity absorbing material. The openings in the disc members have an identical substantially fan shape and are disposed so as to radiate from a center of the disc member, thus exposing the humidity absorbing material accommodated therein.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: March 26, 2002
    Assignee: Fujitsu Limited
    Inventors: Hisao Anzai, Akihiko Fujisaki
  • Patent number: 6358303
    Abstract: A gasborne component condensing apparatus condenses condensation-target component contained in treatment-object gas by effecting an adsorbing step for adsorbing the condensation-target component in the object gas to an adsorbent layer and a desorbing step for desorbing the condensation-target component adsorbed to the adsorbent layer at the adsorbing step into desorbing gas by causing the desorbing gas smaller in the amount and higher in the temperature than the object gas to pass the adsorbent layer after the adsorbing step, the apparatus effecting the adsorbing step and the desorbing step for a plurality of cycles, so that the desorbing gas delivered from the adsorbent layer and containing the condensation-target component desorbed during the desorbing step is collected as a condensed gas product.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: March 19, 2002
    Assignee: Taikisha, Ltd.
    Inventor: Teisuke Maekawa
  • Patent number: 6355091
    Abstract: A ventilation and dehumidification system for ventilating fresh air to a conditioned space. The system is comprised of a unitary heat transfer desiccant wheel for dehumidifying incoming air by exchanging moisture from an inflow current of air with an outflow current of air. The unitary heat recovery wheel is able to transfer heat between the two air currents when the wheel is spun at a faster speed. The unitary heat transfer desiccant wheel is both regenerated and defrosted by a regenerative heater which is placed to heat the outflow current of air before the outflow current passes through the unitary heat transfer desiccant wheel. The unitary heat transfer desiccant wheel is spun at a slow speed to accomplish more dehumidification, and at a fast speed to accomplish more heat recovery. The system includes at least two blowers in order to motivate the inflow and outflow currents of air.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: March 12, 2002
    Assignee: Honeywell International Inc.
    Inventors: Steven M. Felber, Timothy J. Smith, Brad A. Terlson
  • Publication number: 20020023538
    Abstract: A device for removing contaminants from a natural gas stream is provided. The device comprises a first adsorbent positioned within a first fluidized bed operating at a first predetermined temperature for removing at least a portion of the contaminants from the natural gas stream and creating a partially sweetened natural gas stream. A second adsorbent is positioned within a second fluidized bed operating at a second predetermined temperature for receiving the partially sweetened natural gas stream with the second adsorbent removing at least a portion of the contaminants from the partially sweetened natural gas stream. Furthermore, a conversion apparatus can be provided for converting H2S within the removed contaminants to elemental sulfur and hydrogen at a third predetermined temperature.
    Type: Application
    Filed: September 21, 2001
    Publication date: February 28, 2002
    Inventors: Pradeep K. Agarwal, Temi M. Linjewile, Ashley S. Hull
  • Publication number: 20020007731
    Abstract: The invention is in an apparatus for the remediation of particulate material and gaseous pollutants from a flue gas flow that is simple and highly efficient in removing nearly all toxic pollutants, particularly sulfur dioxide, from a flue gas flow, and includes a manifold that is to receive and pass a polluted flue gas flow that mounts an injector that is fitted into the manifold wall to inject finely ground sorbent materials counter-current to the flue gas flow, creating turbulence and a thorough mixing to effect compaction and/or agglomerization of the pollutant and sorbent particles.
    Type: Application
    Filed: June 26, 2001
    Publication date: January 24, 2002
    Inventors: Richard A. Steinke, Christian Plank, Christian Bergemann
  • Patent number: 6294000
    Abstract: A rotary concentrator heats media in a desorption zone to a desorption temperature, then removes the pollutants using a second cold desorbent gas stream in a desorbent zone. First, the adsorbent media is rotated and an inlet gas stream is passed over the media in the adsorbent zone, thereby removing the adsorbable pollutants. A first gas stream having a temperature equal to or greater than the desorption temperature of the adsorbable pollutants is passed over the media in the desorbent zone to heat the media to generally the desorption temperature of the adsorbable pollutants. A second gas having a temperature less than the desorption temperature of the adsorbent media is passed over the media in the desorbent zone to remove the adsorbable pollutants from the desorbent zone. Subsequently, the gas containing the adsorbable pollutants received from the desorbent zone is processed by destroying or removing the adsorbable pollutants.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: September 25, 2001
    Assignee: Durr Environmental, Inc.
    Inventor: Joseph M. Klobucar
  • Patent number: 6290752
    Abstract: A filter device for adsorption of gaseous constituents from a gas flow includes a filter chamber with filters arranged therein, a clean-gas chamber connected to the first chamber in a fluid-conducting manner via the filters, and a collection chamber arranged beneath the filter chamber, is open toward the filter chamber and has an interior which narrows toward the bottom. An unfiltered-gas duct which leads from the outside, is arranged in the lower area of the collection chamber in such a manner that it can be adjusted in the direction toward the filters. A dust-discharge device, which leads toward the outside, is arranged in the lower area.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: September 18, 2001
    Assignee: Von Roll Umwelttechnik AG
    Inventors: Felix Koller, Rudolf Frey, Rainer Flury
  • Patent number: 6235086
    Abstract: A novel method and apparatus to dehumidify air provides enhanced dehumidification efficiency over conventional dehumidification apparatuses. A reusable dehumidification element disk provides a disk section to strip water from an air stream. The disk is rotated so that the saturated disk section enters a separate chamber where the water can be stripped from the disk with a stream of regeneration air. The regeneration air stream is recycled and is not split from or mixed with the air stream requiring dehumidification. The result is a more efficient dehumidification than in apparatuses which require the influent air stream to be divided into separate streams for dehumidification and regeneration functions.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: May 22, 2001
    Assignee: Kankyo Co., Ltd.
    Inventor: Yasuyuki Fujimura
  • Patent number: 6165254
    Abstract: A gas concentration device has a gas adsorbing element and a heat exchanger. The gas adsorbing element is divided into an adsorbing zone, and a desorbing zone. The heat exchanger has first and second flow channels. The first flow channels are separated from the second flow channels. The first flow channels receive foggy air having minute particles of water floating therein to cool process air flowing through the second flow channels via heat of vaporization consumed to evaporate the minute particles of water floating in the foggy air of the first flow channels. The second flow channels may be connected to the adsorbing zone of the gas adsorbing element such that process air cooled in the second flow channels is directed to the absorbing zone of the adsorbing element. The gas adsorbing element may further be divided into a cooling zone, such that the gas adsorbing element has absorbing, desorbing and cooling zones.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: December 26, 2000
    Assignee: Seibu Giken Co., Ltd.
    Inventors: Yukito Kawakami, Hiroaki Izumi, Ryuzi Kuramitsu, Tetsuya Kimura
  • Patent number: 6099623
    Abstract: A humidity control apparatus for realizing the dehumidification, humidification, and ventilation operations in a compact configuration. The apparatus includes a rotary humidity control element, an electric heater, and sucking and/or forcing blowers. The rotary humidity control element is of metal silicate gel polymerized in honeycomb laminates of ceramics, and is sectioned into a drying function part, a heat recovery function part, and a humidification function part, for use. The drying function part absorbs and removes moisture from air passing therethrough at room temperatures. The heat recovery function part recovers heat of air passing therethrough. The humidification function part moistens the air passing therethrough if the air is high in temperature. The electric heater is provided on an air passageway between the heat recovery function part and the humidification function part, for heating the air to be introduced to the humidification function part.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: August 8, 2000
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tatsuo Namatame, Toshio Nakayama, Masuyuki Hashimoto, Sinji Kaneko
  • Patent number: 6083304
    Abstract: A novel method and apparatus to dehumidify air provides enhanced dehumidification efficiency over conventional dehumidification apparatuses. A reusable dehumidification element disk provides a disk section to strip water from an air stream. The disk is rotated so that the saturated disk section enters a separate chamber where the water can be stripped from the disk with a stream of regeneration air. The regeneration air stream is recycled and is not split from or mixed with the air stream requiring dehumidification. The result is a more efficient dehumidification than in apparatuses which require the influent air stream to be divided into separate streams for dehumidification and regeneration functions.
    Type: Grant
    Filed: January 28, 1998
    Date of Patent: July 4, 2000
    Assignee: Kankyo Co., Ltd.
    Inventor: Yasuyuki Fujimura
  • Patent number: 6083300
    Abstract: An apparatus and system, as well as corresponding methods of operation and treatment of air, are provided which make use of a rotatable desiccant bed such as to permit the effective and selective alternative reduction of humidity of incoming air or recovery of heat from air to be discarded.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: July 4, 2000
    Assignee: Gas Research Institute
    Inventor: David H. McFadden
  • Patent number: 6080227
    Abstract: A VOC concentrating apparatus includes a honeycomb rotor. In order to lower concentration at an exit of adsorption and at the same time to be able to regulate the amount of air flow introduced into a desorbing zone, independently from the amount of cooling air, there are disposed a cooling zone, desorbing zone and an adsorbing zone in the honeycomb rotor. The honeycomb rotor rotates and thus passes through the zones one after another. After gas to be treated has passed through the adsorbing zone, concentration of VOC in the gas is measured on the exit side by a concentration detector. The cooling air is divided by a damper for regulating the amount of air flow, after having entered the cooling zone, and a part thereof enters the desorbing zone through a heater. Further air coming out therefrom is heated again by a heater to enter the desorbing zone and concentrated gas is removed.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: June 27, 2000
    Assignee: Nichias Corporation
    Inventors: Masaji Kurosawa, Katsuhiro Yamashita, Takeya Kobayashi
  • Patent number: 6056804
    Abstract: Pressure swing adsorption separation of a feed gas mixture, to obtain a purified product gas of the less strongly adsorbed fraction of the feed gas mixture, is performed with a cooperating set of "N" adsorbers in a rotary assembly, with each adsorber communicating at its product end directly to a rotary cyclic displacement chamber, and at its feed end by rotary distributor valve ports to a rotary piston feed compressor and a rotary piston exhaust vacuum pump. The compressor and vacuum pump are integrated with the cycle, and rotate at "N" times the cycle frequency. Alternative adsorber configurations for high frequency operation are disclosed.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: May 2, 2000
    Assignee: Questor Industries Inc.
    Inventors: Bowie G. Keefer, Christopher R. McLean
  • Patent number: 6027550
    Abstract: An apparatus and method for removing volatile organic compounds (VOCs) from a stream of contaminated air using an adsorbent material. The stream of contaminated air is introduced into an end of a first hollow member which contains the adsorbent material. A perforated member disposed within the hollow member is configured to increase the air stream velocity such that dispersed particles of the adsorbent material are entrained in the air stream. Entrainment of the adsorbent in the contaminated air stream facilitates efficient removal of the VOCs. The cleaned air stream exits from a second end of the first hollow member, and the adsorbent material, having a quantity of VOCs adsorbed thereon, is directed to a reconditioning apparatus wherein the VOCs are thermally desorbed. The reconditioned adsorbent material is then returned to the first hollow member.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: February 22, 2000
    Assignee: TecHarmonic, Inc.
    Inventor: Earl C. Vickery
  • Patent number: 6010562
    Abstract: A painting system includes a paint spray booth ventilated by process air including a combination of outside make-up air and a portion of the exiting process air which is returned to the booth, the returned air being the main component of the combination. The humidity of the air in the paint spray booth is controlled by routing a first minor portion of the process air, exiting the booth, through a desiccant dehumidifier, which removes moisture and volatile organic compounds (VOCs) from this process air portion before it is sent back to the paint spray booth. The dehumidifier is designed so that at any given time the process air portion contacts only part of the desiccant bed while air heated to approximately 250.degree. F. in a paint cure oven is exhausted from the oven and directed through the remaining part of the desiccant bed in order to dry, and thus regenerate, the desiccant for continued use.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: January 4, 2000
    Inventors: Paul Jeffrey Flynn, William Carl Nowack, Philip Leroy Carter
  • Patent number: 6004384
    Abstract: An apparatus for removing moisture from an air or gas stream by adsorption is disclosed. More particularly, the invention relates to an improved seal and method for removing the seal and an improved L-, V-, or pie-shaped duct that promotes laminar flow (viz. not turbulent) of a moisture- or solvent-laden stream within the rotary adsorption apparatus. This, in turn, reduces the amount of insulation needed as well as isolates the heated duct from the exterior surfaces. The method allows for simplified maintenance of the rotary adsorption apparatus in comparison with conventional seals, which are typically riveted, screwed, or mechanically attached to an adsorption apparatus.
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: December 21, 1999
    Assignee: Bry-Air, Inc.
    Inventor: Wayne Caudle
  • Patent number: 5932179
    Abstract: There is disclosed a waste gas treatment apparatus in which dust concentration at a treated gas outlet is sufficiently reduced and the desulfurizing efficiency and denitrating efficiency of grains are increased. The waste gas treatment apparatus includes an inlet member, an outlet member, a moving layer of the grains therebetween, a first perforated plate disposed between the inlet member and the outlet member for defining a front chamber in combination with the inlet member, a second perforated plate disposed between the inlet member and the outlet member for defining an intermediate chamber in combination with the first perforated plate and for defining a rear chamber in combination with the outlet member, and flow controllers for setting the moving speed of grain in the front, intermediate and rear chambers. The moving speed of grains in the front chamber is higher than that in the intermediate chamber and the moving speed of grains in the intermediate chamber is higher than that in the rear chamber.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: August 3, 1999
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventors: Teruo Watanabe, Hiromi Tanaka
  • Patent number: 5912423
    Abstract: A method and apparatus for removing contaminates from an air stream in which an adsorbent activated carbon cloth is positioned in said air stream. The method and apparatus provide for impressing an electric current through the cloth adsorbent to desorb any contaminates adsorbed thereon.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: June 15, 1999
    Assignee: Calgon Carbon Corporation
    Inventors: David T. Doughty, Michael Greenbank, Daniel D. Thayer
  • Patent number: 5904750
    Abstract: A new synthetic, pyrolized, spherical adsorbent, with a moving or fluidized bed VOC control/solvent recovery system, also described as a control/solvent recovery system.
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: May 18, 1999
    Inventor: Harold R. Cowles
  • Patent number: 5882381
    Abstract: A thermal desorption system for the treatment of contaminated solids.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: March 16, 1999
    Assignee: Modern Equipment Company, Inc.
    Inventors: Gunther Hauck, Lynwood L. Socks, Rodney H. Schueller, Robert Youmans, John W. Noland, Wayne L. Read
  • Patent number: 5858067
    Abstract: An apparatus for manufacturing a sorbent-containing fluid storage and dispensing vessel. A fluidizing vessel is arranged to hold a fluidized bed of solid-phase physical sorbent material, and sorbent material is fed to the fluidizing vessel. The sorbent material is fluidized with sorbable gas, to load the sorbent material with the gas and yield sorbate gas-loaded sorbent material. The sorbate gas-loaded sorbent material is transported from the fluidized bed into a storage and dispensing vessel, for subsequent use of the storage and dispensing vessel to selectively dispense the gas. Heat of adsorption effects are substantially eliminated in the fluidized bed, permitting the storage and dispensing vessel to be loaded at substantially ambient temperature.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: January 12, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventor: James V. McManus
  • Patent number: 5843213
    Abstract: A moisture control unit is made up of a housing and a moisture absorption rotor is rotatably supported in the housing. A fan is provided in an exterior wall of the housing and it feeds air into the housing. A heater is contained within the housing adjacent the rotor to evaporate moisture therefrom and a heat exchanger is also provided in the housing. The heat exchanger has a first passageway through which a portion of the air from the fan flows to absorb moisture from the rotor and a second passageway through which moisture-laden air flows from the rotor, the first and second passageways being in heat exchange relationship with each other.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: December 1, 1998
    Assignee: Kankyo Co., Ltd.
    Inventor: Yasuyuki Fujimura
  • Patent number: 5730782
    Abstract: A method and system for separating one or more components from gas mixtures uses a moving bed of adsorption material particles under continuous and substantially isobaric pressure conditions. Contaminated gases are likewise purified by removing one or more contaminants therefrom using such a moving bed of adsorption material particles under continuous and substantially isobaric pressure conditions.
    Type: Grant
    Filed: October 25, 1995
    Date of Patent: March 24, 1998
    Assignee: Praxair Technology, Inc.
    Inventors: Carl Joseph Heim, Arun Acharya, Barry Alan Minbiole, James John Carlins, Eriks Arvids Niparts, William Edgar BeVier
  • Patent number: 5725635
    Abstract: Method to remove organic halogenated molecules from gaseous currents arriving as a residue of industrial working processes or not, the gaseous current being delivered into a reactor (16) containing a fluid bed consisting of at least one solid adsorbent element after having undergone at least one filtration followed by a cooling, the gaseous current cooperating with the solid particles with exchange by adsorption between the gaseous current and the solid particles, the reactor (16) achieving a time of contact between the gaseous current and the solid particles at least longer than 3 seconds, the gaseous current which enters the reactor (16) having a temperature lower than 80.degree. C., but advantageously between 30.degree. and 70.degree. C., the cooling of the gaseous current upstream of the reactor (16) being followed by a gas/water or gas/air heat exchanger (13).
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: March 10, 1998
    Assignee: Danieli & C. Officine Meccaniche SpA
    Inventors: Fulvio Zubini, Iginio Colussi, Vittorino Gallo, Matteo Vittorio Losciale
  • Patent number: 5709736
    Abstract: A moisture control unit is made up of a body which is partitioned by a partition wall into a plurality of chambers. A dehumidifying opening is provided in a chamber and a humidifying opening is provided in a chamber. A moisture absorption rotor is rotatably provided in the chambers and a heater provided in one of the chambers adjacent to the moisture absorption rotor for evaporating water which is absorbed by the moisture absorption rotor. A part of the moisture absorption rotor which absorbs moisture from air is made heavy to thereby rotate downward from the weight of water while a part of the moisture absorption rotor which is heated by a heater and from which water is evaporated is made light to thereby rotate upward. As a result, the moisture control rotor can rotate by itself without needing a rotary driving source. The moisture control unit has a simplified structure, can be easily miniaturized and installed at a low cost without needing piping.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: January 20, 1998
    Assignee: Kankyo Co., Ltd.
    Inventor: Yasuyuki Fujimura
  • Patent number: 5688305
    Abstract: A process and an apparatus are described for drying moist gas, in particular air, in which the moisture is removed from the gas by a desiccant and the desiccant is freed of the absorbed moisture by a hot regeneration gas. In order to improve the energy balance in the drying of moist gas, in particular air, it is provided that the throughput of regeneration gas through the desiccant is controlled as a function of the temperature of the regeneration gas leaving the desiccant. An apparatus suitable for carrying out the process contains a temperature sensor arranged in the regeneration exhaust gas stream, which temperature sensor controls a device determining the regeneration gas throughput through the desiccant.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: November 18, 1997
    Inventor: Roderich Wilhelm Graeff
  • Patent number: 5676738
    Abstract: A new synthetic, pyrolized, spherical adsorbent, with a moving or fluidized bed VOC control/solvent recovery system, also described as a control/solvent recovery system.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: October 14, 1997
    Inventors: Lawrence Cioffi, Harold R. Cowles
  • Patent number: 5667559
    Abstract: An apparatus and method for removing volatile organic compounds from an air stream wherein airborne adsorbent material is mixed with contaminated exhaust air in a vertical main column. Volatile Organic Compounds (VOCs) within the exhaust air adhere to the adsorbent material and are thus removed from the air. The clean air exits the system and the saturated adsorbent material falls through the bottom of the main column and into a lower reservoir. The saturated adsorbent material is desorbed and recycled through the adsorber apparatus by being drawn up from the lower reservoir through a secondary column and deposited at the inlet to the main column. At the top end of the main column, the adsorbent material is once again dropped into the contaminated exhaust air flowing through the main column. This process is constant and adsorbent material is continuously being recycled through the system.
    Type: Grant
    Filed: May 10, 1996
    Date of Patent: September 16, 1997
    Assignee: On-Demand Environmental Systems, Inc.
    Inventor: Earl Vickery
  • Patent number: 5647892
    Abstract: An improved apparatus and process is provided for scrubbing sulphur oxide gas from combustion flue gas with wet limestone particles as a reactive scrubbing agent. The process is carried out in a moving bed reactor having louvered inlet and outlet sides which permit the flue gas to pass through the reactor while the limestone particles move downward. The flue gas may be flowed through the moving bed reactor at a high velocity to permit scrubbing of large volumes of gas in a thorough and efficient manner. The high velocity of flue gas passing through the reactor causes some of the scrubbing particles to be ejected from the outlet side of the reactor. Problems associated with the ejection of the scrubbing particles are avoided by providing a slot alongside the outlet side of the reactor. The slot is sized so that the flue gas passing therethrough will have insufficient velocity to entrain the ejected scrubbing particles therein.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: July 15, 1997
    Assignee: ETS International, Inc.
    Inventors: John D. McKenna, Kenneth W. Appell, John C. Mycock, Joseph F. Szalay
  • Patent number: 5628819
    Abstract: A regeneratable adsorber for adsorbing adsorbable contaminates from a fluid stream containing same is disclosed. The adsorber includes an adsorber housing in which there is a fluid stream inlet and a fluid stream outlet. The adsorber also includes a plurality of adsorber chambers which are arranged in an indexable wheel configuration. Each chamber includes an electrically conductive adsorbent, such as a monolithic activated carbon, a set of electrical conductors in contact with the adsorbent, and an inlet and outlet. A chamber is either in contact with a source of contaminate fluid or a desorbent fluid used to regenerate the adsorber. The adsorber includes selectively indexed chambers for adsorption or desorption to provide continuous contaminate adsorption and regeneration.
    Type: Grant
    Filed: September 28, 1995
    Date of Patent: May 13, 1997
    Assignee: Calgon Carbon Corporation
    Inventors: Jerald L. Mestemaker, Russell C. Wooten, B. R. Thakker, Paul E. Vargas, Andrew N. Andrascik, Randel W. Gulley, Richard F. Smith, Roderick O. Koehler, Timothy V. Johnson, David L. Hickman
  • Patent number: 5624644
    Abstract: An improved apparatus and process is provided for scrubbing sulphur oxide gas from combustion flue gas with wet limestone particles as a reactive scrubbing agent. The process is carried out in a moving bed reactor having louvered inlet and outlet sides which permit the flue gas to pass through the reactor while the limestone particles move downward. The flue gas may be flowed through the moving bed reactor at a high velocity to permit scrubbing of large volumes of gas in a thorough and efficient manner. The high velocity of flue gas passing through the reactor causes some of the scrubbing particles to be ejected from the outlet side of the reactor. Problems associated with the ejection of the scrubbing particles are avoided by providing a slot alongside the outlet side or the reactor. The slot is sized so that the flue gas passing therethrough will have insufficient velocity to entrain the ejected scrubbing particles therein.
    Type: Grant
    Filed: November 2, 1994
    Date of Patent: April 29, 1997
    Assignee: ETS International, Inc.
    Inventors: John D. McKenna, Kenneth W. Appell, John C. Mycock, Joseph F. Szalay
  • Patent number: 5607649
    Abstract: An apparatus for processing a particulate material containing an inflammable component, such as ethanol or another solvent, comprises a fluidized bed chamber with a perforated bed plate arranged therein. The particulate material may be fluidized on the bed plate by supplying fluidizing air upwardly through perforations in the bed plate. In order to reduce the risk of explosion in the fluidizing air after its passage through the fluidized bed formed on the bed plate, dilution gas is fed into the fluidized bed chamber. The dilution gas is introduced into the fluidized bed chamber at least at one position spaced from the side walls of the chamber and preferably located centrally within the fluidized bed chamber in order to obtain a substantially uniform mixing of the dilution gas with the fluidizing air including the inflammable component immediately above the fluidized bed. The explosion safe gas mixture may be discharged from the upper part of the processing chamber.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: March 4, 1997
    Assignee: Niro Holding A/S
    Inventor: Ove Hansen
  • Patent number: 5597541
    Abstract: An apparatus for treating gas introduced into a vessel containing a particulate material at a temperature less than that of the gas in a manner so that said material reduces the temperature of the gas and the gas entrains at least a portion of the material. The entrained material is then separated from the gas and passed to a heat exchanger to cool the material while the separated gas is passed to a turbine to drive same. At least a portion of the exhaust gas from the turbine is passed to the heat exchanger in a manner to fluidize the material in the heat exchanger and the cooled separated material is returned back to the vessel.
    Type: Grant
    Filed: August 7, 1995
    Date of Patent: January 28, 1997
    Assignee: Foster Wheeler Energy Corporation
    Inventor: John T. Tang
  • Patent number: 5584916
    Abstract: The present invention relates to an organic-solvent vapor adsorbing apparatus which includes a rotor containing an adsorbent and having tubular draft passages arranged in a direction of the rotational axis thereof. Plate-like separators disposed along a radial direction of the rotor define a plurality of zones. A treatment zone is provided for removing organic solvent vapor from a gaseous stream passed therethrough and into the adsorbent. A regeneration zone is also provided for removing the organic solvent from the adsorbent by a heated air stream passed therethrough. Finally, a purge zone is provided for cooling the adsorbent with cool air. Air exiting the purge zone is merged with the heated air stream which is introduced into the regeneration zone.
    Type: Grant
    Filed: September 8, 1994
    Date of Patent: December 17, 1996
    Assignee: Nichias Corporation
    Inventors: Katsuhiro Yamashita, Takashi Taniguchi
  • Patent number: 5580369
    Abstract: An improved adsorbent composition for a natural gas-fired, adsorption cooling system that readily adsorbs moisture from ambient air, while being readily regenerated at high temperatures up to 200.degree.-300.degree. C. in order to provide an enhanced coefficient of performance to the system. Such an adsorbent composition may comprise an A-type zeolite, an X-type zeolite or a chemically modified Y-type zeolite either alone, in conjunction with each other or in conjunction with alumina and/or silica gel. A rotating adsorbent wheel may be fashioned from corrugated paper comprising the adsorbent composition and a slurry of synthetic, organic fibers which are preferably polyaramid fibers. The strength of the wheel may be enhanced by surface treating it with sols or salt solutions of alumina or silica, and a highly temperature-stable epoxy or phenolic resin.
    Type: Grant
    Filed: January 30, 1995
    Date of Patent: December 3, 1996
    Assignee: LaRoche Industries, Inc.
    Inventors: William A. Belding, William D. Holeman, Zalman Lavan, Roger L. Jones
  • Patent number: 5567228
    Abstract: A method and apparatus for treating synthesized gas ("syngas") comprises introducing the syngas into a lower portion of a vessel. The syngas flows in the lower portion through a static regenerative hot gravel bed and into an upper portion of the vessel containing particulate material at a temperature less than that of the syngas in a manner so that the material reduces the temperature of the syngas and reacts with the syngas to abate pollutants therein, and the syngas entrains at least a portion of the material. The entrained material is then separated from the gas, cooled in a heat exchanger, and returned to the vessel, while the separated syngas is passed to downstream facilities.
    Type: Grant
    Filed: July 3, 1995
    Date of Patent: October 22, 1996
    Assignee: Foster Wheeler Energy Corporation
    Inventor: Iqbal F. Abdulally
  • Patent number: 5542968
    Abstract: Disclosed is a gas permeable, sensible and latent heat exchange media having a multiplicity of passageways therethrough through which an air stream can flow, the sensible and latent heat exchange media. The heat exchange media comprises a fibrous support material, a finely powdered desiccant material and fire retardant contained in the fibrous support material. The fibrous support material and the fire retardant are capable of adsorbing sensible heat from a warm air stream and releasing the absorbed sensible heat into a cool air stream as the air stream flows through the sensible and latent heat exchange media. The desiccant material is capable of adsorbing moisture from a humid air stream flowing through the sensible and latent heat exchange media and capable of releasing the adsorbed moisture into a dry air stream flowing through the passageways of the sensible and latent heat exchange media.
    Type: Grant
    Filed: January 24, 1995
    Date of Patent: August 6, 1996
    Assignee: LaRoche Industries, Inc.
    Inventors: William A. Belding, Scott Janke, William D. Holeman, Marc P. F. Delmas
  • Patent number: 5538541
    Abstract: An apparatus and method for removing volatile organic compounds from an air stream wherein airborne adsorbent material is mixed with contaminated exhaust air in a vertical main column. Volatile Organic Compounds (VOCs) within the exhaust air adhere to the adsorbent material and are thus removed from the air. The clean air exits the system and the saturated adsorbent material falls through the bottom of the main column and into a lower reservoir. The saturated adsorbent material is desorbed and recycled through the adsorber apparatus by being drawn up from the lower reservoir through a secondary column and deposited at the inlet to the main column. At the top end of the main column, the adsorbent material is once again dropped into the contaminated exhaust air flowing through the main column. This process is constant and adsorbent material is continuously being recycled through the system.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: July 23, 1996
    Assignee: On-Demand Environmental Systems Inc.
    Inventor: Earl Vickery
  • Patent number: 5534186
    Abstract: A vapor extraction apparatus includes a gel sorbent capable of absorbing vapor directly into the liquid state and capable of disgorging the absorbed liquid in a phase-transition. The apparatus includes a housing adapted for movement from a first position, where it is exposed to a vapor-containing gas stream and a first environmental condition, and capable of moving to a second position, where it is exposed to a second environmental condition. A gel sorbent is disposed on at least one surface of the housing. The gel sorbs vapor from the gas stream as liquid when the sorbent is in its first position. The sorbent disgorges the liquid during phase-transition collapse when it is in the second position. A method of extracting vapor from a process gas stream includes contacting a phase transition gel sorbent with vapor under conditions sufficient for the gel sorbent to undergo a phase transition and absorb vapor as liquid inside the gel sorbent.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: July 9, 1996
    Assignee: Gel Sciences, Inc.
    Inventors: David H. Walker, Harris Gold, George W. McKinney, III, John F. McCoy, III, Xiaohong Yu
  • Patent number: 5529591
    Abstract: Catalyst and hydrocarbon vapors are separated in separator-stripper vessel by a reverse flow separator assembly in a top portion of the separator vessel. The separator assembly contains a shrouded eductor where the particles and gas enter the eductor, and upon exit the gas reverses direction to travel through the passage between the eductor and the shroud, thus causing disengagement of the particles. The gas free of particles then passes out the vessel exit and the particles return to the particle bed in the lower portion of the vessel.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: June 25, 1996
    Assignee: Shell Oil Company
    Inventor: Thomas S. Dewitz
  • Patent number: 5527514
    Abstract: A desulfurizing and denitrating apparatus wherein an inner space of a tower body, which has an introduction port for a gas to be processed and a processed gas discharge port formed respectively in opposite side walls, is partitioned in a direction from the side wall having the processed gas introduction port toward the side wall having the processed gas discharge port by an inlet louver, a perforated plate and an outlet louver all extending vertically parallel to each other, a constant-rate discharging device for setting a moving speed of a carbon-base adsorbent in a small chamber defined between the inlet louver and the perforated plate and a constant-rate discharging device for setting a moving speed of a carbon-base adsorbent in a large chamber defined between the perforated plate and the outlet louver are provided, the moving speed of the carbon-base adsorbent in the small chamber is set to be 2 to 4 times greater than an average moving speed, and the distance from the inlet louver to the perforated plate
    Type: Grant
    Filed: October 7, 1994
    Date of Patent: June 18, 1996
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventors: Teruo Watanabe, Hiromi Tanaka, Kouji Kobayashi
  • Patent number: 5514035
    Abstract: The present invention describes a method and apparatus for preventing and/or removing the condensation from the inside of the windshield, side windows, and rear windows of an automobile, truck, boat, aircraft, tractor, train, military vehicle, or similar vehicle cabin to provide clear visibility for the occupants. In addition to condensation removal, the system provides added benefits of enhanced cooling effects and comfort for the occupants by lowering the cabin humidity, and the operation and efficiency of the air-conditioning system is also improved due to the reduction in the humidity. A desiccant wheel system is used to perform the dehumidification. Automatic and manual controls prevent condensation from forming and may also be set to maintain a lower humidity level for the occupant comfort and cooling efficiency. The desiccant wheel is regenerated by hot air from a heat exchanger or other heat source using excess engine heat.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: May 7, 1996
    Inventor: James G. T. Denniston
  • Patent number: 5509956
    Abstract: A process and apparatus wherein an adsorption media, containing contaminants adsorbed from a contaminated gas stream, are contained in a media chamber. This chamber is defined by a generally cylindrical vessel, and the adsorption media comprises a polymeric material in particulate or bead form. The media chamber is defined in surrounding relationship to an elongate hollow guide tube which extends longitudinally along the central axis of the chamber. A microwave generator supplies microwave energy into the guide tube which functions as a waveguide. This waveguide has a plurality of slots formed therein which functions as radiators for the microwave energy. The microwave energy passes radially outwardly from the waveguide into the surrounding media throughout the length thereof to effect uniform heating of the media both longitudinally and radially. This heating effects release of the contaminants from the adsorbent media, which volatiles are then sucked out of the media.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: April 23, 1996
    Assignee: Horizon Holdings, Inc.
    Inventors: Stephen H. Opperman, Mark S. Arsenault
  • Patent number: 5505768
    Abstract: A humidity moisture exchanger (HME) for trapping heat and/or moisture normally lost during mechanical ventilation and the like. This HME includes a housing having a first chamber and a second chamber. The second chamber includes a pair of fluid ports connectable, in series, to a fluid flow tube extending from the patient. Inside the housing is a filter or an absorbent heat and moisture collecting material. To permit the uninhibited passage of fluid through the housing, the absorbent material is removed from the second chamber area and temporarily stored within the first chamber area.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: April 9, 1996
    Inventor: Anthony J. Altadonna
  • Patent number: 5496395
    Abstract: An organic solvent recovery system comprises a vacuum suction device for sucking a gas containing organic solvent from a soil contaminated by the organic solvent and a gas treating apparatus connected to a discharge side of the vacuum device through a connection line for adsorbing and recovering the organic solvent in the gas by activated carbon. The gas treating apparatus comprises an adsorption unit connected to the vacuum device provided with a multistage fluidized bed of the activated carbon for adsorbing the organic solvent in the gas, and a desorption unit arranged side by side with the adsorption unit and provided with a moving bed of the activated carbon for desorbing the organic solvent from the activated carbon, the desorption unit being further provided with a heating device for heating the activated carbon and a gas supply device for supplying a carrier gas for conveying a desorbed solvent gas.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: March 5, 1996
    Assignee: Kureha Kagaku Kogyo Kabushiki Kaisha
    Inventor: Akira Yamazaki
  • Patent number: 5494500
    Abstract: An activated carbon has a pencil hardness of B-6B, pore size of 100-400.ANG., specific surface area of 150-500 m.sup.2 /g, pore volume of 1.3-5.0 ml/g, and if desired, CEC of 8-13 and is composed of carbon microcrystals irregularly arranged. An activated carbon can be produced by burning waste tires containing metal wires. The activated carbon can be used for removing SO.sub.2 and/or No.sub.x formed by combustion of heavy oil, or combustion of light oil. Apparatuses therefor are disclosed.
    Type: Grant
    Filed: May 11, 1994
    Date of Patent: February 27, 1996
    Assignee: The Social Welfare Foundation Hokkaido Rehabily
    Inventors: Yoshihiro Ikenaga, Takeji Kobata
  • Patent number: 5443624
    Abstract: A method and apparatus for increasing the yield of an air-drying process with the aid of a dehumidifier 2 and a condenser/heat-exchanger 3 involves delivering wet regenerating air exiting the dehumidifier to one side of the condenser/heat-exchanger so as to deliver energy to the process air entering the other side. Condensation deriving from the regenerating air is collected and carried away, and the heated, dried process air 21 is delivered to the dehumidifier in which moisture is extracted from the air and the air further dried. The departing wet regenerating air may, after its delivery process, be led to the room, atmosphere or the flow of process air.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: August 22, 1995
    Assignee: Corroventa Avfuktning AB
    Inventor: Knut Claesson
  • Patent number: 5441559
    Abstract: A rotary device including a plurality of vertical prismatic sectors mounted on a first annular plate comprising two arrays of gas passages which communicate with the outer and inner collectors of respective sectors, and interacting with a second plane annular plate on a housing defining a set of inner chambers. The second plate comprises two concentric arrays of apertures which communicate with corresponding chambers in the set of chambers, and are spread out along the path of the two gas passage arrays of the first plate. The device is particularly useful for producing oxygen.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: August 15, 1995
    Assignee: l'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Pierre Petit, Michel Poteau, Jean-Marc Scudier, Xavier Vigor
  • Patent number: 5419877
    Abstract: High temperature gas emissions from industrial power plant or environmental clean-up processes are subjected to an acoustic waveform having second harmonic content and appropriate second harmonic phase shift to impart a net acoustic Oseen force on particulate matter contained in the gas for removal of said matter. Particulate matter of 1 micron radius is positively excluded, while smaller particles are agglomerated by the sound wave. The acoustic waveform further enhances both sorption of injected sorbent particles for removal of sulfur oxides, and the efficiency of an in-line catalytic converter for removal of nitrogen oxides. The invention improves overall removal efficiency, can operate at very high temperatures, and does not produce any secondary waste, such as filters.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: May 30, 1995
    Assignee: General Atomics
    Inventors: Robert R. Goforth, Tihiro Ohkawa